
Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 2 (RL1)

Reinforcement Learning and SARSA 

Objectives for today:

- Reinforcement Learning (RL) is learning by rewards

- Agents and actions

- Exploration vs Exploitation

- Bellman equation

- SARSA algorithm



Reading for this week:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018, also online)

Background reading:

Silver et al. 2017, Archive

Mastering Chess and Shogi by Self-Play with a

General Reinforcement Learning Algorithm

Chapters: 1.1-1.4;  2.1-2.6;  3.1-3.5; 6.4



Review: Artificial Neural Networks for classification

input

output

car

feedforward network



review: Artificial Neural Networks for classification

input

output
0.05

0.9

Aim of learning:

Adjust connections such

that output 𝒚𝜇 is correct

𝒚𝜇=𝒕𝜇

(for each static input image,

𝒙𝜇)

 𝒙𝜇, 𝒕𝜇 , 1 ≤ 𝜇 ≤ 𝑃  ;

Prerequisite for learning:

labeled data base



review: Artificial Neural Networks for classification

 𝒙𝜇, 𝒕𝜇 , 1 ≤ 𝜇 ≤ 𝑃  ;

Prerequisite for learning:

labeled data base

Question: Is this realistic?



Previous slide.

In the previous lecture (on Perceptron Learning) we started with a data base 

consisting of a large number of patterns, each one with its label. 

But a question remains: Is this realistic? Do we ‘normally’ have a training base 

with labeled data? Where should this come from?

A first answer is no: there are lots of examples of sequences in the world around 

us. If the aim is to predict the next step of the sequence, then we have lots of 

labeled data (because we just have to compare the prediction of the network with 

what actually happens in the next step).

In this case, we can still use the framework of ‘supervised learning’ where the 

next step (e.g., next frame of video) is the supervisor (=label). We will come to 

sequences at the very end of the semester.

In the following, however, we focus on a completely different scenario. The 

paradigm of reinforcement learning.



Where is the supervisor?

Where is the labeled data?

1. Artificial Neural Networks for action learning

Replaced by:

‘Value of action’

- ‘goodie’ for dog

- ‘success’

- ‘compliment’

BUT:

Reward is rare:

‘sparse feedback’ after

a long action sequence



Previous slide. 

How does a human learn to play table tennis: How does a child learn to play the 

piano? How does a dog learn to perform tricks?

In all these cases there is no supervisor. No master guides the hand of the 

players during the learning phase. Rather the player ‘discovers’ good movements 

by rather coarse feedback. For example,

the ball in table tennis does not land on the table as it should. That is bad 

(negative feedback). The ball has a great spin so that the opponent does not get. 

This is good (positive feedback).

Similarly, it is hard to tell a dog what to do. But if you reinforce the dog’s behavior 

by giving a ‘goodie’ at the moment when it spontaneously performs a nice action, 

then it can learn quite amazing things.

In all these cases it is the ‘reward’ that guides the learning. Rewards can be the 

goodie for the dog, or just the feeling ‘now I did well’ for humans.



Reward information is available in the brain

Neuromodulator dopamine:

Signals reward minus

expected reward

Dopamine

Schultz et al., 1997,

Waelti et al., 2001

Schultz, 2002

‘success signal’



Previous slide. 

Inside the brain, reward information is transmitted by the neuromodulator 

dopamine. Neurons that use dopamine as their chemical transission signal are 

situated in nuclei below the cortex and have cables (axons) that reach out to vast 

areas of the brain.

As we will see later, neurons that communicate with the neuromodulator 

dopamine transmit a generic success signal that is not just reward, but something 

like ‘reward minus expected reward’.



Review: Modeling – the role of reward

i

j

Barto 1985, Schultz et al. 1997; Waelti et al., 2001; 

Reynolds and Wickens 2002; 

Lisman et al. 2011

success

Three factors for changing a connection

- activity of neuron j

- activity of neuron i

- success

Reinforcement learning = learning based on reward



Previous slide (not shown in 2020) 

Connections in the brain are changed if three factors come together:

-activity of the sending neuron j

-some form of activity of the receiving neuron i

-and the success signal (such as the neuromodulator dopamine)



1. Examples of reinforcment learning

Middle bar: shifted left or shifted right?

Observers get better at seeing 

the shift of the middle bar

Feedback: 

tone for wrong response

Tartaglia,Aberg,Herzog 2009

Min.

shift



Previous slide (not shown in 2020) 

Let us look at a few additional examples, beyond table tennis.

Humans can get, by practice and feedback, better at recognizing a visual pattern 

with three bars. The task is to distinguish cases where the middle bar is shifted to 

the left from those where it is shifted to the right.

Bottom right: 

The minimal shift that is just recognizable decreases over time (1 block = 1 

practice session) indicating learning.



1. Examples of reinforcement learning: animal conditioning



Previous slide. 

If you put a rat into an environment it will wander around. Suppose that, at some 

place, it discovers a food source hidden below the sand of the surface. 

After a couple of trials it will go straight to the location of the food source which 

implies that it has learned the appropriate sequence of actions in the environment 

to find the food source.



1. Examples of reinforcement learning: animal conditioning

Foster, Morris, Dayan 2000

Rats learn to find

the hidden platform

(Because they like to 

get out of the cold water)

Time to find platform

10                trials  

Morris Water Maze



Previous slide. 

Actual experiments for location learning are often performed in a Morris water 

maze. In the maze, there are 4 starting points and one target location which is a 

platform hidden (in milky water) just below the water surface. The rat does not like 

to swim in cold water and therefore tries to find the platform.

After a few trials it swims straight to the platform.

Bottom right: the time to reach the platform decreases over trials, indicating 

learning. 



Chess Artificial neural network 

(AlphaZero) discovers different

strategies by playing against itself.

In Go, it beats  Lee Sedol

Go

1. Deep reinforcement learning



Previous slide. 

In chess a neural network trained by reinforcement learning discovers winning 

strategies by playing against itself. Similarly, a neural network playing Go against 

itself learns to play at a level so as to beat one of the world champions.

The aim of the class is to arrive at Deep Reinforcement Learning (Deep RL):

Today we start with (standard) RL, in a few weeks we turn to deep networks, and 

in May we will turn to Deep RL.



1. Deep reinforcement learning

Network for choosing action

2e output for value of state:

probability to win

input

output

action:
Advance king

learning:

- change connections

aim:

- Choose next action to win

aim for value unit:

- Predict value of current 

position



Previous slide. 

At the end of this semester, you will be able to understand the algorithms and 

network structure used to achieve these astonishing performances. Important are 

two types of outputs.

Left: different output neurons represent different actions.

Right: an additional output neuron represents the value of the present state; we 

can loosely define the value as the probability to win.

The input is a representation of the present state of the game.

Details will become clear toward the end of the semester; at the moment the aim 

is just to give you a flavor of the high-level concepts.



1. Deep Reinforcement Learning: games

advance push 

left

actions

value

Aim: Play Pong (Atari game)



Previous slide. 

In the miniproject on RL, you will train a game such as a moon-lander to land 

between the two flag poles, or a car to stay on the street, or a tennis racket to hit 

the ball (pong). Training will be based on reward: successful  behavior will give 

positive rewards. 



Quiz: Rewards in Reinforcement Learning 

[ ] Reinforcement learning is based on rewards

[ ] Reinforcement learning aims at optimal action choices

[ ] In chess, the player gets an external reward after every move

[ ] In table tennis, the player gets a reward when he makes a point

[ ] A dog can learn to do tricks if you give it rewards at appropriate 

moments

[x]

[x]

[ ]

[x]

[x]



Previous slide. 



1. Learning by Reward: Reinforcement Learning

2. Elements of Reinforcement Learning

Artificial Neural Networks: RL1

Reinforcement Learning and SARSA



Previous slide.

We now start with the formalization of reinforcement learning 



2. Elements of Reinforcement Learning:

-states 

-actions

-rewards 



Previous slide. 

Reinforcement learning needs states, actions, and rewards.



2. Elements of Reinforcement Learning:

- discrete states 

- discrete actions 

- sparse rewards



Previous slide.

Note that, for standard formulations of Reinforcement Learning Theories this 

(normally)  implies discretizing space and actions.

We will study continuous-space formulations only next week. 



2. Elements of Reinforcement Learning:

- discrete states: 

old state

new state 

𝑠

𝑠′

- Mean rewards for transitions:
𝑅𝑠→𝑠′

𝑎

- current state: 𝑠𝑡

- current reward: 𝑟𝑡

𝑠 𝑠′

often most transitions have zero reward

- discrete actions: 𝑎

a



Previous slide.

The elementary step is:

The agent starts in state s.

It takes action a

It arrives in a new state s’

Potentially receiving reward r (during the transition or upon arrival at s’).

Since rewards are stochastic we have to distinguish the mean reward at the 

transition (capital R with indices identifying the transition) from the actual reward 

(lower-case r with index t) that is received at time t on a transition.

Note that in many practical situations most transitions or states have zero 

rewards, except a single ‘goal’ state at the end. 



2. States Reinforcement Learning:

- discrete states: 

old state

new state 

𝑠

𝑠′

- current state: 𝑠𝑡

𝑠 𝑠′

state = current configuration/well-defined situation 

= generalized ‘location’ of actor in environment

a



Previous slide.

What are these discrete states?

Loosely speaking a state is the current configuration that uniquely describes the 

momentary situation. We can think of the   generalized ‘location’ of the actor in the 

environment

To get acquainted with this, let us look at an example.



reward if tip above line

From Book:

Sutton and Barto

2. Reinforcement Learning: Example Acrobot

States?

 discretize!

Suppose 5 states per dimension,

How many states in total?

[ ] 5

[ ] 25

[ ] 125

[ ] 625

3 actions:        = no torque, 

= torque +1 at elbow,  

= torque -1 at elbow

a1
a2

a3

5x5x5x5=625



Previous slide. 

The aim of the acrobat is to move the tip above the blue line. To achieve this 

torque can be applied at the ‘elbow’ link. The second link is the ‘shoulder’.

There are three possible actions.

But what are the states? How many states do we have?



From Book:

Sutton and Barto

2. Reinforcement Learning: Example Acrobot

1st episode: long sequence of random actions

400th episode: short sequence of ‘smart’ actions



Previous slide.

An episode finishes if the target is reached. Over time episodes get shorter and 

shorter indicating that the acrobat has discovered (via reinforcement learning) a 

smart sequence of actions so as to reach the target (i.e., move the tip above the 

reference line)



From Book:

Sutton and Barto

2. Reinforcement Learning: Example Acrobot

after 400 episodes



Previous slide. 

One example of an action sequence, after learning, is shown.



2. Reinforcement Learning: Example backgammon

From Book:

Sutton and Barto

Game position =

discrete states!

Suppose 2 pieces  per player,

How many states in total?

[ ] 100<n<500

[ ] 500<n<5000

[ ] 5 000<n<50 000

[ ] n>50 000

30000<24x24x23x23<24x24x24x24<35000



Previous slide. 

Backgammon game. There are 24 fields on the board. Players have several 

pieces. Pieces are protected if there are two of the same color on the same field.

To make it simply, we now consider that both players have two pieces each left.

How many  different states are there in total?



2. Elements of Reinforcement Learning: Summary

- discrete actions: 

- Mean reward for transition:

𝑅𝑠→𝑠′
𝑎 = 𝐸 𝑟 𝑠, 𝑎, 𝑠 ,

𝑎

- current actual reward: 𝑟𝑡

𝑠 𝑠′

often most transitions have zero reward

There can be MANY states

Often need to discretize first

( next week we try to model in continuum)     

𝑎



Previous slide. 

Conclusion: In all practical situations, there is an enormous number of states.

In many situations we can think of the actions as discrete. For the moment we 

also think of the states as discrete (but next week we will go to continuous state 

space) 



1. Learning by Reward: Reinforcement Learning

2. Elements of Reinforcement Learning

3. One-step horizon (bandit problems)

Artificial Neural Networks: RL1

Reinforcement Learning and SARSA



Previous slide. 

We start with the simplest discrete example: the game is over and reward is given 

after a single step.



coins

buttons

Slot Machine

1-armed bandid

action=button press

2. One-step horizon games (bandit)



Previous slide. 

The standard example is a one-armed bandit, or slot machine: you have to 

choose between a few actions, and once you have pressed the button you can 

just wait and see whether you get reward or not.



2. One-step horizon games 𝑠

𝑠′

a1 a2 a3

Blackboard1:

Q-valuesQ-value:

Expected reward for

action a starting from s Q(s,a1)

Q(s,a)



Previous slide. 

One of the most central notion in reinforcement learning is the Q-value. 

Q(s,a) has two indices: you start in state s and take action a.

The Q-value Q(s,a) is (an estimate of) the mean expected reward that you will get 

if you take action a starting from state s.



2. One-step horizon games Blackboard1:

Q-values



Your notes. 



2. One-step horizon games: Q-value

𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑃𝑠→𝑠"
𝑎3

𝑠"

𝑅𝑠→𝑠′
𝑎 = 𝐸 𝑟 𝑠′, 𝑎, 𝑠

Q-value

Expected reward for

action a starting from s

Q(s,a)

Q(s,a3)Q(s,a1) Q(s,a2)

Reminder:

Now we know the Q-values: which action should you choose?

𝑄 𝑠, 𝑎 = 𝐸 𝑟 𝑠, 𝑎

Similarly:



Previous slide. 

is the probability that you end up in a specific state s’ if you take action 

a1 in state s. 

We refer to this sometimes as the ‘branching ratio’ below the ‘actions’.

Q(s,a)   is attached to the branches linking the state s with the actions.

actions are indicated by green boxes; states are indicated by black circles.

The mean reward 𝑅𝑠→𝑠′
𝑎 is defined as the expected reward given that you start in 

state s with action a and end up in state s’ (see Blackboard 1).

Given the branching ratio and the mean rewards, it is easy to calculate the Q-

values (Blackboard 1).

𝑃𝑠→𝑠′
𝑎1



2. Optimal policy (greedy)

take action a* with

Q(s,a*)  ≥ Q(s,aj)

other actions

𝑠

𝑠′

a1 a2 a3

Q(s,a3)Q(s,a1) Q(s,a2)

a*= argmaxa [Q(s,a)]

optimal action:

Suppose all Q-values are known: 

Optimal policy is also called ‘greedy policy’

=6 =2 =5



Previous slide. 

And once you have the Q-values it is easy to choose the optimal action:

Just take the one with maximal Q-value.



2. One-step horizon games

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

 take action with highest Q-value

BUT: we normally do not know the Q-values

 estimate by trial and error

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

Q(s,a3)



Previous slide. 

The only remaining problem is that we do not know the Q-values, because the 

casino gives you neither the branching ratio nor the reward scheme.

Hence the only way to find out is by trial and error (that is, by playing many times 

– the casino will love this!).



Exercise 1 now (preparation)

𝑠

𝑠′

a1 a2 a3
𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

𝑃𝑠→𝑠′
𝑎1

Expected reward 𝑄 𝑠, 𝑎1

Show that empirical averaging over k trials gives an update rule

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]

𝑟𝑡

h



10 min, now!Exercise 1 now (in class)



Blackboard2:

Exercise 1



Your notes. 



2. One-step horizon: summary

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

 take action with highest Q-value

If Q-value not known: 

 estimate  𝑄 by trial and error

 update with rule

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]h

Let learning rate h decrease over time 



Previous slide. 

Let us distinguish the ESTIMATE  𝑄 𝑠, 𝑎 from the real Q-value 𝑄(𝑠, 𝑎)

The update rule can be interpreted as follows: 

if the actual reward is larger than (my estimate of) the expected reward, then I 

should increase (a little bit) my expectations. 

The learning rate h : 

In the example, we found a rather specific scheme for how to reduce the learning 

rate over time. But many other schemes also work in practice. For example you 

keep h constant for a block of time, and then you decrease it for the next block. 

The exact value of h is not relevant, as discussed in the following theorem. 

Important is that h is small at the end of learning so as to limit the amount of 

fluctuations.



2. Convergence in Expectation

After taking action a in state s, we update with

(i) If (1) converges in expectation, then  𝑄 𝑠, 𝑎 fluctuates 

around,

(2) 

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

h

(ii) If the learning rate h decreases, 

fluctuations around 𝐸[ 𝑄 𝑠, 𝑎 ] decrease.  

Blackboard3:

Proof of (i).

𝐸  𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎 = 𝑄(𝑠, 𝑎)

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]              (1)              



Your notes. 



1. Learning by Reward: Reinforcement Learning

2. Elements of Reinforcement Learning

3. Exploration vs Exploitation

Artificial Neural Networks: RL1

Reinforcement Learning and SARSA



Previous slide.

To estimate the Q-values you have to play all the different actions several times. 

However, if you know the Q-values you should only play the best action. 



Problem:  correct Q values not known

(since reward probabilities and

branching probabilities unknown)

Exploration versus exploitation                            

Take action which looks 

optimal, so as to 

maximize reward

Explore so as to

estimate reward 

probababities

3. Exploration – Exploitation dilemma 𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

Ideal: take action with maximal 𝑄 𝑠, 𝑎



Previous slide.

Since Q-values are not known, you are always in the situation of an exploration-

exploitation dilemma. 

Note: All estimates of Q will be empirical estimates. To simplify, I write for the 

empirical estimate Q(s,a) without the hat.



Exercise 2.a - 2.c: Exploration-Exploitation

a1 a2

s

s’

s=state

a2 action

s’=new state

Q(s,a1)

2.c Calculate for both actions the expected reward Q(s,a)= 

'

''

s

a
ss

a
ss RP

rt=1

2.a Assume that you initialize all Q values with zero; set      =0.2 (constant)

Trial 1: you choose action a1, you get rt=1

Trial 2: you choose action a2, you get rt=0.4

2.b Trial 3 – 5: continue ‘greedy’ (assume that you do not get rewards), update 𝑄

rt=0.4rt=0

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]h

h

𝑃𝑠→𝑠′
𝑎1 =0.25 𝑃𝑠→𝑠∗

𝑎2 =0.75

𝑠∗

rt=1    actual reward

𝑠0



Exercise 2.a and  2.c now: Exploration-Exploitation 6 min, 
Get started now!

∆𝑄 𝑠, 𝑎 = 0. 2 [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]

Assume actual reward r =0 in trials 3-5

Update rule in a and b is

h=0.2  is a constant



Blackboard4:

Exercise 2a-2c



Your comments. 



a1 a2

s

s’

Q(s,a1)

a
ssR '<r> =

Q(s,a2)

greedy strategy:

- take action a* which looks best

Q(s,a*)>Q(s,aj)

Problem: correct Q values not known

3. Exploration and Exploitation

ATTENTION:

with ‘greedy’ you may get

stuck with a sub-optimal strategy



Previous slide.

If you know the correct Q-values, the best choice would be to choose the action 

with maximal Q-value (called ‘greedy’ action).  But since you don’t know the Q-

values it is risky to choose the greedy action because you may get stuck with a 

suboptimal  choice.



a1 a2

s

s’

Q(s,a1)

a
ssR '<r> =

Q(s,a2)

greedy strategy:

- take action a* which looks best

Q(s,a*)>Q(s,aj)

Problem: correct Q values not known

-greedy strategy:

- take action a* which looks best

with prob



=1P

Optimistic greedy:

initialize with Q values that are too big

Softmax strategy: take action a’ 

with prob exp[ ( ')]
( ')

exp[ ( )]
a

Q a
P a

Q a




=



3. Exploration and Exploitation: practical approach

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]h



Previous slide.

Softer versions of greedy allow you to choose occasionally an action which looks 

suboptimal, but which allows you to further explore the Q-values of other options.

Epsilon-greedy and softmax are examples following this idea. 

Note that ‘softmax’ is a function that one also  encounters in multiclass tasks with 

1-hot coding (see course of ‘machine learning’; also later lecture on deep 

learning)

A radically different approach is optimistic greedy. If you initialize all Q-values at 

the same value, but clearly too high (compared to maximal reward that you can 

get in the scheme), then the Q-value of action a1 decreases initially each time 

you play a1, which in turn favors other actions that you have not yet played.



a1 a10

s

s’

R1 R10

3. Exploration and Exploitation: practical approach

Example: 10-armed bandit

with fluctuating reward

in each action, actual rewards

fluctuate around a mean

Rk= 𝑅𝑠→𝑠′
𝑎𝑘

Epsilon-greedy: simulation

Optimal action

=0.1
=0.01
=0

average reward

book: Sutton and Barto



Previous slide. 

Computer simulation of a situation where actual rewards r fluctuate around the 

mean reward R. There are 10 different actions a1, …, a10 each with a different 

mean reward R1, …, R10.

There exist two different ways to evaluate the performance.

Top: what is the average reward that you get by playing epsilon-greedy?

Bottom: what is the  fraction of times that you play the optimal action, by playing 

epsilon-greedy.

Three different values of epsilon are used. 



Sutton and Barto, ch. 2

3. Exploration and Exploitation: practical approach

Epsilon-greedy, combined with iterative update of Q-values



Previous slide.

This is the style of pseudo-code that we will see a lot over the next few weeks. It 

is taken from the book of Sutton and Barto (MIT Press, 2018). 

N(a) is a counter of how many times the agent has taken action a.

In this specific example the learning rate eta is the inverse of the count N(a) (see 

earlier exercise); but in the more general setting we would remove the counter 

and just use some heuristic reduction scheme for eta.



3. Quiz: Exploration – Exploitation dilemma 

[ ] With a greedy policy the agent uses the best possible action

[ ] Using an epsilon-greedy method with epsilon = 0.1 

means that, even after convergence of Q-values,

in at least 10 percent of cases a suboptimal action is chosen.

[ ] If the rewards in the system are between 0 and 1 and Q-values

are initialized with Q=2, then each action is played at least 

5 times before exploitation starts.

We use an iterative method and update Q-values with eta=0.1

[ ]

[x]

[x]



Previous slide. 



3. Quiz: Exploration – Exploitation dilemma 

[ ] if we use softmax with beta = 10,  then, after 100 steps,

action 2 is chosen almost always 

[ ] if we use softmax with beta = 0.1, then, after 100 steps 

action 2 is taken about twice as often as action 1.

All Q values are initialized with the same value Q=0.1

Rewards in the system are r =0.5 for action 1 (always)

and r=1.0 for action 2  (always)

Softmax strategy: take action a’ 

with prob exp[ ( ')]
( ')

exp[ ( )]
a

Q a
P a

Q a




=


[no], with beta=0.1, exp(beta*Q)=1+…

both action chosen with about the same prob.

We use an iterative method and update Q-values with eta=0.1

[yes], since beta[Q(a2)-Q(a1)]=5



Your notes. 



Teaching monitoring – monitoring of understanding 

[ ] today, up to here, at least 60% of material was new to me.

[ ] up to here, I have the feeling that I have been able to follow

(at least) 80% of the lecture. 



Remark.

1. As an EPFL teacher, my aim is to teach such that 80 percent of the students in 

the classroom are able to follow at least 80 percent of the lecture.

Sometimes I succeed, sometimes I don’t.  

2. Since most courses in the master are optional, overlap is sometimes 

unavoidable. However, my aim as an EPFL teacher is to still present in each 

lecture 60 percent of material that is new to 60 percent of the students.

If part of a lecture is novel for less than 20 percent of the students, I am happy to 

remove that material from the in-class presentation (it could still stay in the notes).



1. Learning by Reward: Reinforcement Learning

2. Elements of Reinforcement Learning

3. Exploration vs Exploitation

4. Bellman equation

Artificial Neural Networks: RL1

Reinforcement Learning and SARSA



Previous slide.

So far our Q-values were limited to situations with a 1-step horizon. Now we will 

get more general. 



4. Multistep horizon
𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

a1 a2 a3

Q(s,a3)𝜋 𝑠, 𝑎Policy

Examples of policy:

-epsilon-greedy

-softmax

𝑃𝑠→𝑠′
𝑎

probability to choose 

action a in state s

Stochasticity 

probability to end in state s’
taking action a in state s

𝜋 𝑠, 𝑎1

1= 𝑎′𝜋 𝑠, 𝑎′

𝜋 𝑠′, 𝑎3

𝑃𝑠→𝑠′
𝑎1

𝑃𝑠′→𝑠"
𝑎3



Previous slide.

After a first action that leads to state s’ starting from state s , the agent can now 

take a second action starting from s’.

Note that there are two different types of branching ratio:

describes the probability that the agent uses action a1 when it is in 

state s – based on the agent’s policy (such as epsilon-greedy)

describes as before the probability that the agent arrives in state s’ 

given that it chooses action a1 in state s.

As before we are interested in the expected reward. The Q value Q(s,a) describes 

the total accumulated reward the agent can get starting in state s with action a.

Next slide: rewards that are n steps away are discounted with a factor 𝛾𝒏

𝑃𝑠→𝑠′
𝑎1

𝜋 𝑠, 𝑎1



4. Total expected (discounted) reward
𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝑄 𝑠, 𝑎1

Q(s,a)  =

Starting in state s with action a

=  𝑟𝑡 + 𝛾 𝑟𝑡+1+  𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3  +⋯

Discount factor: 𝛾 <1
-important for recurrent networks!

-avoids blow-up of summation

-gives less weight to reward in far future

= 𝐸[𝑟𝑡 + 𝛾 𝑟𝑡+1+  𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3 + … |𝑠, 𝑎)]



Previous slide.

Angular brackets denote expectation.

Red-font lower-case r indicates the reward collected over multiple time steps in 

one episode, starting in state s with action a.

Expectation means that we have to take the average over all possible future 

paths giving each path its correct probabilistic weight.



4. Bellman equation
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

Blackboard5:

Bellman eq.



Space for calculations. 



4. Bellman equation with policy p
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  







=





'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ p
Q(s,a1)

Q(s’,a’)
Bellman equation =

value consistency of 

neighboring states

Remark:

Sometimes Bellman equation is written

for greedy policy: 𝜋 𝑠, 𝑎 = δ𝑎,𝑎∗

𝑎∗ = argmax
𝑎′

𝑄(𝑠, 𝑎′)with action 



Previous slide. 

The Bellman equation relates the Q-value for state s and action a with the Q-

values of the neighboring states. 

Note that the two different types of branching ratio both enter the equation.

Bottom: in the case of a greedy policy, the Bellman equation simplifies



4. Bellman equation (for optimal actions)
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  







=





'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ p
Q(s,a1)

Q(s’,a’)

for greedy policy: 

𝜋 𝑠, 𝑎 = δ𝑎,𝑎∗

𝑎∗ = argmax
𝑎′

𝑄(𝑠, 𝑎′)with action 

𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠′→𝑠"
𝑎 [ 𝑅𝑠′→𝑠"

𝑎 +𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′𝑎′)]



Previous slide.

For a greedy policy, the sum over actions disappears from the Bellman equation 

and is replaced by the max-sign. 



4. Quiz: Bellman equation with policy p
𝑠

𝑠′

a a2 a3

𝑃𝑠→𝑠′
𝑎

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  







=





'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ p
Q(s,a)

Q(s’,a’)
[ ] The Bellman equation is linear

in the variables Q(s’a’)

[ ] The set of variables Q(s’,a’) that solve

the Bellman equation is unique and 

does not depend on the policy 

[ ]

[ ]



Your comments. 



1. Learning by Reward: Reinforcement Learning

2. Elements of Reinforcement Learning

3. Exploration vs Exploitation

4. Bellman equation

5. SARSA algorithm

Artificial Neural Networks: RL1

Reinforcement Learning and SARSA



Previous slide.

We not turn to the first practical algorithm, called SARSA. 



a1 a2

s

s’

Q(s,a1)

a
ssR '<r> =

Q(s,a2)

3. Iterative update of Q-values

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]h

Solution: iterative update 

while playing with policy 𝜋 𝑠, 𝑎

Problem:  Q-values not given 

𝑟𝑡



Previous slide.

Reminder: for the 1-step horizon scenario we found that we could calculate the Q-

values iteratively. We increase the Q-value by a small amount (with learning rate 

eta>0) if the reward observed at time t is larger than our current estimate of Q.

And we decrease the Q-value by a small amount if the reward observed at time t 

is smaller than our current estimate of Q.

Iterative updates with one data point at a time are also called ‘online algorithms’. 

Thus our update rule is an online algorithm for the estimation of Q-values.



a1 a2

s

s’

Q(s,a1)

a
ssR '<r> =

Q(s,a2)

5. Iterative update of Q-values for multistep environments

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]   h

Solution: iterative update 

while playing with policy 𝜋 𝑠, 𝑎

Problem:  Q-values not given 

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

Q(s,a1)

Q(s’,a’)

?∆  𝑄 𝑠, 𝑎 =

𝑟𝑡



Previous slide.

The question  now is: can we have a similar iterative update scheme also for the 

multi-step horizon?



Blackboard6:

SARSA update

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

Q(s,a1)

Q(s’,a’)



Your notes. 



5. Iterative update of Q-values for multistep environments

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾  𝑄 𝑠′, 𝑎′ −  𝑄 𝑠, 𝑎 ]h

Solution: iterative update 

while playing with policy 𝜋 𝑠, 𝑎

Problem:  

- Q-values not given

- branching probabilities not given

- reward probabilities not given 

𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

Q(s,a1)

Q(s’,a’)

Bellman equation:

  







=





'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ p

a1 a2 a3

𝑟𝑡



Previous slide. 

Even for the case of the multi-step horizon, we can estimate the Q-values by an 

interative update: 

The Q-values Q(s,a) is increase by a small amount if the sum of  (reward 

observed at time t plus discounted Q-value in the next step)  is larger than our 

current estimate of Q(s,a).

This iterative update gives rise to an online algorithm.

NOTE: in the following we always work with empirical estimates, and drop the 

‘hat’ of the variable Q. 



5. SARSA vs. Bellman equation
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  







=





'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ p
Q(s,a1)

Q(s’,a’)

Bellman equation 

= consistency of Q-values 

across neighboring states

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]h

SARSA update rule 

= make Q-values of neighboring states

more consistent



Previous slide.

The Bellman equation summarizes the consistency condition: 

The (average) rewards must explain the difference between Q(s,a) and Q(s’,a’) 

averaged over all s’ and a’.

The iterative update state that Q(s,a) needs to be adapted so  the current reward 

explains the difference between Q(s,a) and Q(s’,a’).



5. SARSA algorithm
𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

a1 a2 a3

Q(s,a1)

Q(s’,a’)

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]

1) being in state s

choose action a

[according to policy              ]

2) Observe reward r 

and next state s’

3) Choose action a’ in state s’

[according to policy ]

4) Update with SARSA update rule

5) set: s  s’;   a  a’

6)  Goto 1)

Initialise Q values

Start from initial state s

𝑟𝑡

Stop when all Q-values have converged

𝜋 𝑠, 𝑎

𝜋 𝑠, 𝑎



Previous slide.

The update rule gives immediately rise to an online algorithm. You play the game. 

While you run through one of the episodes you observe the state s, choose action 

a, observe reward r, observe next state s’ and choose next action a’. At this point 

in time (and not earlier) you have all the information to update the Q-value Q(s,a).

The name SARSA comes from this sequence state-action-reward-state-action. 



Update of Q values  in SARSA

policy for action choice:

),(maxarg* asQa a
a

t =

Exercise 4 (preparation)

Pick most often action

Q(s1,a1)

r=1

Q(s’,a1)

a1
a2

s1

a1
a2

s’

a1

goal

r=0

r=0

goal

Consider a linear sequence

of states. Reward only at goal.

Actions are up or down.

a)Initialise Q values at 0. Start at top. 

How do Q values develop?

b)Q values after 2 complete trials?

DQ(s,a)=h  [r-(Q(s,a)-Q(s’,a’))]



Exercise 4: SARSA for Linear Track. Exercise 4 now (10min)



Your calculations. 



Your calculations. 



5. Convergence in expectation of SARSA: theorem
𝑠

𝑠′

a

𝑠"

a’

a1 a2 a3

Q(s,a)

Q(s’,a’)

𝑟𝑡

∆𝑄 𝑠, 𝑎 = 0

IF all Q-values have converged in expectation

THEN

The set of Q-values solves the Bellman eq.

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]h

Assumption:

The SARSA algo has been applied

for a very long time, using updates

  







=





'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ p

𝑃𝑠→𝑠′
𝑎

p(s’,a’)



Previous slide.

Similar to the case of the 1-step horizon, we will show now for the multi-step 

horizon that the iterative update rule SARSA makes the estimated Q-values 

converge to the correct ones, i.e., the one predicted by the self-consistent solution 

of the Bellman equation 



5. Convergence in expectation of SARSA: theorem

Blackboard7:

SARSA convergence

Look at graph to take expectations: 

- if algo in state s, all remaining expectations are “given s”

- if algo on a branch (s,a), all remaining exp. are “given s and a”



Your notes. 



5. SARSA algorithm

[ ] in SARSA, updates are applied after each move.

[ ] in SARSA, the agent updates the Q-value Q(s(t),a(t))

related to the current state s(t)

[ ] in SARSA, the agent updates the Q-value Q(s(t-1),a(t-1))

related to the previous state, when it is in state s(t)

[ ] in SARSA, the agent moves in the environment 

using the policy

[ ] SARSA is an online algorithm

We have initialized SARSA and played for n>2 steps. 

Is the following true for the next steps?  

𝜋 𝑠, 𝑎

[x]

[  ]

[x]

[x]

[x]



Your comments. 



- Reinforcement Learning is learning by rewards

 world is full of rewards (but not full of labels)

- Agents and actions

 agent learns by interacting with the environment

 state s, action a, reward r
- Exploration vs Exploitation

 optimal actions are easy if we know reward probabilities

 since we don’t know the probabilities we need to explore

- Bellman equation

 self-consistency condition for Q-values

- SARSA algorithm: state-action-reward-state-action 

 update while exploring environment with current policy 

Reinforcement Learning and SARSA

Learning outcome and conclusions:



Your comments. 

The END



Teaching monitoring – monitoring of understanding 

[ ] today, in the second part, at least 60% of material 

was new to me.

[ ] in the second part, I have the feeling that I have been able

to follow (at least) 80% of the lecture. 


