
Artificial Neural Networks (Gerstner). Solutions for week 7

Error function and Optimization

Exercise 1. Averaging of Stochastic gradients (for ADAM)

We consider stochastic gradient descent in a network with three weights, (w1, w2, w3).

Evaluating the gradient for 100 input patterns (one pattern at a time), we observe the following time
series

for w1: observed gradients are 1.1; 0.9, 1.1; 0.9; 1.1; 0.9; ...

for w2: observed gradients are 0.1; 0.1; 0.1; 0.1; 0.1; ...

for w3: observed gradients are 1.1; -0.9; 1.1; -0.9; 1.1; -0.9; ...

a. Calculate the mean gradient (first moment m1) 〈gk〉 for wk, k ∈ [1, 2, 3].

b. Calculate the mean of the squared gradient (second moment m2) 〈g2k〉 for wk, k ∈ [1, 2, 3].

c. Divide the result of (a) by that of (b) so as to calculate 〈gk〉/〈g2k〉 as well as 〈gk〉/
√
〈g2k〉 for wk,

k ∈ [1, 2, 3].

d. The signal-to-noise ratio (SNR) of the gradient gk is defined as

SNR =
m1√
σ2

=
m1√

m2 −m2
1

,

where we used the definition of the variance σ2 =
〈
(gk −m1)

2
〉

= m2−m2
1 of gk. In ADAM the

weight update is proportional to ∆wk ∝ m1/
√
m2. With that, show that

• the update in ADAM is proportional to ∆wk ∝ 1√
1+1/SNR2

= SNR√
SNR2+1

.

• even though the update in ADAM is not proportional to the SNR, it is proportional to the
SNR for small SNR → 0 and saturates for big SNR →∞.

Solution:

a. The gradients correspond to three sequences with periods of 2 (for w1), 1 (for w2) and 4 (for
w3). Over 100 samples, they will repeat 50, 100, and 25 times respectively. This gives us

〈g1〉 =
1

100

50∑
i=1

(1.1 + 0.9) = 1 ,

〈g2〉 =
1

100

100∑
i=1

0.1 = 0.1 ,

〈g3〉 =
1

100

50∑
i=1

(1.1− 0.9) = 0.1 .

b. By the same approach,



〈g21〉 =
1

100

50∑
i=1

(1.12 + 0.92) = 1.01 ,

〈g22〉 =
1

100

100∑
i=1

0.12 = 0.01 ,

〈g23〉 =
1

100

50∑
i=1

(1.12 + (−0.9)2) = 1.01 .

c. From the previous two results,

〈g1〉/〈g21〉 = 0.99 , 〈g1〉/
√
〈g21〉 = 0.995 ,

〈g2〉/〈g22〉 = 10 , 〈g2〉/
√
〈g22〉 = 1 ,

〈g3〉/〈g23〉 ≈ 0.1 〈g3〉/
√
〈g23〉 ≈ 0.1 .

d. • By using the definition of the variance σ2 and the SNR we see that:

m2 = m2
1 + σ2 ,

= m2
1

(
1 +

σ2

m2
1

)
,

= m2
1

(
1 +

1

SNR2

)
,

√
m2 = m1

√
1 +

1

SNR2

If we plug this into the ADAM weight update we obtain:

∆wk ∝ m1/
√
m2 =

m1

m1

√
1 + 1

SNR2

=
1√

1 + 1/SNR2
=

SNR√
SNR2 + 1

.

• For the case SNR → 0 we can Taylor-expand the above expression around SNR = 0 and
obtain ∆wk(SNR)|SNR=0 ∝ SNR + O(SNR2). For SNR → ∞ we can quickly check that
∆wk ∝ 1√

1+1/SNR2
→ 1 for SNR →∞.

Exercise 2. Averaging with exponential filters (for ADAM)

In this exercise we study averaging with exponential filters as used e.g. for gradient averaging in SGD
with momentum or ADAM.

a. You use an algorithm to update a variable m:

m(n+ 1) = ρm(n) + (1− ρ)x(n) (*)

where ρ ∈ [0, 1) and x(n) refers to an observed time series x(1), x(2), x(3), ....

Show that, if all values of x are identical [that is, x(k) = x̄ for all k], then the algo (*) converges
to m = x̄.

b. Assume the initial condition m(0) = 0. Show that, for 1− ρ� 1 the algorithm outputs in time
step n+ 1 the value



m(n+ 1) = (1− ρ)
n∑
k=0

exp[−(1− ρ)k] · x(n− k)

Hint: (i) compare m(n + 1) with m(n) and reorder terms. (ii) At the end of your calculation
you may approximate exp[ε] = 1 + ε (which is valid for small ε� 1).

c. Your friend makes the following statement:

The algo (*) performs a running average of the time series x(n) with an exponentially weighted
window that extends roughly over 1/(1−ρ) samples. Therefore, if you want to include about 100
samples in the average, you should choose ρ = 0.99.

Is your friend’s claim correct?

Solution:

a. We can expand the expression for m(n+1) recursively into an expression in terms of all previous
data points and the initial mean m(0),

m(n+ 1) = ρm(n) + (1− ρ)x(n)

= ρ[ρm(n− 1) + (1− ρ)x(n− 1)] + (1− ρ)x(n)

= ρn+1m(0) + (1− ρ)
n∑
k=0

ρkx(n− k)

= ρn+1m(0) + x̄ · (1− ρ)
n∑
k=0

ρk

Taking n → ∞ and ρ ∈ [0, 1), the first term goes to 0. Recognizing the geometric series in the
second term, we have

m(n+ 1) ≈ x̄ · (1− ρ)
1

1− ρ
= x̄.

b. Since 1− ρ� 1, we approximate

exp[−(1− ρ)k] = exp(−(1− ρ))k

≈ (1 + (−(1− ρ)))k

= ρk

From the last solution, taking m(0) = 0, we have

m(n+ 1) = (1− ρ)

n∑
k=0

ρkx(n− k)

≈ (1− ρ)

n∑
k=0

exp[−(1− ρ)k] · x(n− k)



c. From above, a sample k time steps in the past has a weight of wk = (1 − ρ)ρk. From (c), we
know that

∑n
k=0wk ≈ 1 for high values of n, in which case we can also ignore m(0).

We can consider the contribution of all samples more than 100 time steps in the past to the
current value of the mean, for ρ = 0.99:

∑n
k=100wk∑n
k=0wk

≈ (1− ρ)
n∑

k=100

ρk

≈ 1− (1− ρ)
99∑
k=0

ρk

= 1− (1− ρ)
(1− ρ100

1− ρ

)
= ρ100 ≈ 0.366

so samples more than 100 steps in the past will account for roughly one third of m. The
value of ρ1/(1−ρ) converges to exp(−1) ≈ 0.368 for increasing values of ρ (which follows from
the fact that x ≈ − ln(1 − x) for small values of x). So, for large enough ρ, the most recent
n = 1/(1 − ρ) samples account for roughly two thirds of the exponential moving average (n is
the time constant). We can think of this as roughly the number of samples being averaged over,
although we should note that samples more than 1/(1− ρ) time steps in the past can still make
a significant contribution to m (one third).

Exercise 3. Bias and variance of gradient estimators

For training data (x1, y1), . . . , (xP , yP ) and some loss E(w) = 1
P

∑
µ `(fw(xµ), yµ), the gradient is

given by ∇E(w) = 1
P

∑
µ∇`(fw(xµ), yµ), with e.g. `(x, y) = 1

2(x− y)2.

a. In each step of stochastic gradient descent one sample (xµ, yµ) of the training data is selected.
Show that ∇`(fw(xµ), yµ) is an unbiased estimator of ∇E(w), if each training sample is selected
with equal probability. Hint: An estimator θ̂ of a quantity θ is called unbiased, if its expectation

E
[
θ̂
]

= θ.

b. Instead of single sample stochastic gradient descent it is common practice to use mini-batches.
Show that the mini-batch gradient estimator 1

M

∑M
i=1∇`(fw(xi), yi), with 1 < M < P , has

lower variance than the single sample estimator, if the samples (xi, yi) in each mini-batch are
sampled uniformly from the training data.

c. How does this exercise link to Ex. 2 of week 1?

Solution:

a. Let µ be a random training sample selected uniformly at random from {1, ..., P}. Then

E [∇`(fw(xµ), yµ)] =
1

P

∑
µ

∇`(fw(xµ), yµ) (1)

= ∇E(w) (2)

b. Let Xµ = ∇`(fw(xµ), yµ) be the gradient from a single training sample. The variance of the

mini-batch gradient of size M , 1
M

∑M
i=1Xi for {i, ...,M} selected uniformly at random from



{1, ..., P} is

E

( 1

M

M∑
i=1

Xi − E [X]

)2
 = E

( 1

M

M∑
i=1

(Xi − E [X])

)2
 (3)

=
1

M2

 M∑
i=1

E
[
(Xi − E [X])2

]
+
∑
i 6=j

E [(Xi − E [X])(Xj − E [X])]

 (4)

=
1

M
Var [X] (5)

Exercise 4. ADAM and minibatches.

Suppose that in a project you have already spent some time on optimizing the ADAM parameters ρ1
and ρ2 while you ran preliminary tests with a minibatch size of 128 on your computer.

For the final run you get access to a bigger and faster computer that allows you to run minibatches
of size 512.

How should you rescale ρ1 and ρ2 so as to expect roughly the same behavior of the two machines on
the training base?

Hint: For ρ1 you can directly use the results from Exercise 1. However, for ρ2 you may want to
distinguish between the time series for w1 and that for w3. Why? Think of the time series in exercise
1 as the gradients of true stochastic gradient. Then make batches of size 2 and 4, and redo the
calculation of the squared gradient. What do you observe?

Solution:

We assume that we need to average over the gradients from the last n samples to get a good approx-
imation to the batch gradient; this averaging happens both within a minibatch (of size s) and across
minibatches. When using exponential smoothing as in ADAM, we take n

s ≈ 1/(1−ρ1). To get similar
behaviour, we take

n

s
≈ 1

1− ρ1,s
n ≈ s

1− ρ1,s

n ≈ 128

1− ρ1,128
=

512

1− ρ1,512
1− ρ1,512 = 4(1− ρ1,128)

ρ1,512 = 4ρ1,128 − 3.

E.g. if we used ρ1 = 0.99 for minibatch size 128, we can take ρ1 = 0.96 on the new machine with
minibatch size 512.

For the squared gradients, we note that averaging within a minibatch and averaging between mini-
batches are no longer the same. Within a minibatch, we average over the gradients themselves, while
between minibatches, we average over the squared gradients. For instance, taking the w3 series above
with minibatch size 2,



r ≈ (0.5(1.1 + 0))2(1− ρ)
n∑

k even

ρk + (0.5(−0.9 + 0))2(1− ρ)
n∑

k odd

ρk

≈ (0.5(1.1 + 0))2(0.5) + (0.5(−0.9 + 0))2(0.5)

= 0.2525

While for minibatch size 4 we have

r ≈ (0.25(1.1 + 0 + (−0.9) + 0))2(1− ρ)

n∑
k=0

ρk

= 0.0025

which are very different results. For w1 with minibatch size 2 and 4, we get r = 1 in both cases. As a
result, there is no straightforward scaling relationship between ρ2 and the minibatch size.

Exercise 5. Unitwise learning rates

Consider minimizing the narrow valley function E(w1, w2) = |w1|+ 75|w2| by gradient descent.

a. Sketch the equipotential lines of E, i.e. the points in the w1 − w2-plane, where E(w1, w2) = c
for different values of c.

b. Start at the point w(0) = (10, 10) and make a gradient descent step, i.e.
w(1) = w(0) − η(∂E/∂w1, ∂E/∂w2) with η = 0.1.

Hint: Use the numeric definition of ∂|x|/∂x = sgn(x) if x 6= 0 and 0 otherwise.

c. Continue gradient descent, i.e .compute w(2),w(3) and w(4) and draw the points w(0), . . . ,w(4)

in your sketch with the equipotential lines. What do you observe? Can you choose a better
value for η such that gradient descent converges faster?

d. Repeat now the gradient descent procedure with different learning rates for the different di-
mensions, i.e. w(1) = w(0) − (η1∂E/∂w1, η2∂E/∂w2) with η1 = 1 and η2 = 1/75. What do you
observe? Can you choose better values for η1 and η2 such that gradient descent converges faster?

e. An alternative to individual learning rates is to use momentum, i.e.
∆w(t+1) = −η(∂E/∂w1, ∂E/∂w2) + α∆w(t) with α ∈ [0, 1) and w(t+1) = w(t) + ∆w(t+1).

Repeat the gradient descent procedure for 3 steps with η = 0.2 and α = 0.5. What do you
observe?

f. Assume ∂E/∂w1 = 1 in all time steps while ∂E/∂w2 = ±75 switches the sign in every time step.

Compute limt→∞∆w(t) as a function of η and α. Hint:
∑t

s=0 α
s = 1−αt+1

1−α .

g. What do you conclude from this exercise in view of training neural networks by gradient descent
with or without momentum?

Solution:

a. In Figure 1 is shown the solution of |w2| = c−|w1|
75 for three different value of c.



Figure 1: Equipotential lines of the narrow valley function. c = {750, 300, 150, 75} from outer to inner
lines. The blue cross corresponds to the first iterations of gradient descent.

b.

∂E

∂w1
= sign(w1) (6)

∂E

∂w2
= 75 sign(w2) (7)

w(1) = (10, 10)− 0.1(1, 75) = (9.9, 2.5) (8)

c.

w(2) = (9.9, 2.5)− 0.1(1, 75) = (9.8,−5) (9)

w(3) = (9.8,−5)− 0.1(1,−75) = (9.7, 2.5) (10)

w(4) = (9.7, 2.5)− 0.1(1, 75) = (9.6,−5) (11)

The points are sketched on Figure 1. Because of the big difference in amplitudes of the partial
derivatives, finding the correct learning rate is difficult. A smaller learning rate can prevent
the oscillations in w2 but considerably slows down changes in w1. For faster convergence, the
oscillation along the w2 dimension should be avoided. For this initialization, it can be achieved
with a learning rate of η = 10/75, which makes w2 to reach the minimum in 1 update step,
followed by w1, 75 steps later.

d.

w(1) = (10, 10)− (1,
1

75
)T (1, 75) = (9, 9) (12)

w(2) = (9, 9)− (1,
1

75
)T (1, 75) = (8, 8) (13)

w(3) = (8, 8)− (1,
1

75
)T (1, 75) = (7, 7) (14)

w(4) = (7, 7)− (1,
1

75
)T (1, 75) = (6, 6) (15)

Now the learning rates are scaled with respect to the partial derivatives amplitudes. Therefore,
the update steps in both dimensions are equal. η1 = 10 and η2 = 10/75 allows to reach the
minimum after 1 update.



e.

w(1) = (10, 10)− 0.2(1, 75) + 0.5(0, 0) = (9.8,−5) (16)

w(2) = (9.8,−5)− 0.2(1,−75) + 0.5(−0.2,−15) = (9.5, 2.5) (17)

w(3) = (9.5, 2.5)− 0.2(1, 75) + 0.5(−0.3, 7.5) = (9.15,−8.75) (18)

The updates in the first dimension become larger and larger, while the magnitude of the oscil-
lation in the second dimension decreases.

f. With η∂E/∂w1 = η, we find ∆w
(t)
1 = −η

∑t
s=0 α

s = −η 1−αt+1

1−α . With η∂E/∂w2 = ±75η we find

∆w
(t)
2 = −75η

∑t
s=0(−α)s = −η 1−(−α)t+1

1+α . Therefore

lim
t→∞

∆w(t) = (−η/(1− α),−75η/(1 + α)) (19)

g. Wisely chosen unitwise learning rates can significantly speed up learning. Momentum imple-
ments an effective unitwise learning rates. It can speed up learning and dampen oscillations.
But generally it does not find the optimal unitwise learning rates.

Exercise 6. Weight space symmetries

Suppose you have found a minimum for some set of weights. Show that in a network with m hidden
layers of n neurons each, there are always at least (n!)m equivalent solutions.

Solution:

Given a solution, and assuming the same activation functions across all neurons in a layer, we can
swap any two neurons simply by swapping their input and output weights. There are therefore (n
permute n) or n! ways to arrange which neuron has which weights in one layer.

In addition, we can choose combinations across different layers independently. For instance, in a 2–
layer network with 3 neurons in each layer, we have 6 arrangements of layer 1 and 6 arrangements of
layer 2, and 6 · 6 = 36 unique combinations of the two layers together. In general, this gives us (n!)m

equivalent solutions.

Exercise 7. Relation of weight decay and early stopping

Suppose that we are close to a minimum at w∗1, w
∗
2. The error function in the neighborhood is given

by

E =
1

2
β1(w1 − w∗1)2 +

1

2
β2(w2 − w∗2)2 (20)

a. Show that gradient descent with learning rate γ starting at time zero with weights w1(0), w2(0)
leads to a new weight after n updates given by

wi(n) = w∗i + (1− βiγ)n
(
wi(0)− w∗i

)
b. Suppose that β2 � β1 (take β2 = 20β1). You perform early stopping after nstop steps where

nstop ≈ 1/(5γβ1).

Show that at nstop we have w2 ≈ w∗2 and w1 ≈ w1(0).

Hint:
(
1 + x

n

)n ≈ exp(x) for large n.

Hence, you may conclude that with an appropriate choice of early stopping, some coordinates
have converged and others have not even started convergence.

c. We now consider L2 regularization and work with a modified error function
Ẽ = E + λ

2

∑
j(wj)

2.

Show that the minimum of the error function is at

wi = βiw
∗
i /(λ+ βi).



d. Consider β2 � λ� β1.

Compare the role of λ with the number nstop in early stopping.

Solution:

a. We compute the gradient of the given error function:

− ∂E

∂wi
= −βi(wi − w∗i ) (21)

Then we prove the statement by induction:

• Root: wi(1) = wi(0)− γβi(wi(0)− w∗i ) = w∗i + (1− γβi)(wi(0)− w∗i )
• Induction: Assume wi(n) = w∗i + (1− γβi)n(wi(0)− w∗i )

wi(n+ 1) = wi(n)− γβi(wi(n)− w∗i )
= w∗i + (1− γβi)n(wi(0)− w∗i )− γβi

(
w∗i + (1− γβi)n(wi(0)− w∗i )− w∗i

)
= w∗i + (1− γβi)(1− γβi)n(wi(0)− w∗i )
= w∗i + (1− γβi)n+1(wi(0)− w∗i )

b. Using the hint with (1 + x · 5γβ1)nstop = (1 − βiγ)nstop and solving for x we find w1(nstop) ≈
w∗1 + exp(−1/5)(w1(0)− w∗1) ≈ w1(0) and w2(nstop) ≈ w∗2 + exp(−4)(w2(0)− w∗2) ≈ w∗2. ‘

c.

Ẽ =
1

2

∑
i

βi(wi − w∗i )2 +
λ

2
w2
i

=
1

2

∑
i

(βi + λ)w2
i − 2βiwiw

∗
i + βi(w

∗
i )

2

=
1

2

∑
i

(βi + λ)

(
w2
i − 2

βi
βi + λ

wiw
∗
i +

βi
βi + λ

(w∗i )
2

)

=
1

2

∑
i

(βi + λ)

(
wi −

βi
βi + λ

w∗i

)2

+ c ,

where c is a constant that does not depend on wi. Hence, Ẽ is minimized for wi = βi
βi+λ

w∗i .

d. With β2 � λ � β1 the solution is w1 = β1
β1+λ

w∗1 ≈ 0 and w2 = β2
β2+λ

w∗2 ≈ w∗2. If w1(0) ≈ 0 we
get the same result as with early stopping in b.

Exercise 8. Simple Perceptron and Bagging

We have four data points:

Two positive examples t1 = t2 = 1 at x1 = (1, 0)T and x2 = (0, 1)T ; and Two negative examples
t3 = t4 = 0 at x3 = (0, 0)T and x4 = (1, 1)T .

a. Draw (with replacement) four times randomly from this data set. What is the probability that
you draw each example exactly once?

b. You have generated four new data sets 1 ≤ k ≤ 4 by drawing with replacement from the above
set. Each set contains four points. You find that in data set k point k is missing (1 ≤ k ≤ 4).

You work with the perceptron algorithm with hard gain function g(a) = 1 for a > 0 and zero
otherwise.

Make a graph in the data space (input space) and sketch in the graph a solution that the
perceptron algorithm finds for data set k = 1. Draw the hyperplane.



c. Sketch in the same graph, a solution (one each) that the perceptron algorithm finds for k = 2, 3, 4.
Label your proposed solutions with k = 1...4.

d. Now you perform bagging. What is the value of the (real-valued) bagged output in each region
of the above graph in response to an arbitrary data point x5. In the above graph, give the
regions a different texture and write in each region a number which indicates the amplitude of
the bagged response.

e. Now you perform majority voting. How many of the 4 data points are correctly classified?

f. Replace the four points by four Gaussian clusters of 25 data points each (Gaussians centered
x1, x2, x3, x4) with standard deviation σ = 0.1 each; labels are the same for all points inside
one Gaussian cluster.) Repeat the above arguments. Assume that the resampled data set k
has 20 data points from cluster k, 30 data points from another cluster k′ 6= k, and 25 from the
remaining two clusters.

Sketch a plot of this new problem on a separate page and repeat the above arguments (draw the
hyperplanes etc, parts b - e). Imagine you generate new data points (from the four Gaussians)
for the test set. What’s the probability for one of those point of not being correctly clustered
after bagging with majority vote?

Solution:

a. You want to pick up each data exactly once, but you don’t care about the order in which you
pick them. In the first pick, any data is good, in the second pick you have probability 3/4 to
pick a data different from the first one, in the third pick you have probability 2/4 to pick a
data different from the first two and in the final pick you have probability 1/4 to pick the last
data you need. Given that each pick is done independently, the probability of picking 4 different
data is p = 1 · 3/4 · 2/4 · 1/4 = 6/64. This is also equivalent to 4!/44 = 6/64, where 1/44 is
the probability of a specific (ordered) combination of 4 data and the factor 4! is the number of
possible permutation (since we don’t care about the order).

b. Data set k = 1 contains all original data, but x1. Refer to right hand side of Fig. 2. Since we
have chosen g to be an Heavyside function, any hyperplane which correctly separates correctly
the points has error E = 0, so they are equally good (for this choice of g).

Figure 2: Left side) all 4 data points are plotted. It’s the XOR problem and can’t be classified with a
single layer perceptron. Right side) Data space of the data set for k = 1. The large dotted blue line
indicates one possible solution (hyperplane) of the perceptron algorithm for this data set.

c. You can see all 4 solutions (hyperplanes) in Fig. 3.

d. You can see the values of ŷ in the different regions of the input space in Fig. 4.

e. Just by looking at Fig. 4, we can conclude that all 4 initial data points are correctly classified
by majority voting.



Figure 3

Figure 4

f. Fig. 5 (on the right) shows that with the suggested sampling we would still get an hyperplane
similar to that of point b. In fact, by placing the hyperplane like in the figure, we have E = 20,
corresponding to the 20 data points of type x1, which is the lowest error we can have in this
situation. By creating analogously new data set k = 2, 3, 4 we get just the analogue of Fig.
3, with the same bagged output and therefore the same outcome of majority voting. Now we
generate 100 new data points. How many data point will be classified correctly depends on
the Euclidean distance of the hyperplanes from the mean of the cluster. For simplicity, we
will consider the error probabilities associated to 1-dimensional Gaussians. In this way we can
use the probabilities as in Fig. 6. We generate one data point from the Gaussian distribution
N(x2, σ = 0.1). If the hyperplane for k = 1 is at a distance of 3σ from 〈x2〉, then the probability
that a point get mis-classified is perror = 1 − 0.9973. Now we can ask the question: what is
the probability that the hyperplane k = 1 (drawn with the above method) lies at a distance
of 3σ from center of mass of the cluster 〈x2〉? The cluster x2 contains 25 data points and by
construction, they are all on the same side of hyperplane k = 1, the hyperplane has probability
p = 0.997325 = 0.93 of being placed here.



Figure 5: Dots = positive points, crosses= negative points Left) All input data are shown. 25 data
points are sample from each of the 4 Gaussian distributions centered on the 4 data points of point a.
All point which are sample from the same Gaussian have the same name, so x1 are in blue, x2 are in
green, x3 are in red and x4 are in purple. Center) Data set k = 1. We sample with replacement 20
point from x1, 25 points from x2, 30 points from x3 and 25 points from x4. Right) Analogue of Fig.
3.

Figure 6: thanks to Wikipedia


