
Artificial Neural Networks (Gerstner). Solutions for week 9

Convolutional neural networks

Exercise 1. Backprop in ConvNets

Consider a very simple convolutional neural network with 3 dimensional input (e.g. RGB image), one
convolution layer with 5x5x3 filters, stride 1, non-linearity σ and one linear layer, i.e.
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b. How does the result for the convolutional network change, if you introduce a max pooling layer
after the convolutional layer?
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∑
k w

(2)
ok x

(1)
k .

Solution:

a.
∂L/∂w

(1)
1111 = −

∑
o

(to − ŷo)
∑
ij

w
(2)
ij1oσ

′(aij1)Iij1 (4)

b. With max pooling the sum does not run over all i and j anymore but only over those that were
“winning”, i.e. had the maximal value in the group if hidden activations seen by one max-pooling
filter.
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Exercise 2. Computing volume sizes

Given a volume of width n, height n and depth c.

a. Show that the convolution with k filters of size f × f × c with stride s and padding p leads to a
new volume of size (
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)
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× k . (6)

b. What padding p do you have to choose such that the input and output volumes have the same
width and depth for stride s = 1. Check you result for the special case of n = 4 and f = 3.

Solution:

a. With padding p on both sides, the width of the padded image is n+ 2p. If we position the left
edge of a filter at the left edge of the padded image – let us call this position x = 1 – the right
border of a filter of width f will be at x = f . If we position the right edge of the filter at the right



border of the padded image, i.e. at x = n+ 2p the left edge of the filter is at x = n+ 2p− f + 1.
With stride 1 there are thus n + 2p − f + 1 different possibilities to position the filter relative
to the image. With larger stride s > 1, we count only every s possibility for the first n+ 2p− f
positions and the last, i.e. n+2p−f

s + 1. The same reasoning applies for the height and all k
filters. Note that not all choices of n, p, f, s are reasonable, as there could be fractions.

b.

n+ 2p− f + 1 = n (7)
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Thus, having odd filter width and height f allows to have the same padding on the left and the
right side. This is one of the reasons, odd filter widths are more common than even ones.

Exercise 3. Test of translation invariance

We start with a 1-dimensional, simple case. Suppose we apply a 1-dimensional convolutional processing
stage with one filter to our 1-dimensional image and obtain a filter bank x of size 21x1. The values of
these filter outputs are denoted by x(i) with 1 ≤ i ≤ 21.

a. Suppose that the global maximum value of x(i) is at i = 11. We apply max-pooling with stride
1 and a pooling window size of 11. How stable is the result of the pooling with respect to shifts
in x that could stem from shifts in the original input image?

b. Suppose that the values x(i) are monotonically increasing with a maximum at i = 21. We apply
the same max-pooling (stride 1, window size 11). How stable is the result of the pooling in this
case?

Now we move to a 2-dimensional case. On the right there
is an image we would like to process with a 2-layer convo-
lutional network. The network has one convolutional layer
(two 3x3 filters, depicted below the image, stride 1, ReLU
non-linearity) and one max-pooling layer (pool window 2x2,
stride 2). The image is already padded (1x1 zero-padding)
and no further padding is applied later.

c. Determine the width, height and depth of the volume
after max-pooling.

d. Compute the output of the max-pooling layer. Use all
biases = 0.

e. Move the image one pixel to the left (padding column
with zeros). How does the output of the convolution
layer change? How many output units of the max-
pooling layer have changed?

f. Is it possible to find a translation of the original image
under which the value for each output unit of the max-
pooling layer is invariant?
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Solution:

a. For all positions of our pooling window, the maximum of x(i) always lies inside the pooling
window. Since we do max-pooling, the output of the pooling layer will always be the same, i.e.
the maximum of x(i). We see that in this case the result of the pooling is very stable and very



invariant to shifts in x (and thus to translations of the image), because most of the units in the
max-pooling layer will not change their output if we shift x.

b. In this case the output of the max-pooling changes for every position when sliding the pooling
window over x(i) because the input inside the pooling window always has its maximum at the
highest index. We see that now the result is unstable and not invariant under shifts in x (and
thus changing with translations of the image) because the output of the max-pooling units will
all change if we shift x.

c. The volume after convolution is 4x4x2, since there are 4 different positions for the x and y
direction at which we can place the 3x3 filters and we have 2 filters. After max-pooling with 2x2
filters and stride 2 we are left with a volume of 2x2x2.

d. We compute the output of the convolution with the filters and highlight in bold the maximum
for each max-pooling filter:
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e. Because of the equivariance property of the convolution we can move columns 2 to 4 to the left
and compute the new rightmost column. Three out of eight output units of the max pooling
layer change their value under this transformation.
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f. Yes.

Exercise 4. Reverse-mode automatic differentiation

The backprop algorithm derived above is a special case of an algorithm called Reverse-mode automatic
differentation. Modern deep learning software packages rely on this algorithm, as it allows flexible ex-
ploration of different architectures and cost functions without having to adapt the standard BackProp
algorithm for each special case. To understand reverse-mode automatic differentation we look at the
function

f(x1, x2, θ) = sin(θx1 + x2) + θx22 . (9)

Using the simple functions f1(x, y) = xy, f2(x, y) = x + y, f3(x) =
sin(x), f4(x) = x2, f5(x, y) = xy and f6(x, y) = x+ y, we can write the
above function as

f(x1, x2, θ) = f6(f3(f2(f1(x1, θ), x2)), f5(θ, f4(x2))) , (10)

that has the Abstract Syntax Tree (AST) or Computation Graph de-
picted on the right.
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The reverse-mode Automatic Differentation algorithm proceeds now as follows:

AutoDiff

1. Determine all children of the variable(s) of interest. In the example, using
θ, this includes f1, f2, f3, f5, f6.

2. Find a reverse ancestral (backwards) schedule of nodes. All of the children of
a node should be scheduled before the node itself. In the previous example
with θ, the schedule could be f6, f3, f2, f1, f5, θ. For the full graph, this
could be f6, f3, f2, f1, x1, f5, θ, f4, x2.

3. Start with the first node n1 in the reverse schedule and define tn1 = 1, e.g.
tf6 = 1.

4. For the next node n in the reverse schedule, find the child nodes ch(n). Then
define

tn =
∑

c∈ch(n)

∂fc
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5. The total derivative of f with respect to node n is given by tn.

a. Show that tθ = ∂f/∂θ by following the steps of the algorithm, i.e. by computing t6, t3, . . ., and
comparing it to the result you get by differentiating Eq. 9 manually.

b. Draw the AST of a fully connected network with 2 hidden layers and a single output, and
convince yourself that the backpropagation algorithm is a special case of reverse-mode automatic
differentation.

c. Draw the AST of a network with one 1D convolutional layer (with filter length 3 and stride
1), followed by one max-pooling layer (with k = 2), one dense layer, and a single output. For
simplicity, assume only 1 filter is used in the convolutional layer.

Solution:

a. Steps (1) and (2) are completed above. For Steps (3) and (4), we follow the nodes in the reverse
schedule in order:

tf6 = 1

tf3 =
∂f6
∂f3

tf6 =
∂(sin(θx1 + x2) + θx22)

∂(sin(θx1 + x2))
(1) = 1

tf2 =
∂f3
∂f2

tf3 =
∂(sin(θx1 + x2))

∂(θx1 + x2)
(1) = cos(θx1 + x2)

tf1 =
∂f2
∂f1

tf2 =
∂(θx1 + x2)

∂(θx1)
cos(θx1 + x2) = cos(θx1 + x2)

tf5 =
∂f6
∂f5

tf6 =
∂(sin(θx1 + x2) + θx22)

∂(θx22)
(1) = 1

tθ =
∂f1
∂θ

tf1 +
∂f5
∂θ

tf5 =
∂(θx1 + x2)

∂θ
cos(θx1 + x2) +

∂(θx22)

∂θ
(1)

= x1 cos(θx1 + x2) + x22



We see that tθ is equal to the result we would expect from differentiating taking tθ = ∂f/∂θ
directly. For completeness, evaluating the rest of the graph gives
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b. The AST is shown below.
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We consider taking the derivative with respect to w
(1)
1,1 as an example, which in AutoDiff corre-

sponds to finding t
w
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. The backwards schedule of nodes to find this derivative is E, g
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We assume quadratic error and denote the target as y. Where possible, we substitute the formula

for δ
(n)
i from BackProp in the lecture slides. Starting with tE = 1,
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which corresponds to the calculation of the weight update for w
(1)
11 in BackProp, after multiplying

by −η for stochastic gradient descent. By symmetry, the weight update has the same form for
any weight in the first layer. Similarly, we can show that the AutoDiff update corresponds to
BackProp in the other two layers as well (and, by induction, any layer in an arbitrarily deep
network). We therefore conclude that BackProp is a special case of AutoDiff.

c. The AST is shown below. Note that, in fully connected layers, unit–to–unit connections are
dense and weight–to–unit connections are sparse. Conversely, in convolutional layers, unit–to–
unit connections are sparse and weight–to–unit connections are dense.
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