Exploratory data analysis

= Also called descriptive statistics, this termis
used to describe the process of ‘looking at the
data’ prior to formal analysis

= In this phase of analysis, data are examined for
quality and ‘cleaned’ as well as displayed to
provide an overall impression of results

= We will look at two types of summaries:
— Graphical summaries

— Numerical summaries

= Necessary to use statistical software



Why R?

= Powerful, flexible, and extensible statistical
computing language and environment

= Wide range of built-in statistical functions and
add-on packages available, including a growing
number specifically for microarray data analysis

= High quality, customizable graphics capabilities
= Available for Unix/Linux, Windows, Mac
= All this and ... R is free!



Variables (l)

= Statisticians call characteristics which can differ
across individuals variables

= Types of variables

— Categorical (also called qualitative)

« Examples: eye color, favorite television program

— Numerical (also called quantitative)

« Examples: height, number of children, fluorescence
intensity



Variables (Il)

= Categorical variables may be

— Nominal — the categories have names, but no ordering
(e.g. eye color)

— Ordinal — categories have an ordering (e.g. ‘Always’,
‘Sometimes’, ‘Never’)

= Numerical variables may be

— Discrete — possible values can differ only by fixed
amounts (most commonly counting values)

— Continuous — can take on any value within a range (e.g.
any positive value)



Univariate Data

* Measurements on a single (continuous) variable X

= Summarizing X

— Graphically:
« Distribution: histogram, QQ plot, dotplot, boxplot
 Quality: cluster analysis, PCA, spatial plots

— Numerically:
« Distribution: quantiles
« Center: mean, median
« Spread: SD, IQR, MAD



Bivariate / Multivariate Data

= Bivariate (or multivariate) data — data with
measurements on two (or more) variables

= Here, we will look at two continuous variables

= Want to explore the relationship between the
two variables

— Graphically: scatterplot

— Numerically: correlation coefficient



Histogram: same data
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Some general histogram forms
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Histogram: bars and smoothed

Histogram of Ozone Pollution Data with Kernel Density Plot
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Histogram: comparing distributions
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= Histogram, smoothed histogram (kernel), normal density
= NOT the best way to compare distributions (use QQ plot)



QQ-Plot

= Quantile-quantile plot °

= Used to assess
whether a sample follows
a particular (e.g. normal)
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Typical deviations from straight line
patterns

= Quitliers
= Curvature at both ends (long or short tails)
= Convex/concave curvature (asymmetry)

= Horizontal segments, plateaus, gaps
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Dot plot
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» Values plotted separately (as dots) for each group
= Most useful when there aren’t too many observations



Numerical Summaries

= To provide objectivity (put in same objects to same methods,
get out same classification

— This is in contrast to experts deciding

= To provide stability

— Would like classification to be ‘robust’ to a wide variety of additions of
objects, or characteristics

= Categorical/Qualitative variables

— frequency table

= Numerical/Quantitative variables
— Distribution: quantiles

— Center: mean, median
— Spread: SD, IQR, MAD



Quantiles

= The p'" quantile is the number that has the
proportion p of the data values smaller than it

30%
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5.53 = 30" percentile



Measures of center

= Mean
— Total of the values divided by the number of values
— Appropriate for distributions that are fairly symmetric
— Sensitive to outliers (since all values contribute equally)

— ‘Balance-point’ for a histogram

= Median

— The median value of a variable is the ‘middlemost number:
50% (half) of the values are smaller than it, 50% bigger

—NOT sensitive to outliers (since it ‘ignores’ most values)

— Appropriate summary for skewed distributions



Relative location of mean and median
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Measures of spread

= Standard deviation (SD)
— Square root of the average™ of squared deviations from
mean
— Appropriate when center measured with the mean

= [nterquartile range (IQR)
— Distance between 25™ (Q,) and 75" (Q,) percentiles:
IQR = Q; — Q
— One measure of spread when center measured with median

= Median Absolute Deviation (MAD)

— Medlian of absolute values of deviations from median

— More robust measure of spread than SD

— Another way (besides IQR) to measure spread when center
measured with median



Five-number summary and boxplot

= Overall summary of the distribution: Min, Q,, Median, Q;, Max

= A boxplot provides a visual summary:
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Box plot combined with dot plot
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= ‘Jitter, size and color aid in the comparison of groups



Robustnhess and resistance

* These concepts refer to lack of sensitivity to
assumed distributions and effects of a small
number of values or outliers

= These qualities are desirable: you don’'t want
inferences to be strongly influenced by only a
small part of the data set

= The mean is very sensitive to outlying values,
the median is very resistant



Robustness of mean, median
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Scatterplot

= We can graphically summarize a bivariate data set
with a scatterplot (also sometimes called a scatter
diagram)

= Plots values of one variable on the horizontal axis
and values of the other on the vertical axis

= Can be used to see how values of 2 variables tend
to move with each other (i.e. how the variables are
associated)



Scatterplots
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Arm Strenglh

Scatterplots: customized
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All pairwise plots: pairs / splom
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Numerical Summary

= Typically, a bivariate data set is summarized
numerically with 5 summary statistics

= These provide a fair summary for scatterplots with
the same general shape as we just saw, like an
oval or an ellipse

= We can summarize each variable separately . X
mean, X SD; Ymean, Y SD

= But these numbers don’t tell us how the values of
Xand Y vary together



Correlation Coefficient

= The (sample) correlation coefficient r is
defined as the average value of the product

(X'in SUs)*(Yin SUs)
= [ SU = standard units = (value-mean)/SD ]
" r IS a unitless quantity
= -1 <r<d
= r is a measure of LINEAR ASSOCIATION



What ris...

= r is a measure of LINEAR ASSOCIATION

= The closer r is to —1 or 1, the more tightly the points
on the scatterplot are clustered around a line

= The sign of r (+ or -) is the same as the sign of the
slope of the line

= When r =0, the points are not LINEARLY
ASSOCIATED - this does NOT mean there is NO
ASSOCIATION



...and what ris NOT

= r js a measure of LINEAR ASSOCIATION

= rdoes NOT te
= rdoes NOT te
= rdoes NOT te

= rdoes NOT te
like

us if Y'is a function of X

us if X causes Y

us if Y causes X

us what the scatterplot looks
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Categorical data

= So far, we have been looking at continuous
response variables

* Sometimes, the response is categorical
— male/female
—yes/no

= In this case, we are often interested in questions
dealing with proportions (rather than means)



Two-way tables

= Table below is from a blind 5 year randomized
study of physicians testing whether regular aspirin
use reduces mortality from cardiovascular

disease

placebo

= Every other day, participants took an aspirin or a
MI
Group |Yes |No Total
Placebo |189 10,845 |11,034
Aspirin | 104 10933 11,037




Table layout

= Tables often better than words to convey
quantitative data

= Avoid too many decimal places

= Usually better to use space to separate
columns (rather than lines):

Subject | Time 1l |Time?2 Subject Timel Time 2

Joe 3.67390|2.79495 Joe 3.67 2.79

Mary 4.75435|1.23578 Mary  4.75 1.24

Nancy |3.96456|2.84379| Nancy 3.96 2.84




Application: microarray EDA

= We are interested in finding true biologically
meaningful differences between sample types

= Due to other sources of systematic variation, there
are also usually artifactual differences

= Sources of artifacts include:
— print tips - differences in subarrays
—plate effects — differences in rows within subarray
— batch effects
— hybridization artifacts

= Exploratory data analysis (EDA) is an important
component of microarray data preprocessing



Expression on array 2
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Expression on array 2 (log2)
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Take logs...

log2 Expression data from 2 arrays
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... and rotate (plot Diff vs. Avg.)

MA plot MA plot
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= M = ‘minus’ (difference) = log2 (expression 2)
— log2 (expression 1)

= A = ‘average’ = [log2 (expression 1) + log2 (expression2)]/2



smoothScatter

MA plot MA plot
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= Rather than plotting all individual points, color plot according
to the density of points
= Useful when there are many points (here several thousand)



Spatial plots: background from two slides




Pin group (sub-array) effects
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Highlighting pin group effects:
Clear example of spatial bias

.:-L'.--.'
. R
] . -_.:: .#E!.-:_-:_ -
" - g ug@gﬁ_‘_"‘ﬂ""_‘_ ..':'.t|—|__'-.-
2 Te 2T RYT LT :-E“'"J%':"
F o o ] B P HE Cn
8’ ?F{JE:lBé Ilz:laﬁ :EE|E|'L E|E| j.-" -r '...-.i.:li.':.- 1
- 8§IEO Eﬁ !‘% 8 c b ;“-

N 8§g 8 3 g @g L_ -

=

T T T T T T T T T T T T T 1
123456789 1 13 15

Print-tip groups




Pseudo-chip images for QC
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Presenting results

= Communicating results is an important part of
science

= There is no magic ‘formula’ for how to present
results!

= You need to think carefully about the
message you wish to give and how to present
it clearly and convincingly

= Avoid excessive computer output



Edward Tufte on graphics

= ‘Excellence in statistical graphics consists of
complex ideas communicated with clarity,
precision and efficiency’; should
—show the data
— make the reader think about substance
— avoid data distortion
— present many numbers in a small space
—encourage the eye to make comparisons
—reveal several levels of detall
—serve a clear purpose

= See also work by Karl Broman



Graphical display tips

= Show the data (!!)
= Don’t use pie charts
= Consider logs

= Take differences

= Ease comparisons
— Things to be compared should be adjacent
— Align vertically
— Common axes
— Labels not legends (where possible)
— Should sorting really be alphabetical?
— Consider whether the 0 is needed



More graphical display tips

= Data density — for example, number of data points
per square centimeter

* Avoid ‘chartjunk’ — decoration that provides no data
= Use color to convey information
= Use appropriate dimensionality

» Did | say Don’t use pie charts ?? ©

= And now: a graphics tour tor discussion ...



Show the data
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Do we really need color here?

Revenue Estimation - Year 2002

g —
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3 lines?
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More about lines

Daily Server Utilization

Daily Server Load
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= Different types (solid, dotted)?
= Colors?
= 3D??



What the *"*$%# are these saying?
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Pie Charts: JUST SAY NO !l

* Pie charts are a bad way to display information

* The eye is
—qood at judging linear measures and
—bad at judging relative areas, volumes or
angles

= A pie chart is never necessary - data that can be
shown by pie charts always can be shown by a
dot plot (or bar chart, or table)

= 3D version even worse!



Spot the differences: pie vs. bar




Even worse examples of pie charts
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Things to be compared: adjacent

AA AB BB AA AB BB

Female Male




Use color where helpful

Phenotype
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Where easiest to compare A and B?




Easier to compare vertical aligned




Use common axes
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everal types of problems
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The same data
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More advanced techniques

= Cluster analysis
— Leads to readily interpretable figures
— Can be helpful for identifying patterns in time or space
— Can be used for exploratory purposes
— Used to find groups of objects when not already known

* Principal components analysis
— Often used as exploratory tool
— Dimensionality reduction

= Useful for EDA and quality assessment of high-
dimensional datasets

= Briefly outline the main ideas here



Difficulties in defining ‘cluster’
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Similarity
= Similarity s; indicates the strength of
relationship between two objects i and |
= Usually 0 = s; =1
= Correlation-based similarity ranges from —1 to 1

= Use of correlation-based similarity is quite
common in gene expression studies but is in
general contentious...



Problems using correlation
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Dissimilarity and Distance

= Associated with similarity measures s; bounded by
0 and 1is a dissimilarity d;=1-s;

= Distance measures have the metric property
(dij +0j 2 djk)

= Many examples: Euclidean (‘as the crow flies’),
Manhattan (‘city block’), etc.

* Distance measure has a /large effect on
performance

= Behavior of distance measure related to scale of
measurement



Partitioning Methods

= Partition the objects into a prespecified number of
groups K

= [teratively reallocate objects to clusters until some
criterion is met (e.g. minimize within cluster sums
of squares)

= Examples: k-means, self-organizing maps (SOM),
partitioning around medoids (PAM), model-based
clustering



Hierarchical Clustering

= Produce a dendrogram

= Avoid prespecification of the number of clusters
K

= The tree can be built in two distinct ways:
— Bottom-up: agglomerative clustering
— Top-down: divisive clustering



Agglomerative Methods

= Start with n sample clusters

= At each step, merge the two closest clusters using
a measure of between-cluster dissimilarity which
reflects the shape of the clusters

= Examples of between-cluster dissimilarities:

— Unweighted Pair Group Method with Arithmetic Mean
(UPGMA): average of pairwise dissimilarities

— Single-link (NN): minimum of pairwise dissimilarities
— Complete-link (FN): maximum of pairwise dissimilarities



Divisive Methods

= Start with only one cluster
= At each step, split clusters into two parts

= Advantage: Obtain the main structure of the data
(I.e. focus on upper levels of dendrogram)

» Disadvantage: Computational difficulties when
considering all possible divisions into two groups



Partitioning vs. Hierarchical

= Partitioning

— Advantage: Provides clusters that satisfy some
optimality criterion (approximately)

— Disadvantages: Need initial K, long computation time
= Hierarchical

— Advantage: Fast computation (agglomerative)

— Disadvantages: Rigid, cannot correct later for erroneous
decisions made earlier



Generic Clustering Tasks

= Estimating number of clusters
= Assigning each object to a cluster

= Assessing strength/confidence of cluster
assignments for individual objects

= Assessing cluster homogeneity



Issues in Clustering

= Data pre-processing

= Which genes (variables) are used

= Which samples are used

= Which distance measure is used

= Which algorithm is applied

= How to decide the number of clusters K




Component 2
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Visualizing partition

clusplot(pam(x = as.dist(1 - cor(mel.data)), k = 3, diss = TRUE))

[
04

These two compaonents explain 37 .03 % of the point variability.
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Estimating Number of Clusters

Silhouette plot of pam(x = as.dist(1 - cor(mel.data)), k = 3, diss =1
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Hierarchical, agglomerative: different methods

Average linkage, melanoma only
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Different methods, different samples

Average linkage, melanoma only  Avg linkage, melanoma & controls
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How many clusters K?

= Many suggestions for how to decide this!

= Milligan and Cooper (Psychometrika 50:159-179,
1985) studied 30 methods

= A number of new methods, including GAP
(Tibshirani ) and clest (Fridlyand and Dudoit)

= Applying several methods yielded estimates of
K = 2 (largest cluster has 27 members) to
K = 8 (largest cluster has 19 members)



Summary

= Buyer beware — results of cluster analysis should
be treated with GREAT CAUTION and
ATTENTION TO SPECIFICS, because...

= Many things can vary in a cluster analysis

= |f covariates/group labels are known, then
clustering is usually inefficient



Locating a point in the plane

We can describe the location of a point in
the plane by saying how much we move in
the horizontal (X) direction, then how much
we move in the vertical (Y) direction

As an example, think of describing how to
get to some particular place from where you
are (for example, how to get to CE 105 from
MA 11)

One way to do this is to say how far you go
NORTH, then how far you go EAST



Directions: North = 1st?

En!'npass heedle
Orienting arr?w / Cirection of travel-arrow

Crienfing lines Compass Housing {turnable)



Variance-Covariance matrix

Consider a data set consisting of p variables
measured on n cases

How the variables change together is summarized
by the variance-covariance matrix (or by the
correlation matrix)

For a simple example (just 2 variables):
> cov (head) > cor (head)

[,1] [,2] [,1] [,2]
[1,] 96.95061 54.48939 [1,] 1.0000 .7859
[2,] 54.48939 49.57918 [2,] 0.7859 1.0000




Principal Component Analysis (PCA)

= One aim of principal component analysis (PCA)
IS to reduce the dimensionality from p variables

= Try to explain the variance-covariance structure
through linear combinations (principal
components) of the (original) variables

= Another aim is to interpret the first few principal
components in terms of the original variables to
give greater insight into the data structure



More on PCA

Each principal component (PC) accounts for a
certain amount of the variation in the data

The 1st PC is the linear combination that
accounts for (‘explains’) the most variation

Subsequent PCs account for as much as
possible of the remaining variation, while being
uncorrelated with earlier PCs

Aubergine
Where do these come from?



What does this have to do with PCA?

Consider the variance-covariance matrix A

The eigenvectors of A provide sets of
coefficients defining p linear functions of the
original variables

These functions are the PCs

If A has eigenvalues A4, A, ..., A, then the
PCs have variances A, A,, ..., xp and zero
covariances



Cautions

Sometimes used as a method for simplifying data
because PCs associated with smaller eigenvalues
have smaller variances and might therefore be
‘ignored’

This assumption requires caution

When variables are on different scales, it is
customary to use the correlation matrix (rather
than the covariance matrix)

These two formulations give different results : the
eigenvalues for the two matrices are not related in
a simple way

Theory not simple for correlation-based PCA
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How many PCs?

There are a few ways to decide how many PCs
to retain

Some common methods are:

retain the number required to explain some percentage
of the total variation (e.g. 90%)

number of eigenvalues > average (1 if correlation
matrix is used)

look for ‘elbow’ in scree plot
compromise between these

The scree plot shows proportion of variance (or
just variance) explained by each component



Variances
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PC 2

PCA to assess data quality
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