Exploratory data analysis

- Also called *descriptive statistics*, this term is used to describe the process of 'looking at the data' prior to formal analysis
- In this phase of analysis, data are examined for *quality* and 'cleaned' as well as *displayed* to provide an overall impression of results
- We will look at two types of summaries:
 - Graphical summaries
 - Numerical summaries
- Necessary to use statistical software

Why R?

- Powerful, flexible, and extensible statistical computing language and environment
- Wide range of built-in statistical functions and add-on packages available, including a growing number specifically for microarray data analysis
- High quality, customizable graphics capabilities
- Available for Unix/Linux, Windows, Mac
- All this and ... R is free!

Variables (I)

- Statisticians call characteristics which can differ across individuals variables
- Types of variables
 - Categorical (also called qualitative)
 - Examples: eye color, favorite television program
 - Numerical (also called quantitative)
 - Examples: height, number of children, fluorescence intensity

Variables (II)

- Categorical variables may be
 - Nominal the categories have names, but no ordering (e.g. eye color)
 - Ordinal categories have an ordering (e.g. 'Always', 'Sometimes', 'Never')
- Numerical variables may be
 - Discrete possible values can differ only by fixed amounts (most commonly counting values)
 - Continuous can take on any value within a range (e.g. any positive value)

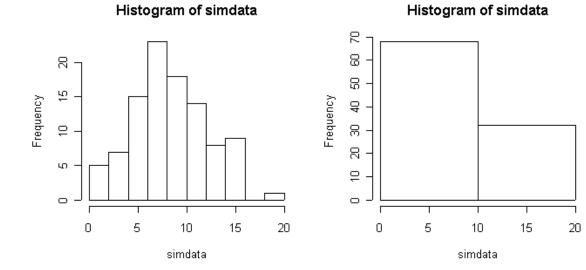
Univariate Data

- Measurements on a single (continuous) variable X
- Summarizing X
 - Graphically:
 - Distribution: histogram, QQ plot, dotplot, boxplot
 - Quality: cluster analysis, PCA, spatial plots
 - Numerically:
 - Distribution: quantiles
 - Center: mean, median
 - Spread: SD, IQR, MAD

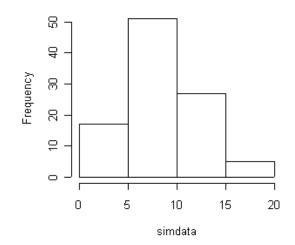
Bivariate / Multivariate Data

- Bivariate (or multivariate) data data with measurements on two (or more) variables
- Here, we will look at two continuous variables
- Want to explore the *relationship* between the two variables
 - Graphically: scatterplot
 - Numerically: correlation coefficient

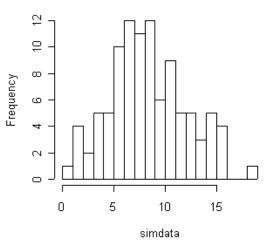
Histogram: same data



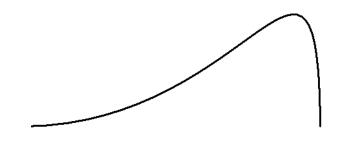
Histogram of simdata



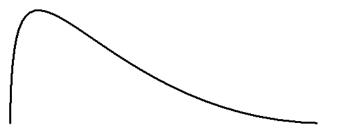
Histogram of simdata



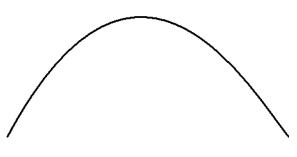
Some general histogram forms



left-skewed



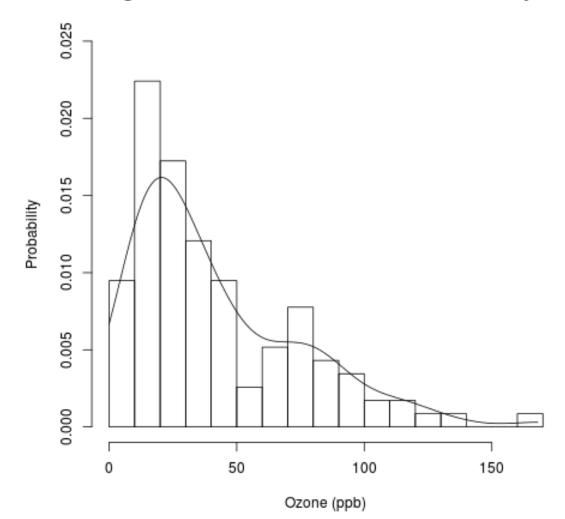
right-skewed



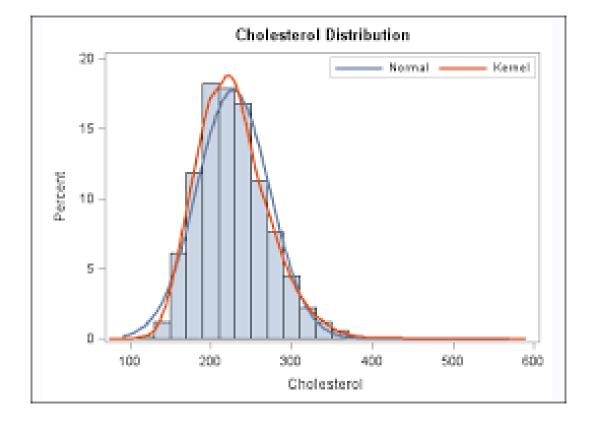
symmetric

Histogram: bars and smoothed

Histogram of Ozone Pollution Data with Kernel Density Plot



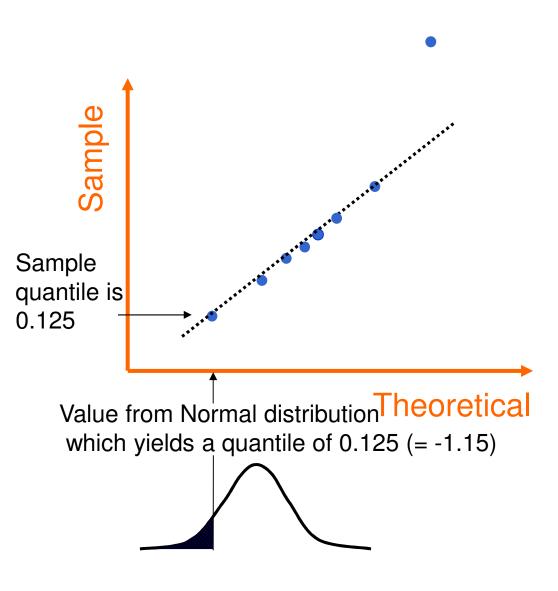
Histogram: comparing distributions



- Histogram, smoothed histogram (kernel), normal density
- NOT the best way to compare distributions (use QQ plot)

QQ-Plot

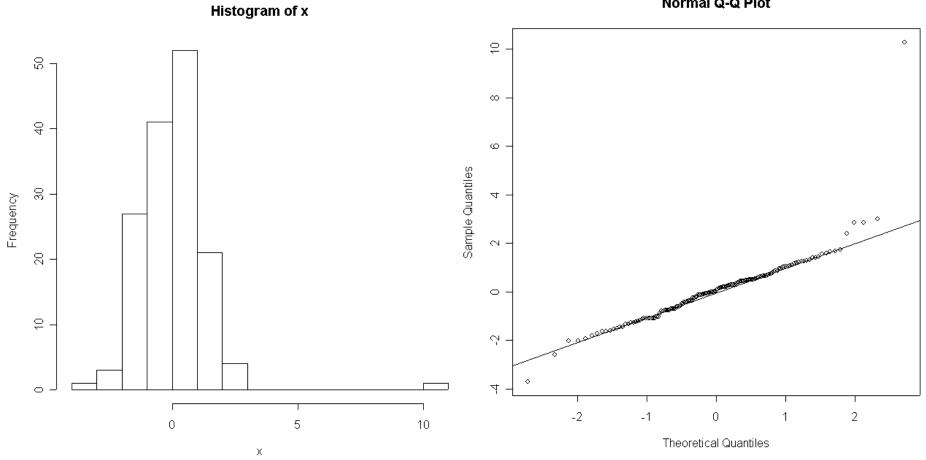
- Quantile-quantile plot
- Used to assess whether a sample follows a particular (e.g. normal) distribution (or to compare two samples)
- A method for looking for outliers when data are mostly normal



Typical deviations from straight line patterns

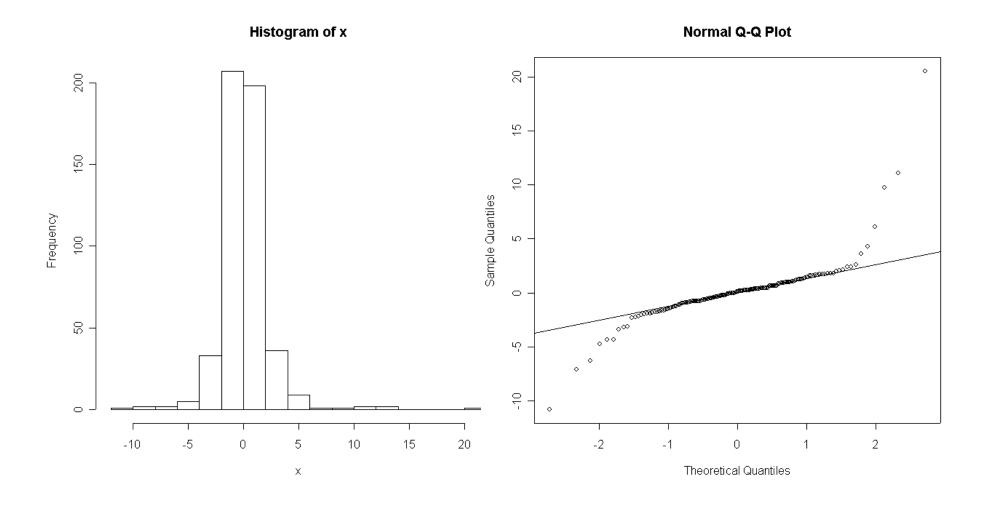
- Outliers
- Curvature at both ends (long or short tails)
- Convex/concave curvature (asymmetry)
- Horizontal segments, plateaus, gaps

Outliers

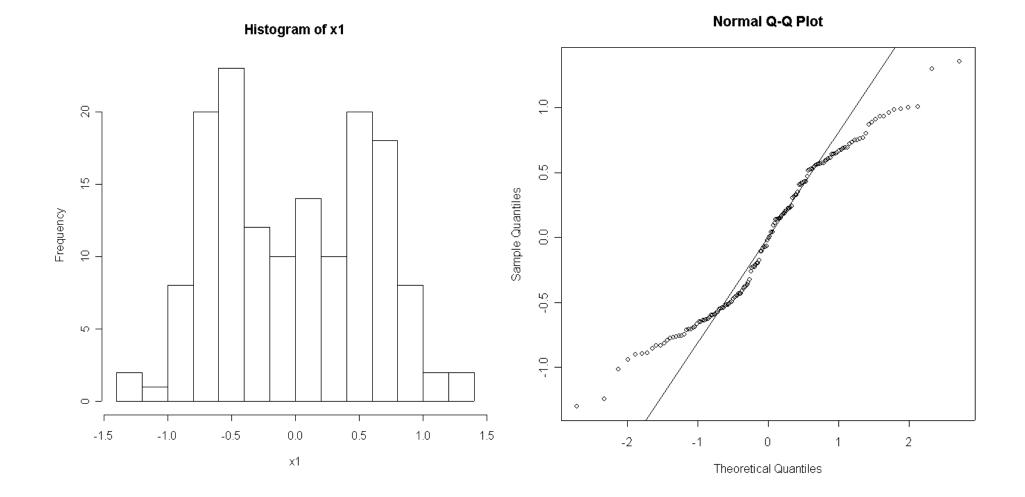


Normal Q-Q Plot

Long Tails



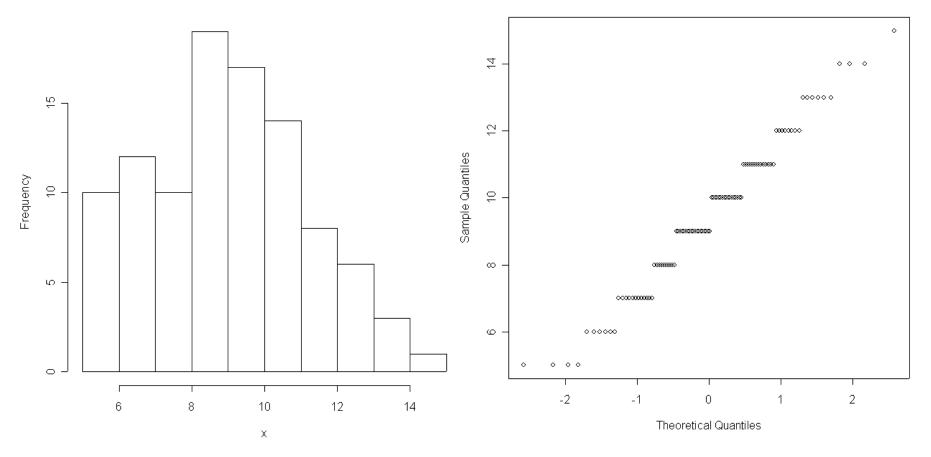
Short Tails



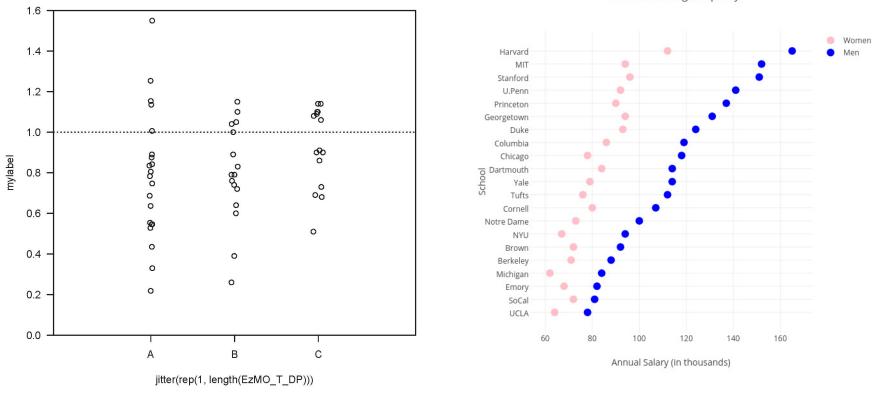
Plateaus/Gaps

Histogram of x

Normal Q-Q Plot



Dot plot



Gender earnings disparity

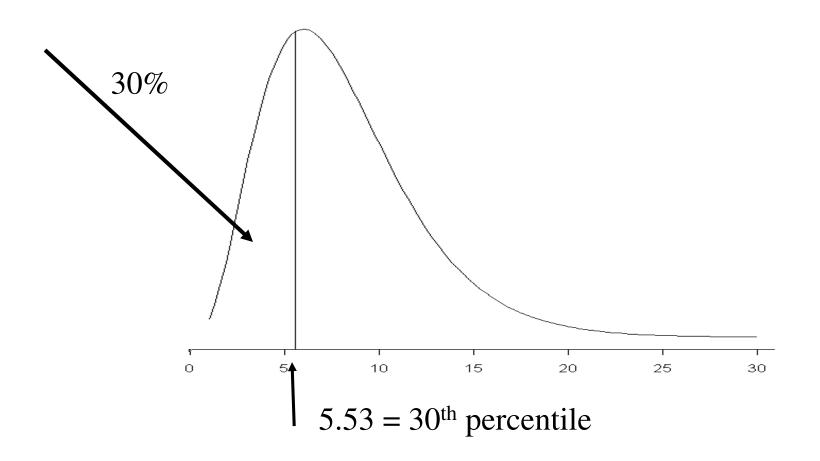
- Values plotted separately (as dots) for each group
- Most useful when there aren't too many observations

Numerical Summaries

- To provide *objectivity* (put in same objects to same methods, get out same classification
 - This is in contrast to *experts* deciding
- To provide stability
 - Would like classification to be 'robust' to a wide variety of additions of objects, or characteristics
- Categorical/Qualitative variables
 - frequency table
- Numerical/Quantitative variables
 - Distribution: quantiles
 - Center: mean, median
 - Spread: SD, IQR, MAD

Quantiles

The pth quantile is the number that has the proportion p of the data values smaller than it

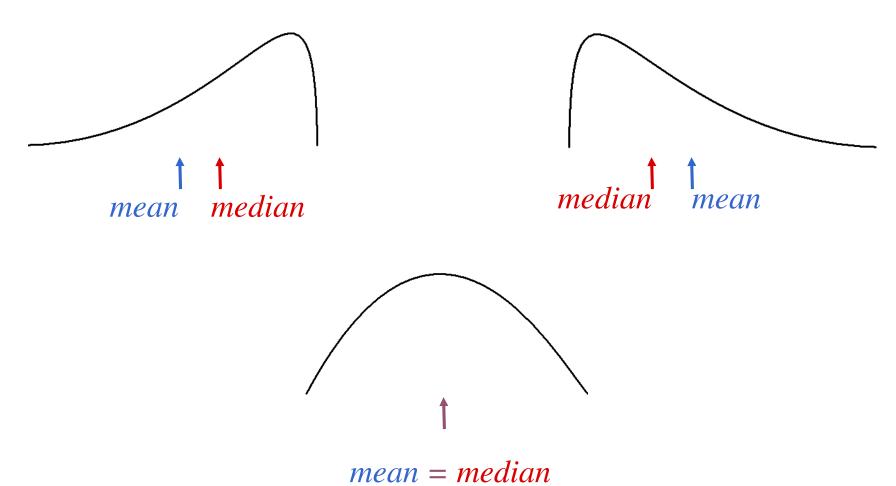


Measures of center

Mean

- Total of the values divided by the number of values
- Appropriate for distributions that are fairly *symmetric*
- *Sensitive* to outliers (since all values contribute equally)
- 'Balance-point' for a histogram
- Median
 - The *median* value of a variable is the 'middlemost number:
 50% (half) of the values are smaller than it, 50% bigger
 - NOT sensitive to outliers (since it 'ignores' most values)
 - Appropriate summary for *skewed distributions*

Relative location of mean and median



Measures of spread

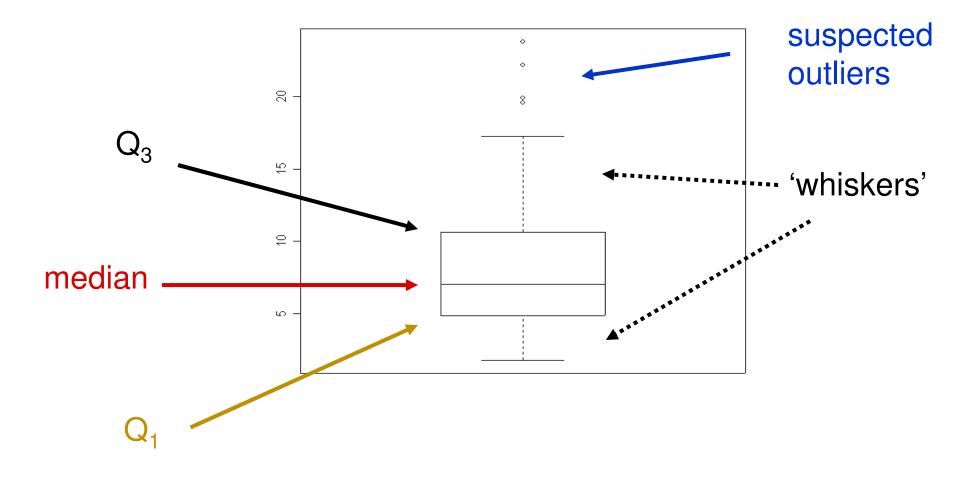
- Standard deviation (SD)
 - Square root of the average* of squared deviations from mean
 - Appropriate when center measured with the mean
- Interquartile range (IQR)
 - Distance between $25^{th}(Q_1)$ and $75^{th}(Q_3)$ percentiles:

 $IQR = Q_3 - Q_1$

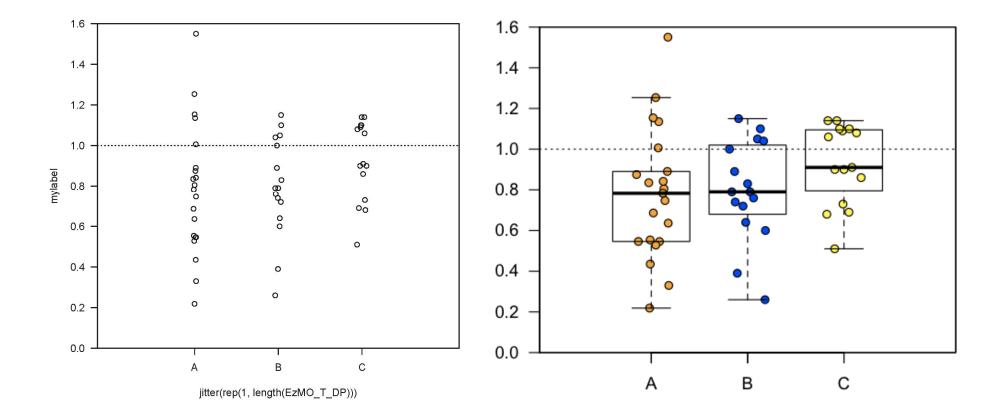
- One measure of spread when center measured with *median*
- Median Absolute Deviation (MAD)
 - Median of absolute values of deviations from median
 - More *robust* measure of spread than SD
 - Another way (besides IQR) to measure spread when center measured with *median*

Five-number summary and boxplot

- Overall summary of the distribution: Min, Q₁, Median, Q₃, Max
- A *boxplot* provides a visual summary:



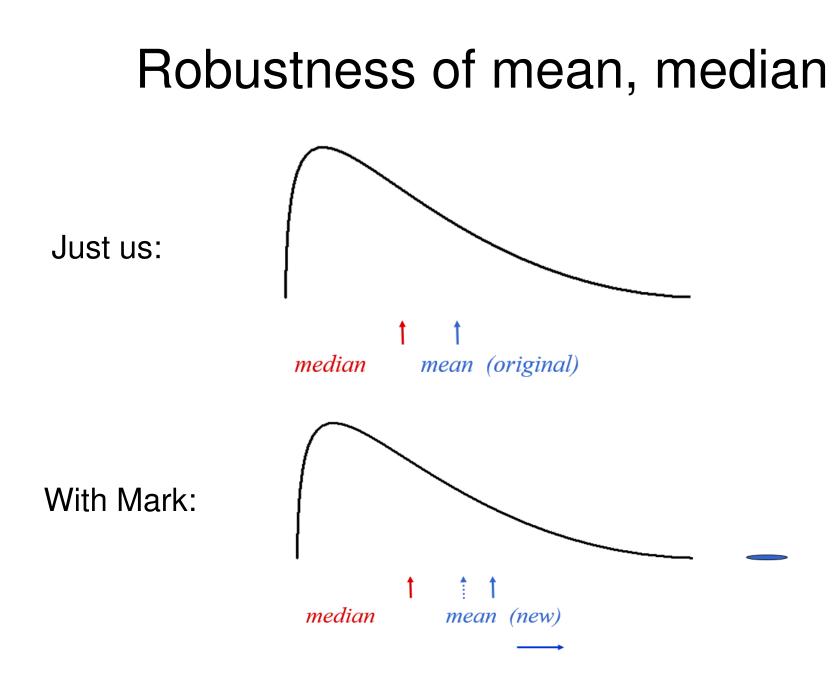
Box plot combined with dot plot



• *'jitter'*, *size* and *color* aid in the comparison of groups

Robustness and resistance

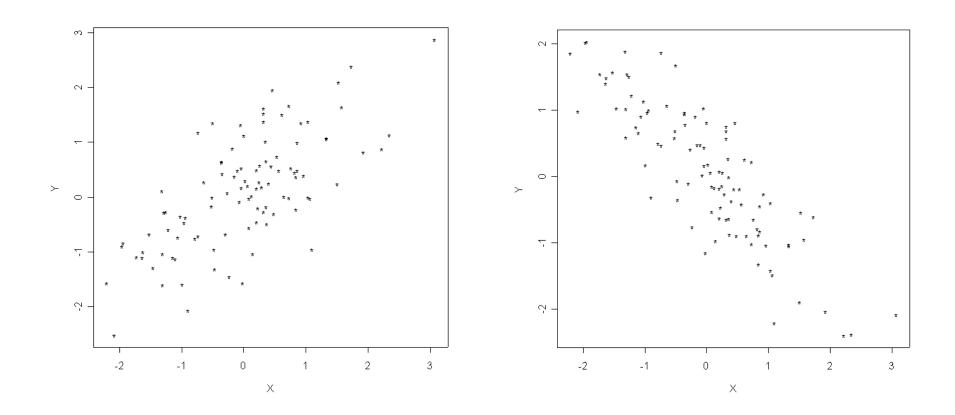
- These concepts refer to *lack of sensitivity* to assumed distributions and effects of a small number of values or outliers
- These qualities are *desirable*: you don't want inferences to be strongly influenced by only a small part of the data set
- The mean is very sensitive to outlying values, the median is very resistant



Scatterplot

- We can graphically summarize a bivariate data set with a scatterplot (also sometimes called a scatter diagram)
- Plots values of one variable on the horizontal axis and values of the other on the vertical axis
- Can be used to see how values of 2 variables tend to move with each other (*i.e.* how the variables are associated)

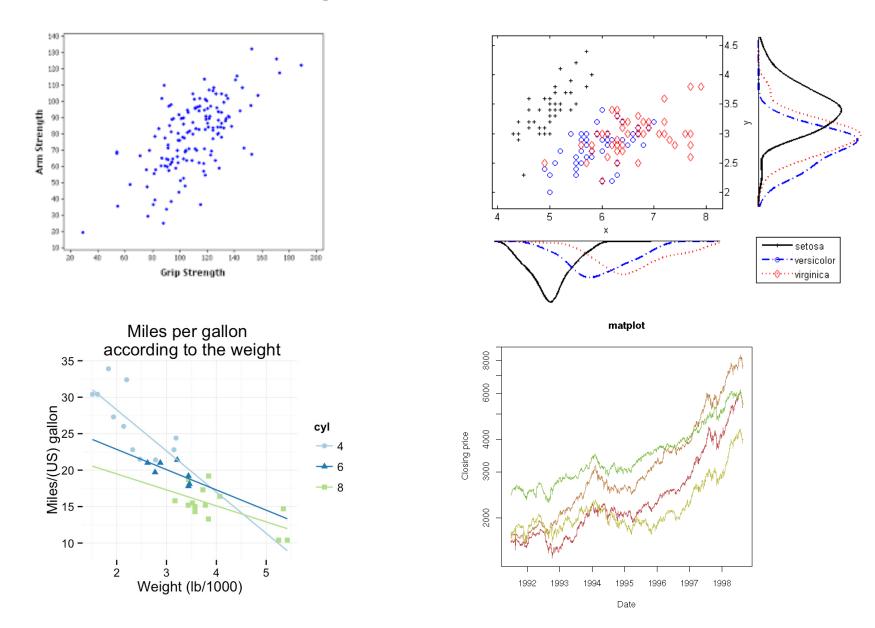
Scatterplots



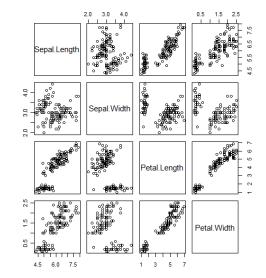
positive association

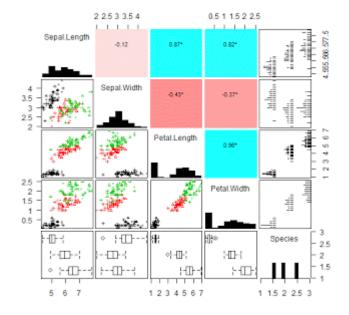
negative association

Scatterplots: customized

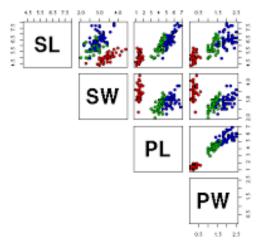


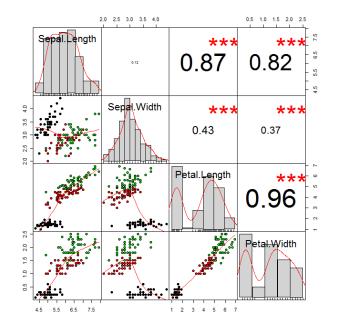
All pairwise plots: pairs / splom





Anderson's Iris Data - 3 species





Numerical Summary

- Typically, a bivariate data set is summarized numerically with 5 summary statistics
- These provide a fair summary for scatterplots with the same general shape as we just saw, like an oval or an ellipse
- We can summarize each variable separately: X mean, XSD; Y mean, YSD
- But these numbers don't tell us how the values of X and Y vary together

Correlation Coefficient

- The (sample) correlation coefficient r is defined as the average value of the product (X in SUs)*(Y in SUs)
- [SU = standard units = (value-mean)/SD]
- r is a unitless quantity
- -1 ≤ r ≤ 1
- r is a measure of LINEAR ASSOCIATION

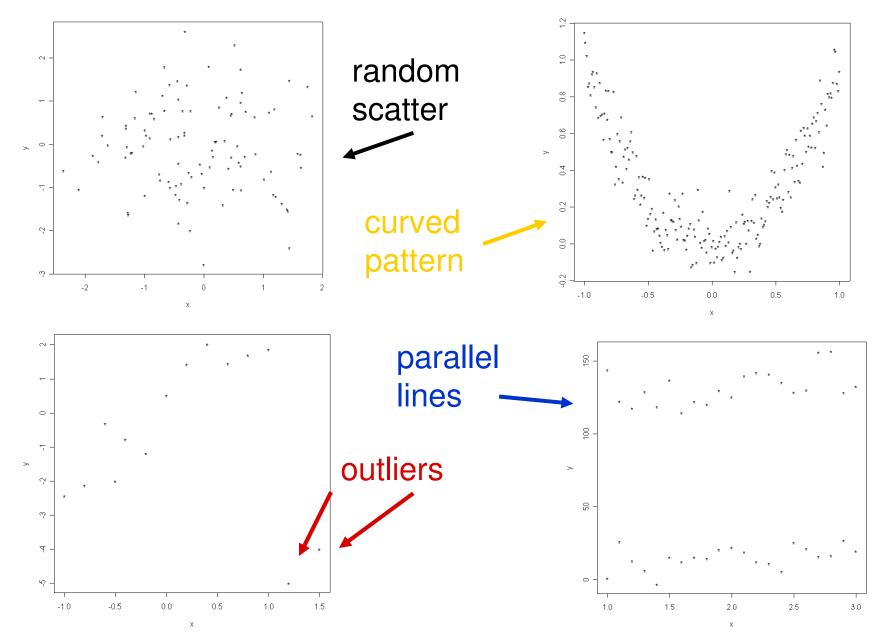
What r is...

- r is a measure of LINEAR ASSOCIATION
- The closer r is to -1 or 1, the more tightly the points on the scatterplot are clustered around a line
- The sign of r (+ or -) is the same as the sign of the slope of the line
- When r = 0, the points are not LINEARLY ASSOCIATED – this does NOT mean there is NO ASSOCIATION

...and what *r* is *NOT*

- r is a measure of LINEAR ASSOCIATION
- r does NOT tell us if Y is a function of X
- r does NOT tell us if X causes Y
- r does NOT tell us if Y causes X
- r does NOT tell us what the scatterplot looks like

$r \approx 0$



Categorical data

- So far, we have been looking at *continuous* response variables
- Sometimes, the response is *categorical*
 - male/female
 - -yes/no
- In this case, we are often interested in questions dealing with *proportions* (rather than means)

Two-way tables

- Table below is from a blind 5 year randomized study of physicians testing whether regular aspirin use reduces mortality from cardiovascular disease
- Every other day, participants took an aspirin or a placebo ______

Group	Yes	No	Total
Placebo	189	10,845	11,034
Aspirin	104	10,933	11,037

Table layout

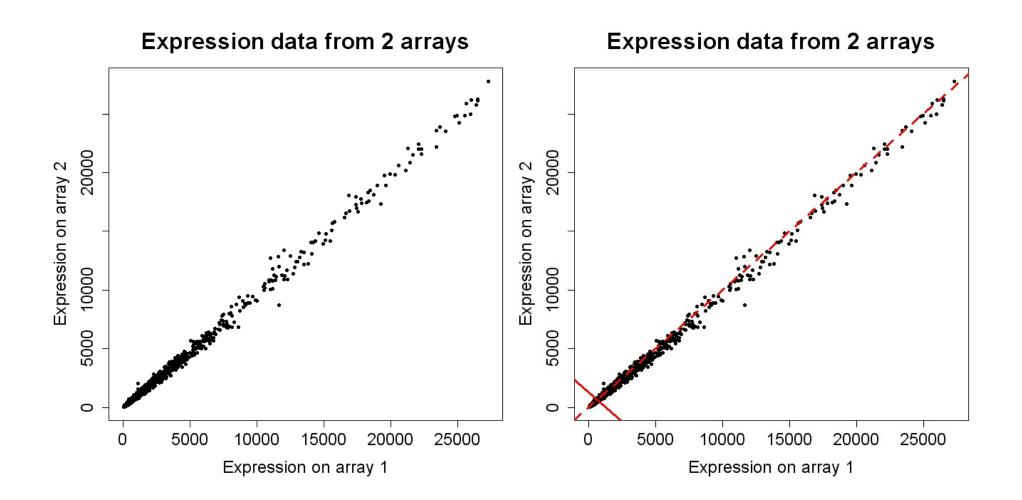
- Tables often better than words to convey quantitative data
- Avoid too many decimal places
- Usually better to use space to separate columns (rather than lines):

Subject	Time 1	Time 2	Subject	Time 1	Time 2
Joe	3.67390	2.79495	Joe	3.67	2.79
Mary	4.75435	1.23578	Mary	4.75	1.24
Nancy	3.96456	2.84379	Nancy	3.96	2.84

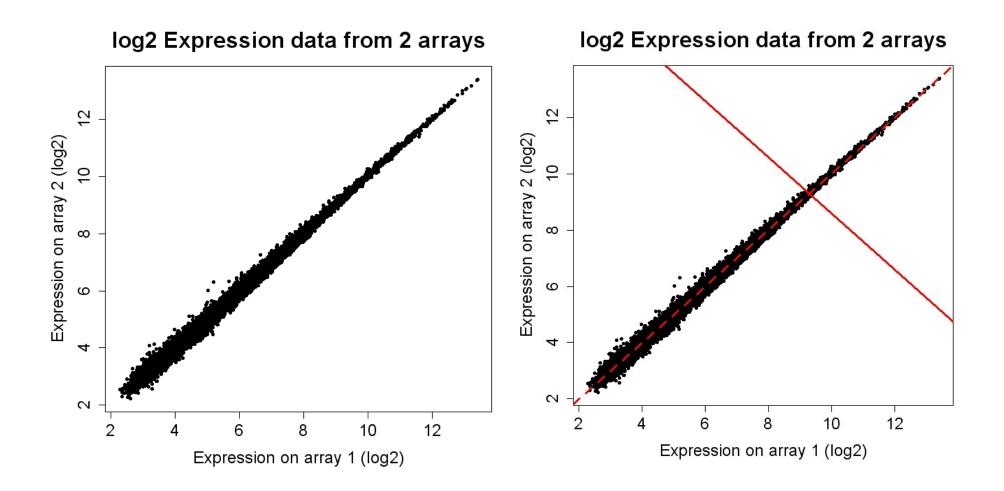
Application: microarray EDA

- We are interested in finding true *biologically meaningful differences* between sample types
- Due to other sources of systematic variation, there are also usually *artifactual differences*
- Sources of artifacts include:
 - print tips differences in subarrays
 - plate effects differences in rows within subarray
 - batch effects
 - hybridization artifacts
- Exploratory data analysis (EDA) is an important component of microarray data preprocessing

Scatterplots



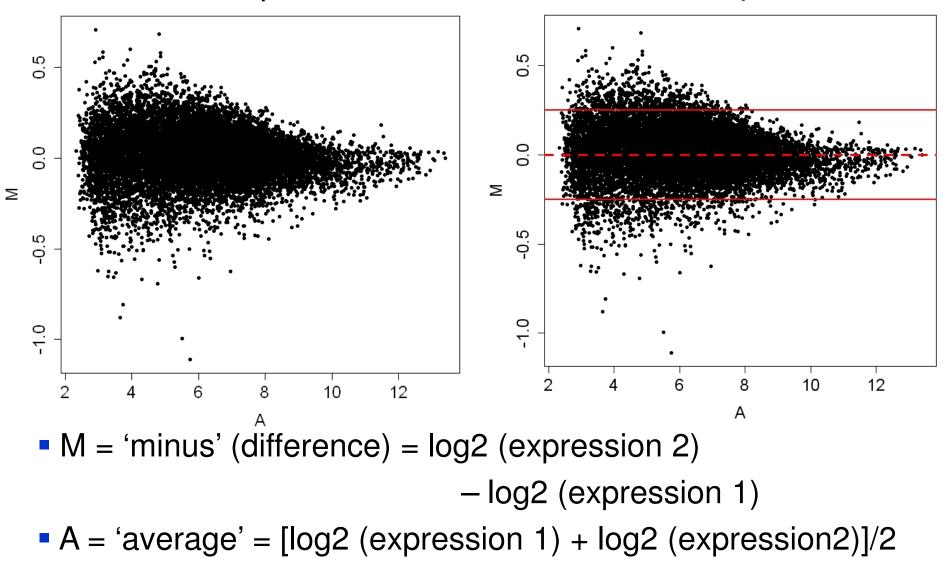
Take logs...



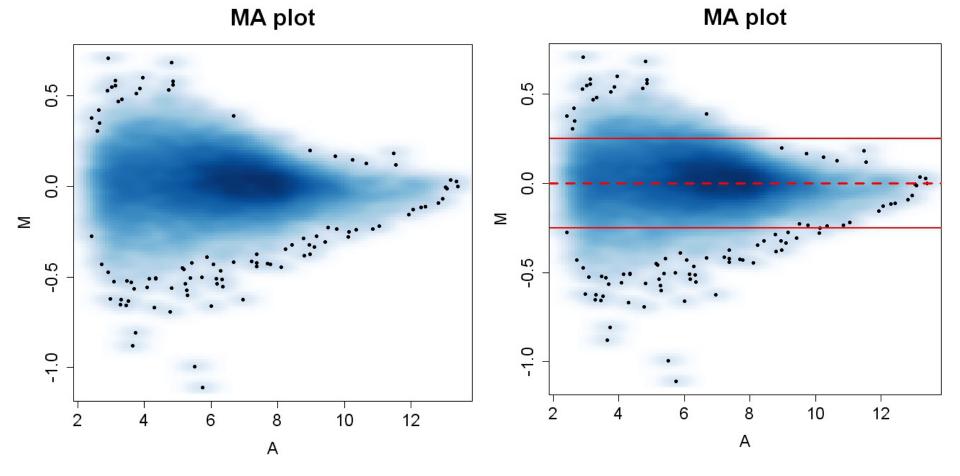
... and rotate (plot Diff vs. Avg.)

MA plot

MA plot

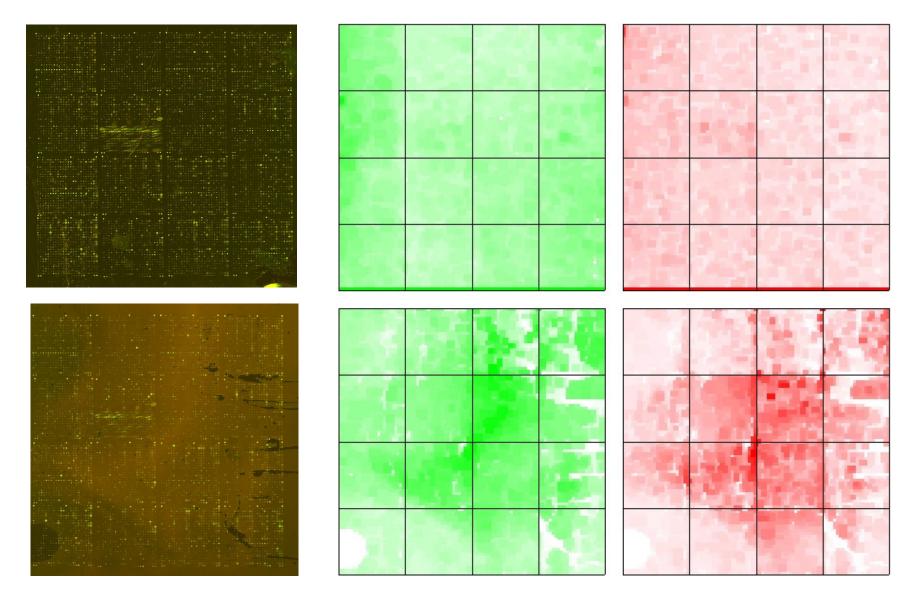


smoothScatter

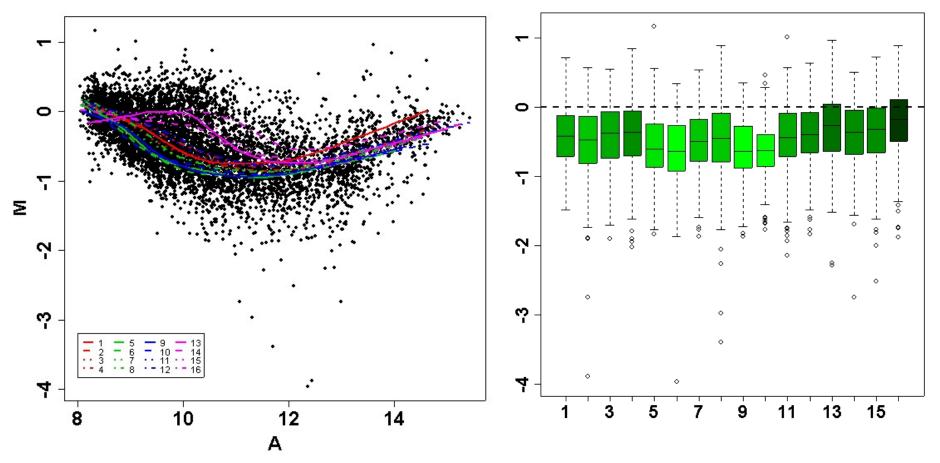


- Rather than plotting all individual points, color plot according to the *density* of points
- Useful when there are many points (here several thousand)

Spatial plots: background from two slides

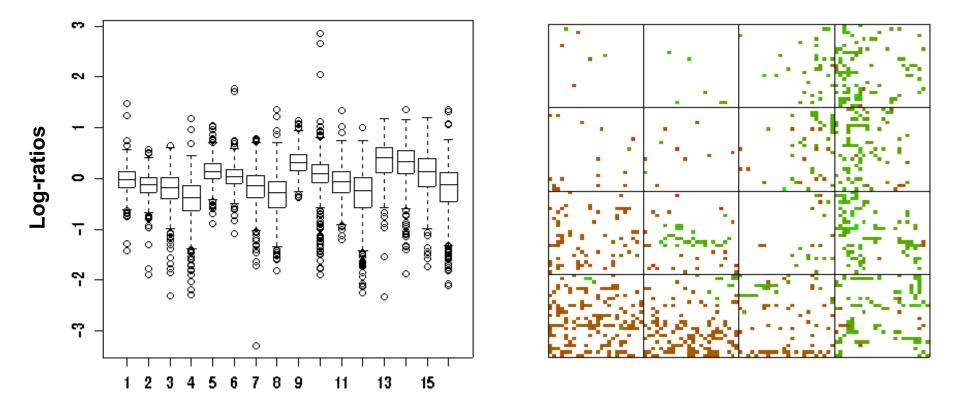


Pin group (sub-array) effects



Lowess (local regression) lines through Boxplots of log ratios by pin group points from pin groups

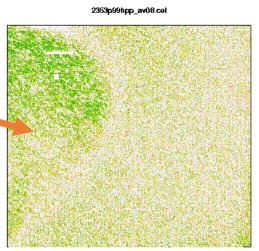
Highlighting pin group effects: Clear example of *spatial bias*



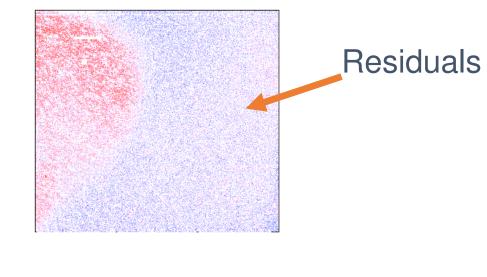
Print-tip groups

Pseudo-chip images for QC

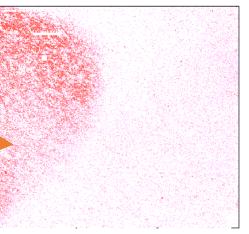
Weights

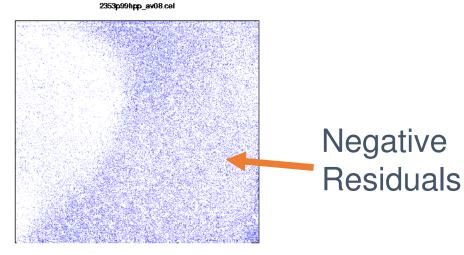


2353p99hpp_av08.cel



2353p99hpp_av08.cel





Presenting results

- Communicating results is an important part of science
- There is no magic 'formula' for how to present results!
- You need to think carefully about the message you wish to give and how to present it *clearly* and *convincingly*
- Avoid excessive computer output

Edward Tufte on graphics

- 'Excellence in statistical graphics consists of complex ideas communicated with clarity, precision and efficiency'; should
 - show the data
 - make the reader think about substance
 - avoid data distortion
 - present many numbers in a small space
 - encourage the eye to make comparisons
 - reveal several levels of detail
 - serve a clear purpose
- See also work by Karl Broman

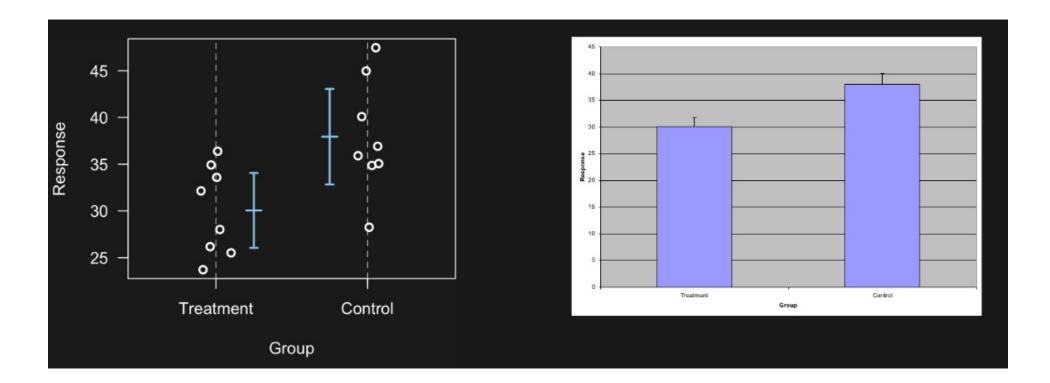
Graphical display tips

- Show the data (!!)
- Don't use pie charts
- Consider logs
- Take differences
- Ease comparisons
 - Things to be compared should be adjacent
 - Align vertically
 - Common axes
 - Labels not legends (where possible)
 - Should sorting really be alphabetical?
 - Consider whether the 0 is needed

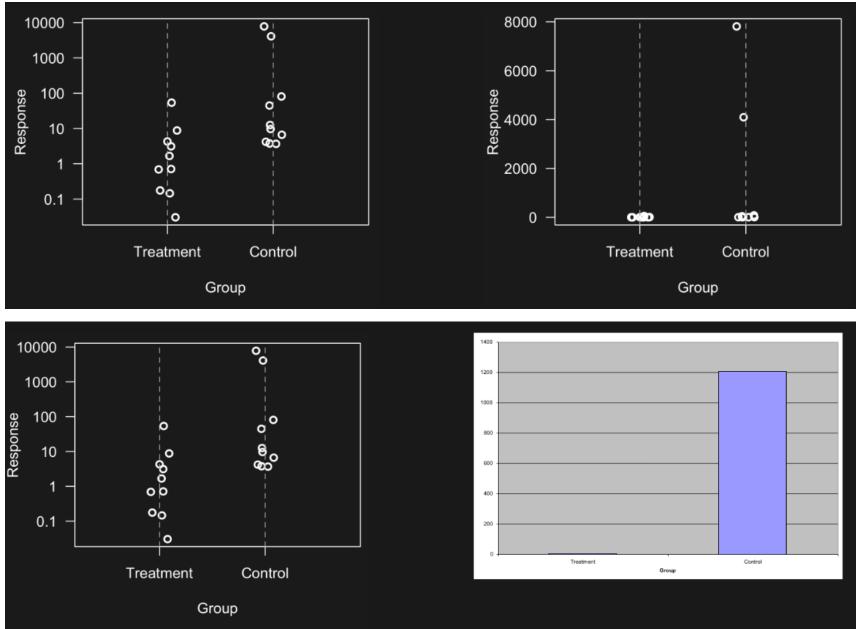
More graphical display tips

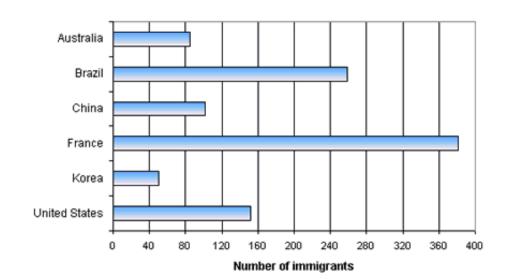
- Data density for example, number of data points per square centimeter
- Avoid 'chartjunk' decoration that provides no data
- Use color to convey information
- Use appropriate dimensionality
- Did I say <u>Don't use pie charts</u> ??
- And now: a *graphics tour* for discussion ...

Show the data



Consider logs

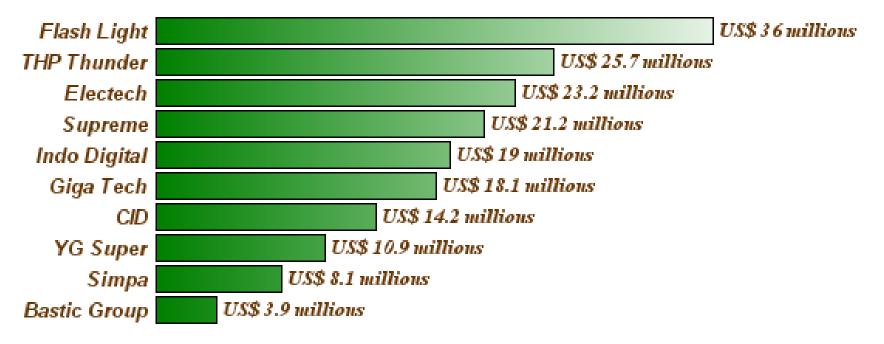




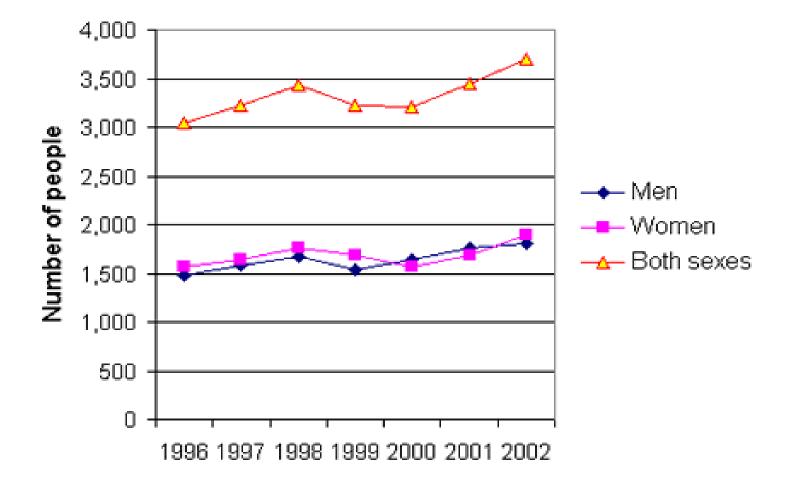
Argentina —		United States —	
Australia –	-	Netherlands –	
Austria –	-	France –	
Belgium –		Canada –	
Brazil –	-	Germany –	
Canada -		Switzerland	
China –	-	Austria –	-
France –	•	Belgium –	- I I
Germany –		Italy –	-
India –	-	Spain –	-
Indonesia —	<mark>_</mark>	Sweden	
Italy –	-	United Kingdom	
Japan –	-	Japan –	
Korea, Rep. –	-	Norway –	-
Mexico –	-	Australia –	- -
Netherlands		Brazil —	
Norway –	-	Argentina –	- -
Poland –	-	Korea, Rep. –	
Russian Federation	-	Poland –	- I I I
Spain –	-	Turkey –	- I I I
Sweden		Russian Federation	
Switzerland -		Mexico –	
Turkey –	-	China –	-
United Kingdom –	-	India –	-
United States -	- -	Indonesia –	-
	i i	F	<u>i i i</u>
0	5 10 15	0	5 10 15
	Health care spending (% GDP)		Health care spending (% GDP)

Do we really need color here?

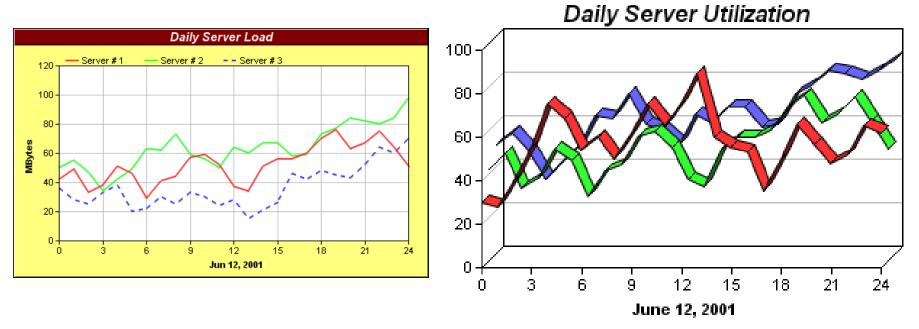
Revenue Estimation - Year 2002



3 lines?

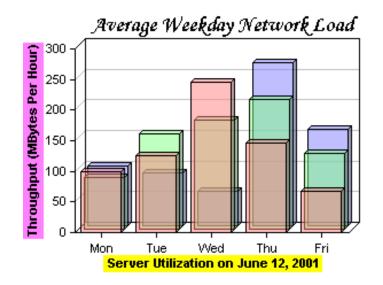


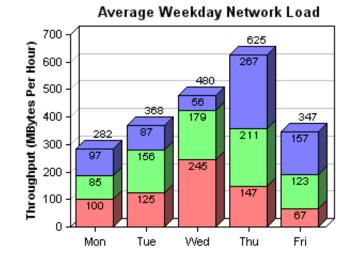
More about lines

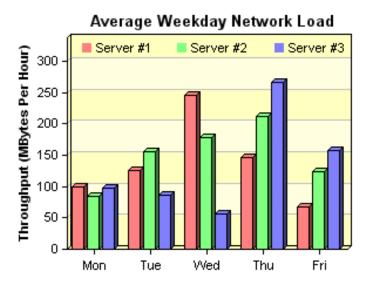


- Different types (solid, dotted)?
- Colors?
- 3D??

What the *^*\$%# are these saying?





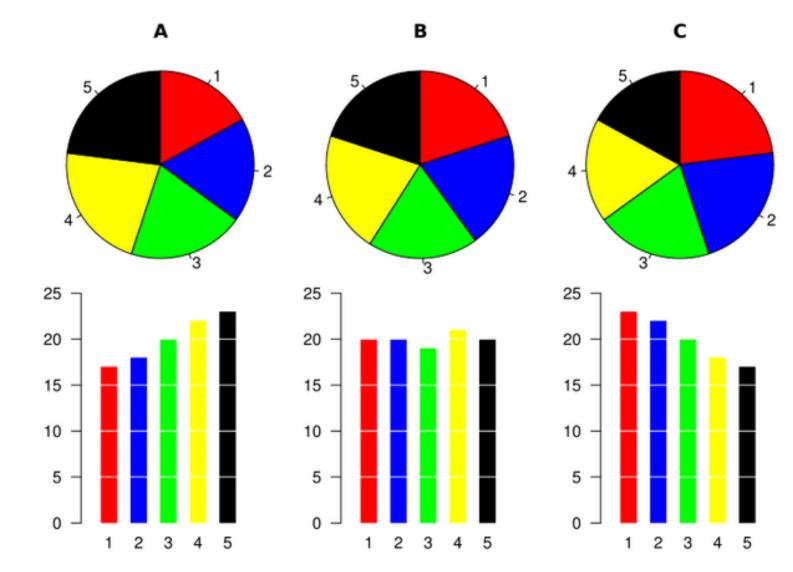


What improvements might be made?

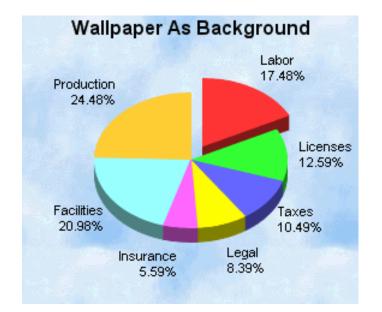
Pie Charts: JUST SAY NO !!!

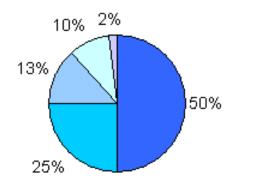
- Pie charts are a <u>bad way</u> to display information
- The eye is
 - -good at judging *linear measures* and
 - <u>bad</u> at judging *relative areas, volumes or* angles
- A pie chart is *never necessary* data that can be shown by pie charts *always* can be shown by a dot plot (or bar chart, or table)
- 3D version even worse!

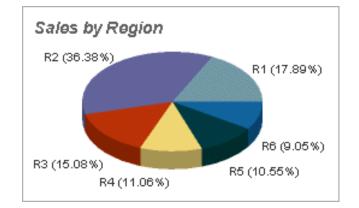
Spot the differences: pie vs. bar

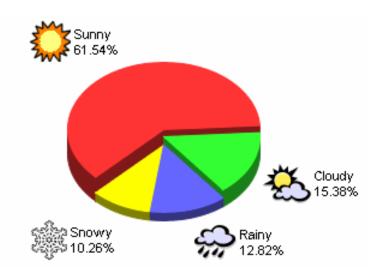


Even worse examples of pie charts

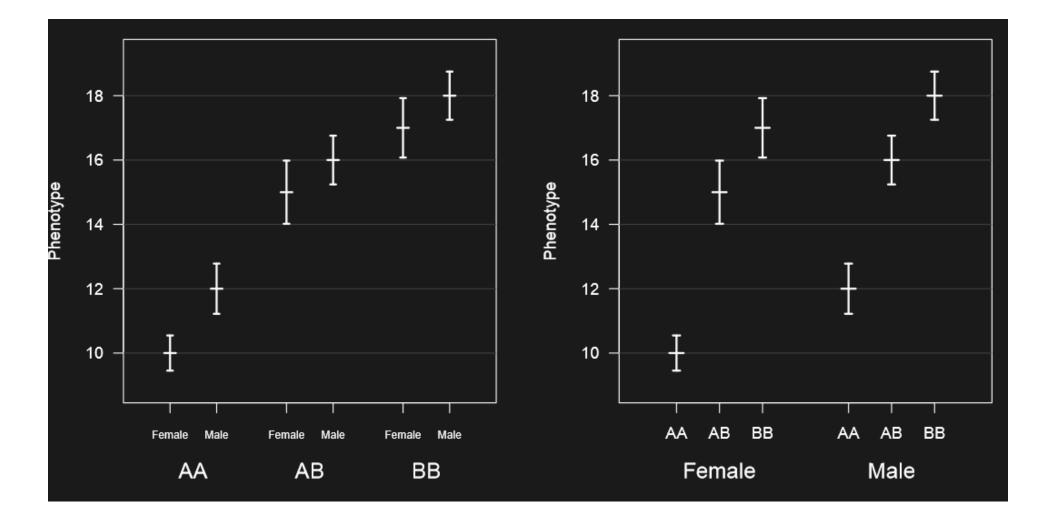




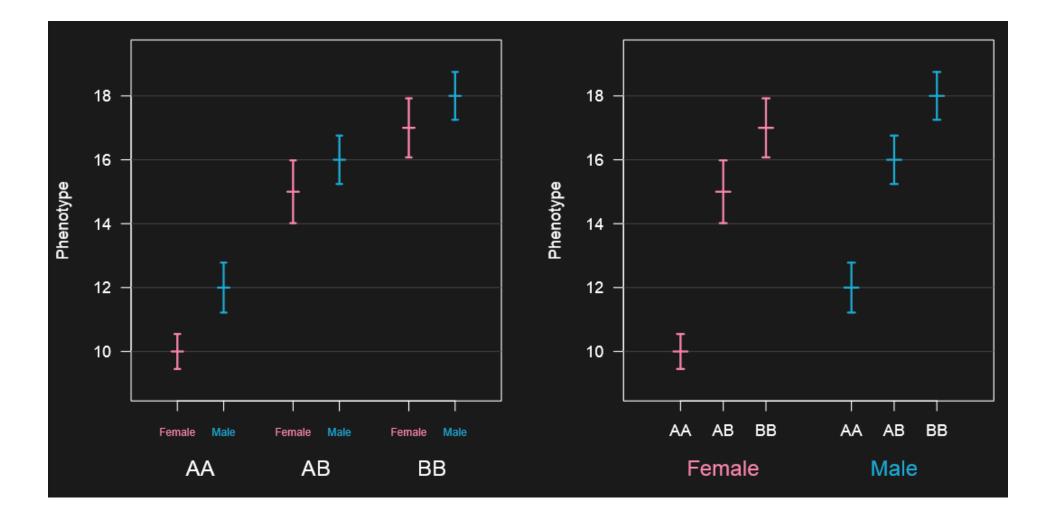




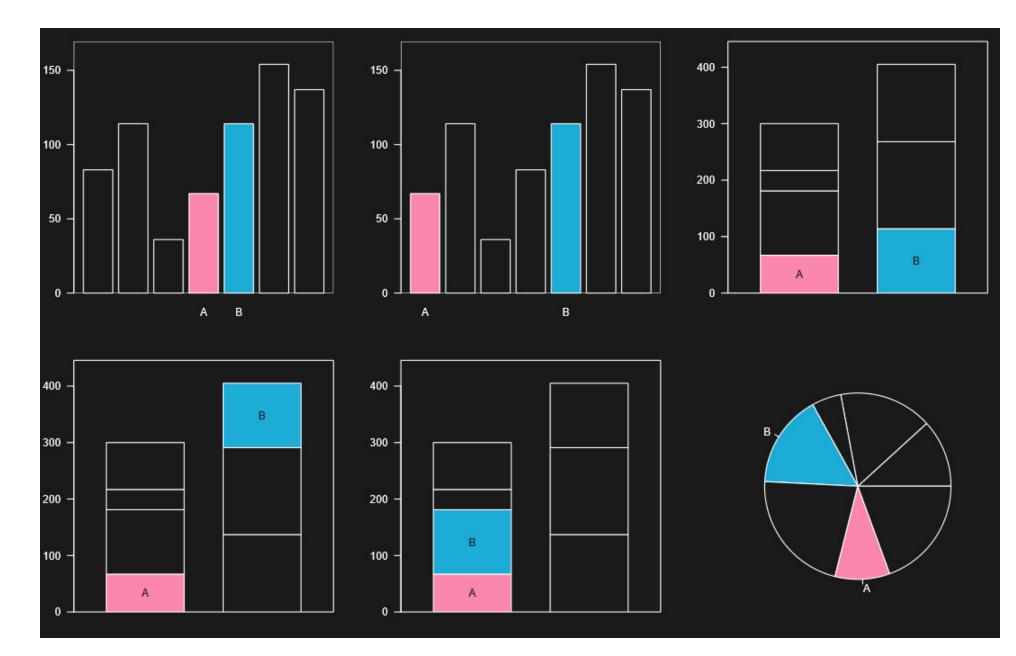
Things to be compared: adjacent



Use color where helpful

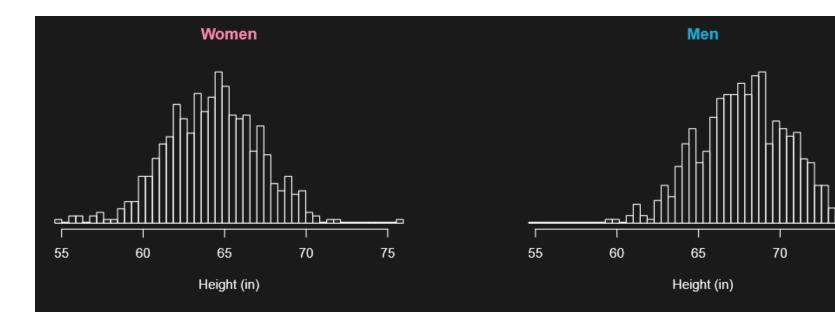


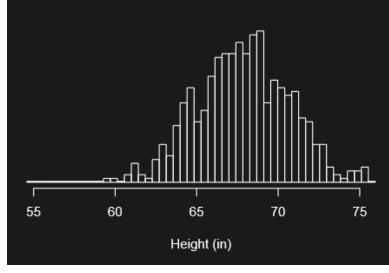
Where easiest to compare A and B?



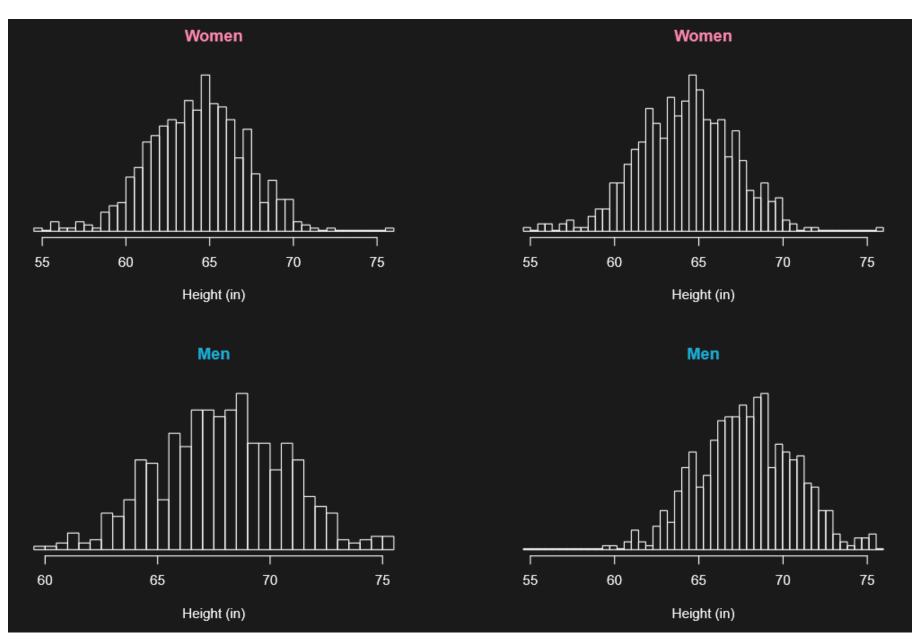
Easier to compare vertical aligned

75

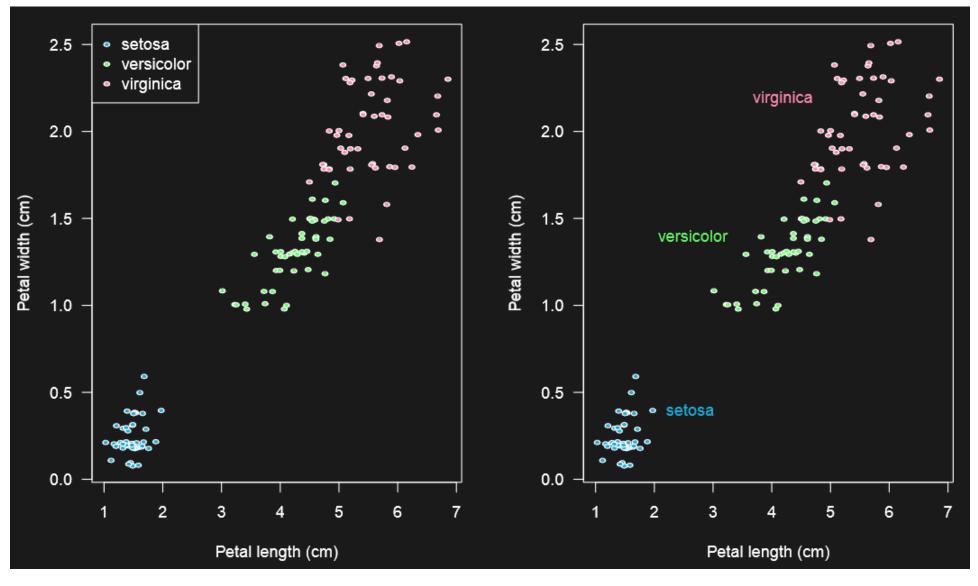




Use common axes

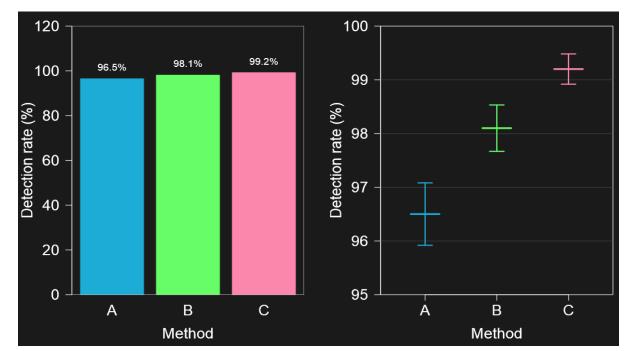


Use labels not legends *



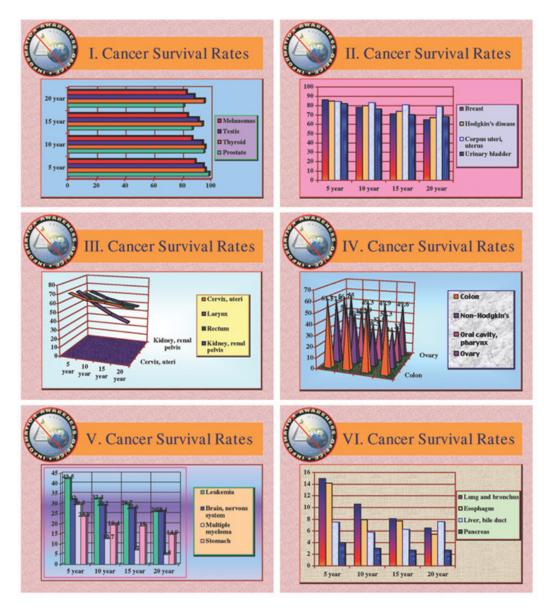
* Where possible

Consider whether you need 0





Several types of problems



The same data

Estimates of relative survival rates, by cancer site

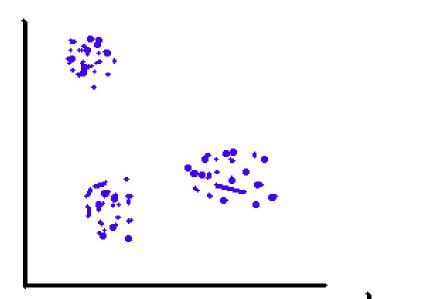
	% s	urvi	val rat	tes a	and standard errors				
	5 year		10 year		15 year		20 year		
Prostate	98.8	0.4	95.2	0.9	87.1	1.7	81.1	3.0	
Thyroid	96.0	0.8	95.8	1.2	94.0	1.6	95.4	2.1	
Testis	94.7	1.1	94.0	1.3	91.1	1.8	88.2	2.3	
Melanomas	89.0	0.8	86.7	1.1	83.5	1.5	82.8	1.9	
Breast	86.4	0.4	78.3	0.6	71.3	0.7	65.0	1.0	
Hodgkin's disease	85.1	1.7	79.8	2.0	73.8	2.4	67.1	2.8	
Corpus uteri, uterus	84.3	1.0	83.2	1.3	80.8	1.7	79.2	2.0	
Urinary, bladder	82.1	1.0	76.2	1.4	70.3	1.9	67.9	2.4	
Cervix, uteri	70.5	1.6	64.1	1.8	62.8	2.1	60.0	2.4	
Larynx	68.8	2.1	56.7	2.5	45.8	2.8	37.8	3.1	
Rectum	62.6	1.2	55.2	1.4	51.8	1.8	49.2	2.3	
Kidney, renal pelvis	61.8	1.3	54.4	1.6	49.8	2.0	47.3	2.6	
Colon	61.7	0.8	55.4	1.0	53.9	1.2	52.3	1.6	
Non-Hodgkin's	57.8	1.0	46.3	1.2	38.3	1.4	34.3	1.7	
Oral cavity, pharynx	56.7	1.3	44.2	1.4	37.5	1.6	33.0	1.8	
Ovary	55.0	1.3	49.3	1.6	49.9	1.9	49.6	2.4	
Leukemia	42.5	1.2	32.4	1.3	29.7	1.5	26.2	1.7	
Brain, nervous system	32.0	1.4	29.2	1.5	27.6	1.6	26.1	1.9	
Multiple myeloma	29.5	1.6	12.7	1.5	7.0	1.3	4.8	1.5	
Stomach	23.8	1.3	19.4	1.4	19.0	1.7	14.9	1.9	
Lung and bronchus	15.0	0.4	10.6	0.4	8.1	0.4	6.5	0.4	
Esophagus	14.2	1.4	7.9	1.3	7.7	1.6	5.4	2.0	
Liver, bile duct	7.5	1.1	5.8	1.2	6.3	1.5	7.6	2.0	
Pancreas	4.0	0.5	3.0	1.5	2.7	0.6	2.7	0.8	

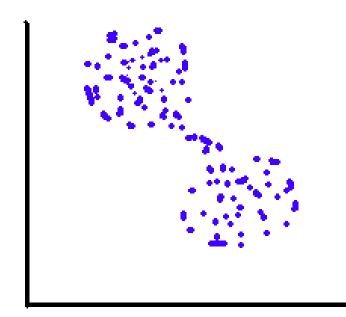
More advanced techniques

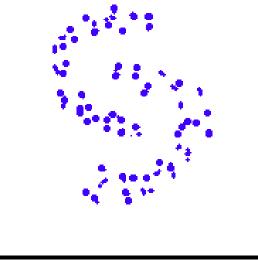
Cluster analysis

- Leads to readily interpretable figures
- Can be helpful for identifying patterns in time or space
- Can be used for exploratory purposes
- Used to find groups of objects when not already known
- Principal components analysis
 - Often used as exploratory tool
 - Dimensionality reduction
- Useful for EDA and quality assessment of highdimensional datasets
- Briefly outline the main ideas here

Difficulties in defining 'cluster'



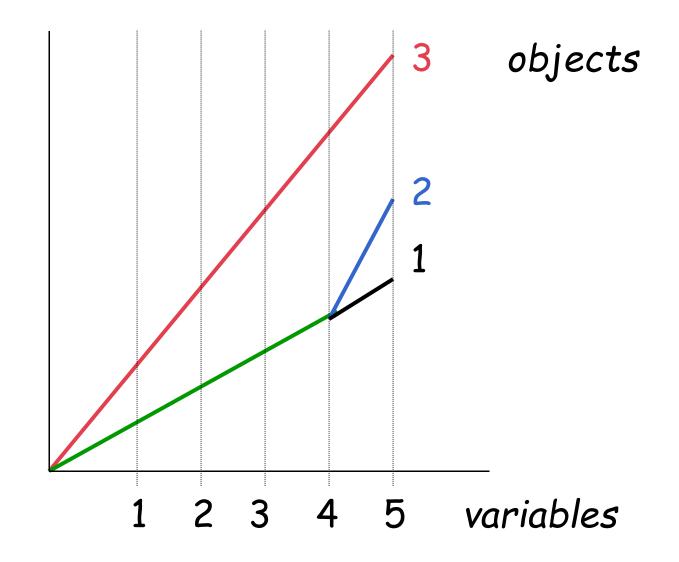




Similarity

- Similarity s_{ij} indicates the strength of relationship between two objects i and j
- Usually $0 \le s_{ij} \le 1$
- Correlation-based similarity ranges from -1 to 1
- Use of correlation-based similarity is quite common in gene expression studies but is in general contentious...

Problems using correlation



Dissimilarity and Distance

- Associated with similarity measures s_{ij} bounded by 0 and 1 is a *dissimilarity* d_{ij} = 1 - s_{ij}
- Distance measures have the metric property (d_{ij} +d_{ik} ≥ d_{jk})
- Many examples: Euclidean ('as the crow flies'), Manhattan ('city block'), *etc*.
- Distance measure has a *large effect* on performance
- Behavior of distance measure related to scale of measurement

Partitioning Methods

- Partition the objects into a *prespecified* number of groups K
- Iteratively reallocate objects to clusters until some criterion is met (e.g. minimize within cluster sums of squares)
- Examples: k-means, self-organizing maps (SOM), partitioning around medoids (PAM), model-based clustering

Hierarchical Clustering

- Produce a *dendrogram*
- Avoid prespecification of the number of clusters
 K
- The tree can be built in two distinct ways:
 - Bottom-up: *agglomerative* clustering
 - Top-down: *divisive* clustering

Agglomerative Methods

- Start with n sample clusters
- At each step, *merge* the two closest clusters using a measure of between-cluster dissimilarity which reflects the shape of the clusters
- Examples of *between-cluster* dissimilarities:
 - Unweighted Pair Group Method with Arithmetic Mean (UPGMA): average of pairwise dissimilarities
 - Single-link (NN): minimum of pairwise dissimilarities
 - Complete-link (FN): maximum of pairwise dissimilarities

Divisive Methods

- Start with only one cluster
- At each step, *split* clusters into two parts
- Advantage: Obtain the main structure of the data (*i.e.* focus on upper levels of dendrogram)
- Disadvantage: Computational difficulties when considering all possible divisions into two groups

Partitioning vs. Hierarchical

Partitioning

- Advantage: Provides clusters that satisfy some optimality criterion (approximately)
- Disadvantages: Need initial K, long computation time

Hierarchical

- Advantage: Fast computation (agglomerative)
- Disadvantages: Rigid, cannot correct later for erroneous decisions made earlier

Generic Clustering Tasks

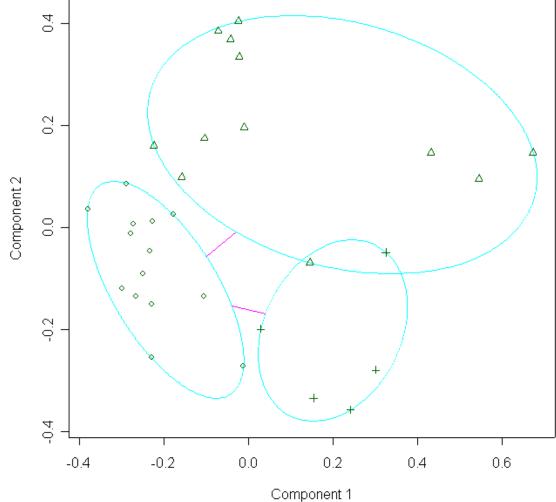
- Estimating number of clusters
- Assigning each object to a cluster
- Assessing strength/confidence of cluster assignments for individual objects
- Assessing cluster homogeneity

Issues in Clustering

- Data pre-processing
- Which genes (variables) are used
- Which samples are used
- Which distance measure is used
- Which algorithm is applied
- How to decide the number of clusters K

Visualizing partition

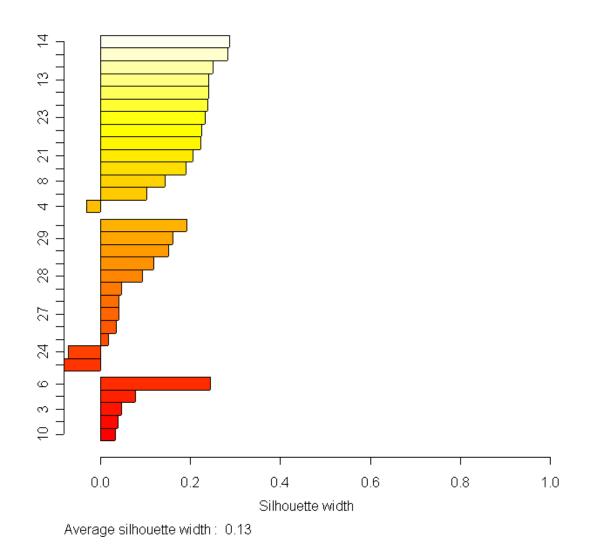
clusplot(pam(x = as.dist(1 - cor(mel.data)), k = 3, diss = TRUE))



These two components explain 37.03 % of the point variability.

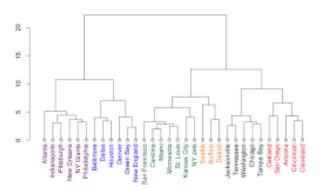
Estimating Number of Clusters

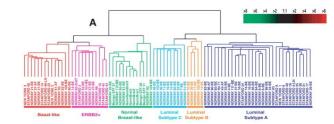
Silhouette plot of pam(x = as.dist(1 - cor(mel.data)), k = 3, diss = 1

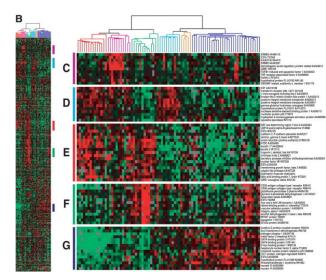


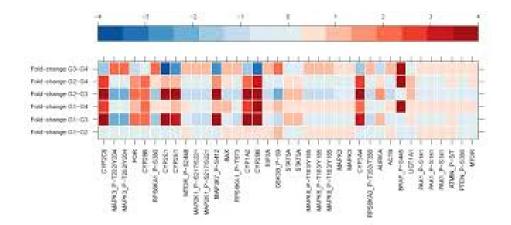
Visualization: dendrogram, heatmap

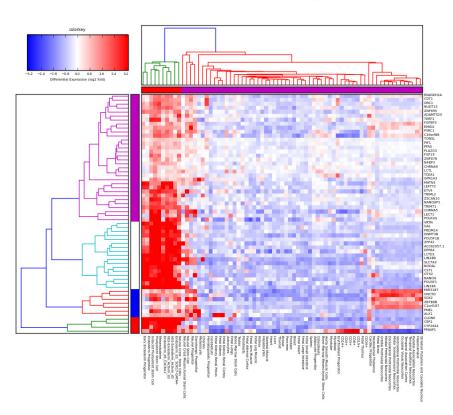
NFL Teams







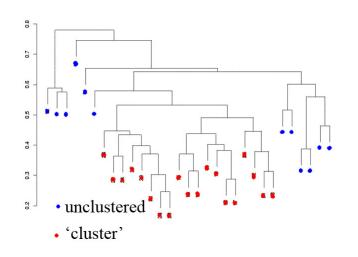




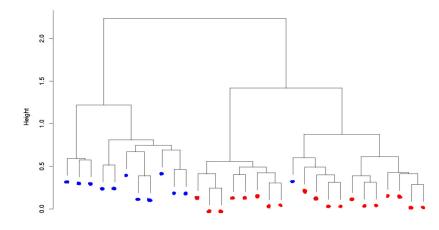
Hierarchical, agglomerative: different methods

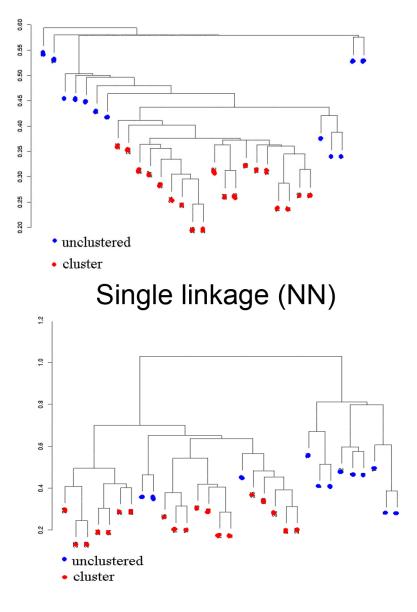
Average linkage, *melanoma only*

Complete linkage (FN)



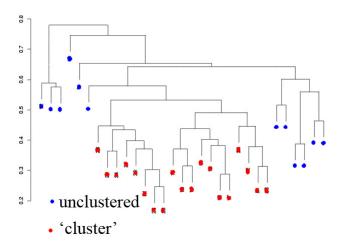
Ward's method (information loss)



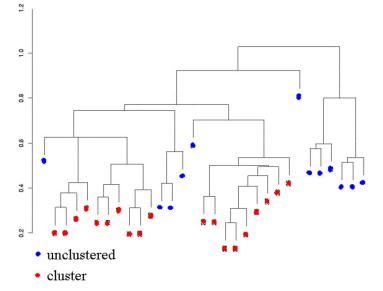


Different methods, different samples

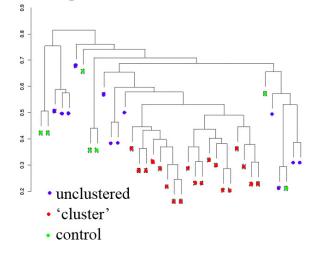
Average linkage, *melanoma only*



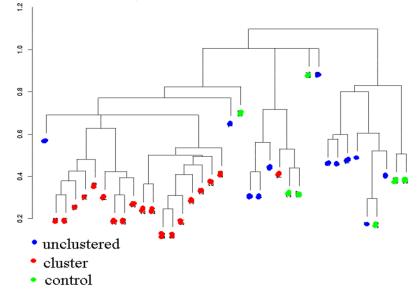
Divisive clustering, *melanoma only*



Avg linkage, melanoma & controls



Divisive, melanoma & controls



How many clusters K?

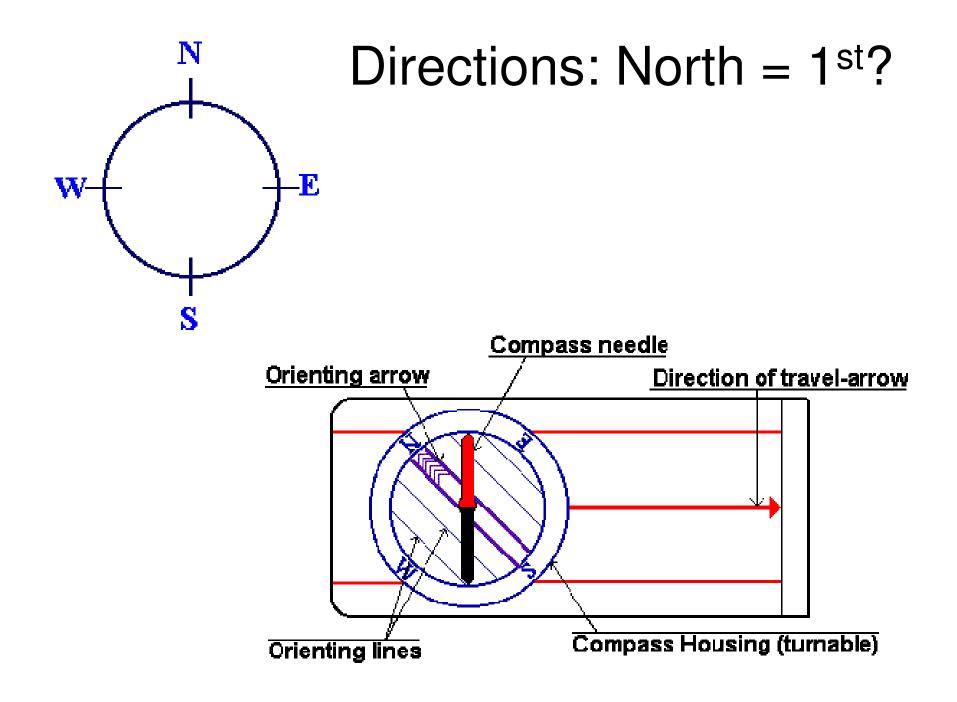
- Many suggestions for how to decide this!
- Milligan and Cooper (Psychometrika 50:159-179, 1985) studied 30 methods
- A number of new methods, including GAP (Tibshirani) and clest (Fridlyand and Dudoit)
- Applying several methods yielded estimates of *K* = 2 (largest cluster has 27 members) to *K* = 8 (largest cluster has 19 members)

Summary

- Buyer beware results of cluster analysis should be treated with GREAT CAUTION and ATTENTION TO SPECIFICS, because...
- Many things can vary in a cluster analysis
- If covariates/group labels are known, then clustering is usually inefficient

Locating a point in the plane

- We can describe the location of a point in the plane by saying how much we move in the horizontal (X) direction, then how much we move in the vertical (Y) direction
- As an example, think of describing how to get to some particular place from where you are (for example, how to get to CE 105 from MA 11)
- One way to do this is to say how far you go NORTH, then how far you go EAST



Variance-Covariance matrix

- Consider a data set consisting of *p* variables measured on *n* cases
- How the variables change together is summarized by the variance-covariance matrix (or by the correlation matrix)
- For a simple example (just 2 variables):
 - > cov(head) > cor(head)
 [,1] [,2] [,1] [,2]
 [1,] 96.95061 54.48939
 [1,] 1.0000 .7859
 [2,] 54.48939 49.57918
 [2,] 0.7859 1.0000

Principal Component Analysis (PCA)

- One aim of principal component analysis (PCA) is to reduce the dimensionality from p variables
- Try to explain the variance-covariance structure through *linear combinations (principal components)* of the (original) variables
- Another aim is to interpret the first few principal components in terms of the original variables to give greater insight into the data structure

More on PCA

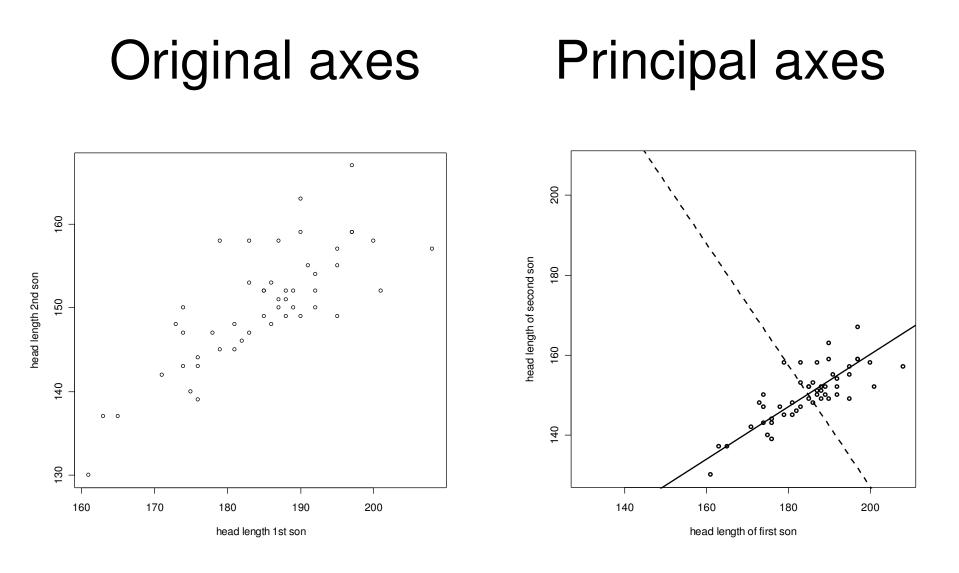
- Each principal component (PC) accounts for a certain amount of the variation in the data
- The 1st PC is the linear combination that accounts for ('explains') the most variation
- Subsequent PCs account for as much as possible of the remaining variation, while being uncorrelated with earlier PCs
- Aubergine
- Where do these come from?

What does this have to do with PCA?

- Consider the variance-covariance matrix A
- The eigenvectors of A provide sets of coefficients defining p linear functions of the original variables
- These functions are the PCs
- If A has eigenvalues $\lambda_1, \lambda_2, ..., \lambda_p$ then the PCs have variances $\lambda_1, \lambda_2, ..., \lambda_p$ and zero covariances

Cautions

- Sometimes used as a method for *simplifying data* because PCs associated with smaller eigenvalues have smaller variances and might therefore be 'ignored'
- This assumption requires caution
- When variables are on *different scales*, it is customary to use the correlation matrix (rather than the covariance matrix)
- These two formulations give different results : the eigenvalues for the two matrices are not related in a simple way
- Theory not simple for correlation-based PCA

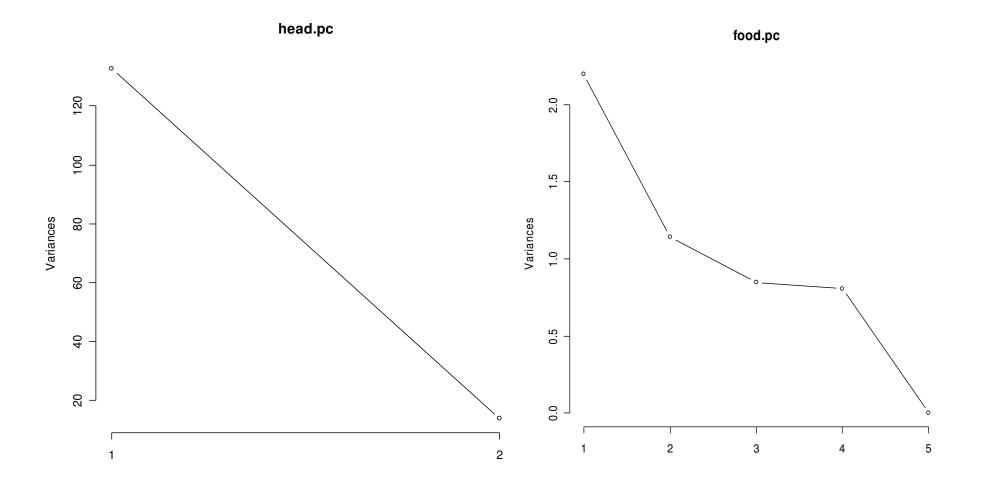


 Head length (in mm) for each of the first two adult sons in 50 families

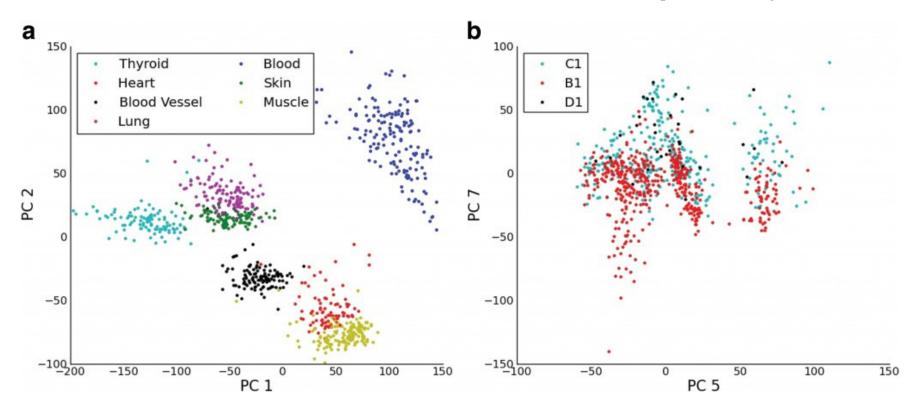
How many PCs?

- There are a few ways to decide how many PCs to retain
- Some common methods are:
 - retain the number required to explain some percentage of the total variation (e.g. 90%)
 - number of eigenvalues > average (1 if correlation matrix is used)
 - look for 'elbow' in scree plot
 - compromise between these
- The scree plot shows proportion of variance (or just variance) explained by each component

R: scree plots



PCA to assess data quality



(a) RNA-seq data projected onto PCs 1&2, where spot corresponds to a sample and color to tissue type. Samples from the same tissue cluster together. (b) RNA-seq data projected onto PCs 5&7, now colored by enrollment center (C1, B1, D1). There is an obvious relation between PC 7 and center.