
Artificial Neural Networks (Gerstner). Solutions for week 5

Deep Learning 1 - BackProp

Exercise 1. Derive BackProp

A network with 2 hidden layers followed by an output layer has the output in the final layer (=3rd
layer)

ŷµn = x(3)n (1)

= g(3)[a(3)n] (2)

= g(3)[
∑
i

w
(3)
ni g

(2)[a
(2)
i]] (3)

= g(3)[
∑
i

w
(3)
ni [g(2)[

∑
j

w
(2)
ij x

(1)
j]] (4)

= g(3)[
∑
i

w
(3)
ni [g(2)[

∑
j

w
(2)
ij g

(1)(a
(1)
j)]] (5)

= g(3)[
∑
i

w
(3)
ni [g(2)[

∑
j

w
(2)
ij g

(1)(
∑
k

w
(1)
jk x

µ
k)]] (6)

We use an error function

E(w(1),w(2),w(3)) =
1

2

∑
µ

∑
n

[tµn − ŷµn]2 (7)

Calculate the derivative ∂E/∂w
(1)
52 , hence the derivative with respect to the weight connecting the

second input to the fifth hidden neuron in the first layer.

Solution:

For convenience of calculations, we define the online error function of a single output unit as

Ẽ(µ, n) = Ẽ =
1

2
[tµn − ŷµn]2 , (8)

and a useful quantity, the delta error for unit k in layer l as

δ
(l)
k =

∂Ẽ

∂a
(l)
k

. (9)

Starting with the output layer, we can compute

∂Ẽ

∂w
(3)
ni

=
∂Ẽ

∂a
(3)
n

∂a
(3)
n

∂w
(3)
ni

= δ(3)n x
(2)
i . (10)

Note that at the output layer δ
(3)
n is defined by

∂Ẽ

∂a
(3)
n

=
∂

∂a
(3)
n

1

2

[
tµn − g(3)[a(3)n]

]2
= −

[
tµn − g(3)[a(3)n]

]
g′(3)[a(3)n] (11)

This error can be back propagated with the chain rule to the downstream layers as

∂Ẽ

∂w
(l)
ij

=
∂Ẽ

∂a
(l)
i

∂a
(l)
i

∂w
(l)
ij

= δ
(l)
i x

(l−1)
j , (12)

where

δ
(l)
i =

∂Ẽ

∂a
(l)
i

=
∑
j

δ
(l+1)
j

∂a
(l+1)
j

∂a
(l)
i

=
∑
j

δ
(l+1)
j w

(l+1)
ji g′(l)[a

(l)
i] (13)

For the last equality we used the definition of a
(l+1)
n =

∑
k w

(l+1)
nk g(l)[a

(l)
k] and the chain rule to see

that
∂a

(l+1)
j

∂a
(l)
i

= w
(l+1)
ji g′(l)[a

(l)
i]. Therefore

∂E

∂w
(1)
52

= δ
(1)
5 xµ2 , (14)

where

δ
(1)
5 =

∑
j

δ
(2)
j w

(2)
j5 g

′(1)[a
(1)
5] (15)

δ
(2)
j =

∑
n

δ(3)n w
(3)
nj g

′(2)[a
(2)
j] (16)

δ(3)n =
∂Ẽ

∂a
(3)
n

= −
[
tµn − g(3)[a(3)n]

]
g′(3)[a(3)n] (17)

Exercise 2. Algorithmic complexity of Backprop

a. Estimate the number of steps for one loop of gradient calculations with Backprop (applying each
pattern once) with P = 2000 patterns, Nin input units, Nh hidden units, and Nout = 5 output
units.

(To do so, imagine that you have to write a program for Backprop. Sketch the steps that must
be taken. Count each multiplication and each summation as one step and each evaluation of the
gain function g or its derivative g′ as one step. Ignore biases for simplicity.)

Show that for large networks, the algorithm scales linearly with the number of weights.

b. Let us assume your laptop makes 1010 floating point operations per second. What is the minimal
time needed for one cycle if Nin = Nh = 100?

Moreover, BackProp often needs more than 10 000 cycles (presentation of each pattern once) to
find the minimum - do you want to wait in front of the machine or is there time to have a coffee
break?

c. Finally, let us assume that the input consists of pixel patterns with 256x256 pixels. You have
two hidden layers of 1000 units each. Calculate the number of time steps for one loop. Also
calculate the number of weights.

Consider now each weight as a free parameter which has to be estimated from the data. How
many data samples do you need to estimate (= optimize) all weights of your network?

d. In a realistic application you would have to optimize the number of hidden neurons by testing
the performance for different network sizes. For the test you apply previously unknown patterns
(which were not used during training) and you take the network which finally performs best. Let
us assume that in addition to the 2000 training patterns you have also 2000 test patterns (both
of dimension 256x256). How many networks (of what size of hidden neurons) can you train and
test in 48 hours?

Solution:

a. The multiplication of a N×M -matrix with a M -vector requires NM multiplications and N(M−
1) summations.

The forward direction thus requires NhNin + NoutNh multiplications, Nh(Nin−1)+Nout(Nh−1)
summations and Nh +Nout evaluations of the gain function; in total, 2(NhNin +NoutNh) steps
per pattern.

In the backward direction, the matrix multiplication of the δ requires NhNout multiplications
and Nh(Nout − 1) summations. Nout +Nh evaluations of g′ and Nout +Nh multiplications of g′

with δs are needed. Finally, NhNout +NinNh multiplications are needed for the outer-products
of δs and inputs, and NhNout + NinNh multiplications for the product with the learning rate
and NhNout + NinNh summations for finally adding these values to the old weights. Thus, the
backward direction requires in total 2NhNout+2Nout+Nh+3(NhNout+NinNh) steps per pattern.

Summing the number of steps of the forward and backward direction we arrive at a total of
7NoutNh + 5NhNin + 2Nout + Nh steps per pattern, or P

(
7NoutNh + 5NhNin + 2Nout + Nh

)
in

total.

The total number of weights is N = NoutNh +NhNin. Thus Backprop is O(N).

b. 2000(7 · 5 · 100 + 5 · 100 · 100 + 10 + 100)/(1010 flop/s) ≈ 0.011 s. For 10 000 cycles one has time
for a quick coffee of 110 s.

Note that the time needed may be considerably higher as it does not solely depend on the number
of floating point operations per second.

c. Nin = 65 536, Nh = Nh1 = Nh2 = 1000, Nout = 5. The number of steps per pattern is
7NoutNh + 7N2

h + 5NhNin + 2Nout + 2Nh = 334 717 010.

The number of parameters is NinNh +N2
h +NhNout = 66 541 000.

One training sample corresponds to one (equality or inequality) constraint. To constrain N
parameters to unique values one needs N equality constraints. With inequality constraints the
solution space is usually larger than a single point. Thus, if we want to have at least as many
training samples as parameters, we should have at least 66 541 000 samples. However, given
appropriate regularization, the model may perform well on the test set, even if much fewer
samples are used for training.

d. Assuming again 1010 flop/s and 1000 epochs over the 2000 training samples, the network with 2
layers of each 1000 hidden of the previous exercise takes 334 717 010 ·2 000 ·1 000/(1010 flop/s) ≈
67 000 s ≈ 18.6 h for training and basically no time (≈ 26 sec) for testing once on all 2000 test
patterns.

A network with only one hidden layer of 1000 neurons is not considerably faster (≈ 18 h of
training), since most time is spent on the first layer with the huge input dimensionality. But if
the first hidden layer has only 100 neurons, training time reduces to a few hours, even if multiple
layers are used.

Exercise 3. Error functions for Backprop

Several researchers have tried to use error functions other than the quadratic error.

a. Convince yourself that a change of the error function only affects the δs of the output layer. More
precisely, the formula for the output δs in the algorithm has to be changed, but the formula for
the back-propagation step remains the same.

b. To be specific, consider error functions of the type

Ep =
∑
µ

∑
i

|tµi − ŷ
µ
i |
p

where the index i runs over all output neurons and ŷi = g(n)(ai). What are the output δs for
quadratic error (p = 2)? What are the δs for linear error (p = 1)? Note that you have to keep
track of the absolute value signs.

c. Calculate the output δ for the ‘cross-entropy’ error function which will be introduced next week
in the context of maximum likelihood of statistical learning

Elog =
∑
µ

∑
i

[
tµi log

tµi
ŷµi

+ (1− tµi)log
1− tµi
1− ŷµi

]
.

Here, tµi = 0 means ‘target output feature i not present for input µ’ and tµi = 1 means ‘feature
present’. The outputs ŷµi = 1 can be interpreted as the probability of ‘output feature i is present’
for input µ. ŷµi = 1 means that the hypothesis ’feature i is present’ is definitely true.

d. Assume the cross-entropy on the transfer function

g(n)(a) =
1

2
[1 + tanh(a)] (18)

and show that the δs of the output layer are simply δµi = −2[tµi − ŷ
µ
i].

e. Relate the gain function g in (d) to the sigmoidal function in class.

Solution:

a. From the lecture slides and the chain rule, we see that δ
(µ,nmax)
i = E′(ŷµi) ·g′(a(µ,nmax)

i). The error
function does not appear explicitly in the formula for δ before the output layer; only implicitly

through the change in δ
(µ,nmax)
i . Once we have recomputed δ

(µ,nmax)
i and stored the result, it can

be substituted into the formula for all of the other δs.

b. In general the error function gives

Ep(ŷ
µ
i) = |tµi − ŷ

µ
i |
p

E′p(ŷ
µ
i) = −p · (tµi − ŷ

µ
i) · |tµi − ŷ

µ
i |
p−2

For quadratic error, this reduces to

E′2(ŷ
µ
i) = −2(tµi − ŷ

µ
i)

δµi = −2(tµi − ŷ
µ
i) · g′(a(nmax)

i),

and for linear error

E′1(ŷ
µ
i) = −1(tµi − ŷ

µ
i) · |tµi − ŷ

µ
i |
−1

δµi = −(tµi − ŷ
µ
i) · |tµi − ŷ

µ
i |
−1 · g′(a(nmax)

i)

c. For the cross–entropy function we have

Elog =
∑
µ

∑
i

[
tµi log

tµi
ŷµi

+ (1− tµi)log
1− tµi
1− ŷµi

]
Elog =

∑
µ

∑
i

[tµi logtµi − t
µ
i logŷµi + (1− tµi)log(1− tµi)− (1− tµi)log(1− ŷµi)]

E′log(ŷ
µ
i) = −tµi /ŷ

µ
i + (1− tµi)/(1− ŷµi)

δ
(nmax)
i = − [tµi /ŷ

µ
i − (1− tµi)/(1− ŷµi)] · g′(a(nmax)

i)

d. For this transfer function we find that

g(aµi) = ŷµi

=
1

2
[1 + tanh(aµi)]

g′(aµi) =
1

2
[1− tanh2(aµi)]

= ŷµi · (1− tanh(ai))

δ
(µ,nmax)
i = − [tµi /ŷ

µ
i − (1− tµi)/(1− ŷµi)] · ŷµi · (1− tanh(ai))

δ
(µ,nmax)
i = −

[
tµi − (1− tµi) ·

ŷµi
1− ŷµi

]
· (1− tanh(ai))

δ
(µ,nmax)
i = −

[
tµi − (1− tµi) · 1 + tanh(ai)

1− tanh(ai)

]
· (1− tanh(ai))

δ
(µ,nmax)
i = − [tµi (1− tanh(ai))− (1− tµi)(1 + tanh(ai))]

δ
(µ,nmax)
i = − [tµi − t

µ
i tanh(ai)− 1− tanh(ai) + tµi + tµi tanh(ai)]

δ
(µ,nmax)
i = −2 [tµi − ŷ

µ
i]

e. From the definition in (d) we have

g(x) =
1

2
[1 + tanh(x)]

g(x) =
1

2

[
1 +

ex − e−x

ex + e−x

]

g(x) =
1

2

[
ex + e−x

ex + e−x
+
ex − e−x

ex + e−x

]

g(x) =
ex

ex + e−x

g(x) =
1

1 + e−2x

g(x) = σ(2x)

where σ is the sigmoid function.

Exercise 4. BackProp with Gaussian units in the first layer (from exam 2018)

Our data base (xµ, tµ) has N -dimensional input and N -dimensional target output. We have a network
with two hidden layers.

Use a quadratic error function for each pattern µ

E(µ) =
1

2

N∑
m=1

[tµm − ŷµm]2,

where ŷµm =
∑K

k=1w
(3)
mkx

(2)
k .

The second hidden layer has normal sigmoidal units with gain function g(a), while the first hidden
layer contains Gaussian basis functions. Thresholds are implicit (by adding an extra unit) and will
not be treated explicitly.

Thus

x
(2)
k = g

(J∑
j=1

w
(2)
kj exp[−0.5||xµ − cj ||2]

)
,

where cj is the center of the Gaussian of unit j.

Our aim is to calculate the derivative of the error function with respect to the parameters cji, that is,
component i of Gaussian unit j.

A direct calculation with the chain rule yields that the derivative with respect to c45 is

dE(µ)

dc45
= −

N∑
m=1

[tµm − ŷµm]

K∑
k=1

w
(3)
mkg

′(ak)w
(2)
k4 (xµ5 − c45) exp[−0.5||xµ − cj ||2]

Reorder the terms of the gradient calculation for arbitrary cij so as to arrive at an efficient backprop-
agation algorithm with a forward pass and a backward pass and an update step for the parameters
cij . Summarize your results in pseudo-code.

Solution:

a. Initialization

Parameters w
(n)
ij and cij are initialized at small values [−ε, ε].

b. Forward pass

Pattern xµ is applied at the input

x
(1)
j = exp[−0.5||xµ − cj ||2]

a
(2)
k =

J∑
j=1

w
(2)
kj x

(1)
j

x
(2)
k = g(a

(2)
k)

ŷµm =
K∑
k=1

w
(3)
mkx

(2)
k

c. Backward pass

δ(3)m = −(tµm − ŷµm)

δ
(2)
k = g′(a

(2)
k)

N∑
m=1

w
(3)
mkδ

(3)
m

δ
(1)
j = x

(1)
j

K∑
k=1

w
(2)
kj δ

(2)
k

d. Update of parameters cij

∆cji = −ηδ(1)j (xµi − cji)

