
Artificial Neural Networks (Gerstner). Solutions for week 2

Reinforcement Learning: Q-value and SARSA

Exercise 1. Iterative update

We consider an empirical evaluation of Q(s, a) by averaging the rewards for action a over the first k
trials:

Qk =
1

k

k∑
i=1

ri.

We now include an additional trial and average over all k + 1 trials.

a. Show that this procedure leads to an iterative update rule of the form

∆Qk = η(rk −Qk−1),

(assuming Q0 = 0).

b. What is the value of η?

c. Give an intuitive explanation of the update rule. Hint: Think of the following: If the actual
reward is larger than my estimate, then I should ...

Solution:

a. We define ∆Qk as the difference between Qk and Qk−1, and we simplify:

∆Qk = Qk −Qk−1 =
1

k

k∑
i=1

ri −
1

k − 1

k∑
i=1

ri

=
1

k

(
rk +

k−1∑
i=1

ri

)
− 1

k − 1

k−1∑
i=1

ri

=
1

k

(
rk +

k − 1

k − 1

k−1∑
i=1

ri −
k

k − 1

k−1∑
i=1

ri

)

=
1

k

(
rk −

1

k − 1

k−1∑
i=1

ri

)
= η (rk −Qk−1) .

b. η = 1/k.

c. If the actual reward is larger than my estimate, then I should increase my estimate, otherwise I
should decrease it.

Exercise 2. Greedy policy and the two-armed bandit

In the “2-armed bandit” problem, one has to choose one of 2 actions. Assume action a1 yields a
reward of r = 1 with probability p = 0.25 and 0 otherwise. If you take action a2, you will receive a
reward of r = 0.4 with probability p = 0.75 and 0 otherwise. The “2-armed bandit” game is played
several times and Q values are updated using the update rule ∆Q(s, a) = η[rt −Q(s, a)].

a. Assume that you initialize all Q values at zero. You first try both actions: in trial 1 you choose
a1 and get r = 1; in trial 2 you choose a2 and get r = 0.4. Update your Q values (η = 0.2).



b. In trials 3 to 5, you play greedy and always choose the action which looks best (i.e., has the
highest Q-value). Which action has the higher Q-value after trial 5? (Assume that the actual
reward is r = 0 in trials 3-5.)

c. Calculate the expected reward for both actions. Which one is the best?

d. Initialize both Q-values at 2 (optimistic). Assume that, as in the first part, in the first two trials
you get for both actions the reward. Update your Q values once with η = 0.2. Suppose now that
in the following rounds, in order to explore well, you choose actions a1 and a2 alternatingly and
update the Q-values with a very small learning rate (η = 0.001). How many rounds (one round
= two trials = one trial with each action) does it take on average, until the maximal Q-value
also reflects the best action?
Hint: For η � 1 we can approximate the actual returns rt with their expectations E[r].

Solution:

a. In the beginning, Q(a1, t = 0) = Q(a2, t = 0) = 0 (we dropped the state index s since there is
only a single state). After choosing action a1 and receiving a reward of r = 1, its Q-value is
updated to:

Q(a1, t = 1) = Q(a1, t = 0) + ∆Q(a1) = 0 + η(r −Q(a1, t = 0)) = 0 + 0.2 · 1 = 0.2.

After choosing action a2 and receiving a reward of r = 0.4, its Q-value is updated to:

Q(a2, t = 2) = Q(a2, t = 0) + ∆Q(a2) = 0 + η(r −Q(a2, t = 0)) = 0 + 0.2 · 0.4 = 0.08.

Continuing with a greedy method implies that in the next round, action a1 will be chosen.

b. In trial 3 you take action a1. If the return is 0,

Q(a1, t = 3) = Q(a1, t = 2) + η(r −Q(a1, t = 2)) = (1− η) ·Q(a1, t = 2) + ηr = 0.8 · 0.2 = 0.16 .

Thus, in trial 4 we take again action a1. If the return is again 0,

Q(a1, t = 4) = (1− η) ·Q(a1, t = 3) = 0.8 · 0.16 = 0.128 .

In trial 5 we take again action a1. If the return is again 0,

Q(a1, t = 5) = (1− η) ·Q(a1, t = 4) = 0.8 · 0.128 = 0.1024 .

Thus, with a greedy policy, also in trial 6 action a1 will be taken. If by chance some of the returns
were 1 instead of 0, Q(a1, t = 5) would be even higher, while Q(a2, t = 5) = Q(a2, t = 2) = 0.08
because action a2 was never taken.

c. For action a1, the expected reward per round is given by E[r1] = p · 1 + (1− p) · 0 = 0.25. For
action a2, the expected reward per round is evaluated to E[r2] = 0.75 · 0.4 + 0.25 · 0 = 0.3. The
second action yields a higher reward on average.

d. Similarly as in a, we can compute the Q-values after the first step with η = 0.2. We obtain:
Q∗(a1) = 1.8 and Q∗(a2) = 1.68. We use the hint that for η � 1 we can approximate the actual
returns rt with their expectations E[r], i.e.

Q(ai, t) = (1− η)Q(ai, t− 1) + ηrt (1)

≈ (1− η)Q(ai, t− 1) + ηE[r] (2)

= (1− η) [(1− η)Q(ai, t− 2) + ηE[r]] + ηE[r] (3)



Figure 1: A tree–like environment.

s

a1 a2

s'

Q
(s
,a
 )1

Q
(s

,a
 )2

a1 a2

s''

Q
(s
,a
 )1

Q
(s

,a
 )2

'

'

''

a1 a2

s'''

Q
(s
,a
 )

Q
(s

, a
 ) 2

''

'''

goal

1

R = 1

R =
 0

R =
 0

R =
 0

R =
 0

R =
 0

Figure 2: A linear maze.

We continue by induction and arrive at

(1− η) [(1− η)Q(ai, t− 2) + ηE[r]] + ηE[r] = η
t−1∑
s=0

(1− η)sE[r] + (1− η)tQ(ai, 0) (4)

= η
1− (1− η)t

η
E[r] + (1− η)tQ(ai, 0) (5)

= (1− γt)E[r] + γtQ(ai, 0), (6)

with γ = 1− η and using the formula for the geometric series. We search for the smallest t such
that

Q(a2, t) > Q(a1, t) (7)

(1− γt)E[r2] + γtQ∗(a2) > (1− γt)E[r1] + γtQ∗(a1) (8)

⇒ γt (Q∗(a2)−Q∗(a1)− E[r2] + E[r1]) > E[r1]− E[r2] (9)

⇒ t log(γ) > log

(
E[r2]− E[r1]

Q∗(a2)−Q∗(a1) + E[r1]− E[r2]

)
(10)

⇒ t > 1223.16 (11)

Exercise 3. SARSA algorithm

In the lecture, we introduced the SARSA (state-action-reward-state-action) algorithm, which (for
discount factor γ = 1) is defined by the update rule

∆Q(s, a) = η
[
r −

(
Q(s, a)−Q(s′, a′)

)]
, (12)

where s′ and a′ are the state and action subsequent to s and a. In this exercise, we apply a greedy
policy, i.e., at each time step, the action chosen is the one with maximal expected reward, i.e.,

a∗t = arg max
a

Qa(s, a) . (13)

If the available actions have the same Q-value, we take both actions with probability 0.5.

Consider a rat navigating in a 1-armed maze (=linear track). The rat is initially placed at the upper
end of the maze (state s), with a food reward at the other end. This can be modeled as a one-
dimensional sequence of states with a unique reward (r = 1) as the goal is reached. For each state, the



possible actions are going up or going down (Fig. 2). When the goal is reached, the trial is over, and
the rat is picked up by the experimentalist and placed back in the initial position s and the exploration
starts again.

a. Suppose we discretize the linear track by 6 states, s1, . . . , s6 where s1 is the initial state and s6 is
the goal state. Initialize all the Q-values at zero. How do the Q-values develop as the rat walks
down the maze in the first trial?

b. Calculate the Q-values after 3 complete trials. How many Q-values are non-zero? How many
trials do we need so that information about the reward has arrived in the state just ‘below’ the
starting state?

c. What happens to the learning speed if the number of states increases from 6 to 12? How many
Q-values are non-zero after 3 trials? How many trial do we need so that information about the
reward has arrived in the state just ‘below’ the starting state?

Solution:

a. In the first trial, since all Q’s are zero, the term (Q(s, a)−Q(s′, a′)) is always zero. Learning
only occurs when there is a reward ie, the first time action a1 is taken from state s5. The learning
is then

∆Q(s5, a1) = η [r − (Q(s5, a1)−Q(s6, a2))] = η , (14)

so that now all Q are zero except for Q(s5, a1) = η.

b. In the second trial, the first time ∆Q(s, a) is not zero is when the agent takes action a1 from
state s4, and we have

∆Q(s4, a1) = η [r − (Q(s4, a1)−Q(s5, a1))] = η(0− (0− η)) = η2 . (15)

Next, from state s5, the agent chooses the action with the highest Q value, a1, and the weight
update is

∆Q(s5, a1) = η [r − (Q(s5, a1)−Q(s6, a2))] = η(1− (η − 0)) = η − η2 . (16)

So at the end of the second trial, the non-zero Qs are:

Q(s4, a1) = η2 and Q(s5, a1) = 2η − η2 .

In the third trial, the first Q update happens for Q(s3, a1)

∆Q(s3, a1) = η [r − (Q(s3, a1)−Q(s4, a1))] = η(0− (0− η2)) = η3 . (17)

The subsequent updates are

∆Q(s4, a1) = η [r − (Q(s4, a1)−Q(s5, a1))] = η(0− (η2 − 2η + η2)) = 2(η2 − η3)
∆Q(s5, a1) = η [r − (Q(s5, a1)−Q(s6, a2))] = η(1− (2η − η2 − 0)) = η − 2η2 + η3 .

So after three trials, the Qs are:

Q(s3, a1) = η3 , Q(s4, a1) = 3η2 − 2η3 and Q(s5, a1) = 3η − 3η2 + η3 .

Note that terms for all the Qs converge towards 1 (the reward after). The higher η is, the faster
the convergence, with convergence in 1 step in the extreme case η = 1.

We need one more trial until Q(s2, a1) becomes non-zero, i.e. in total 4 trials.



c. Also with 12 states only 3 Q-values are non-zero after 3 trials. It takes 10 trials until the reward
has arrived just ‘below’ the starting state.

Exercise 4. Bellman equation

Use the Bellman equation to calculate Q(s, a1) and Q(s, a2) for the scenario shown in Figure 1.
Consider two different policies:

• Total exploration: All actions are chosen with equal probability.

• Greedy exploitation: The agent always chooses the best action.

Note that the rewards/next states are stochastic for the actions a1′, a2′ and a3′. Assume that the
probabilities for the outcome of these actions are all equal, and the discount factor γ is 1.

Solution:

Total exploration: Start by computing the state-action values for states s′1 and s′2:

Q(s′1, a
′
1) =

1

2
(1 + 2) =

3

2
,

Q(s′1, a
′
2) =

1

2
(1 + 2) =

3

2
,

Q(s′2, a
′
2) =

1

2
(1 + 2) =

3

2
and

Q(s′2, a
′
3) =

1

2
(0 + 6) = 3.

We can now compute the state-action values for state s:

Q(s, a1) = 1 +
1

2
(Q(s′1, a

′
1) +Q(s′1, a

′
2)) =

5

2
and

Q(s, a2) = 0 +
1

2
(Q(s′2, a

′
2) +Q(s′2, a

′
3)) =

9

4
.

Greedy exploitation: In that case, the state-action values for the s′1 and s′2 are unchanged, but
those for s reflect the fact that we now take the best action:

Q(s, a1) = 1 +Q(s′1, a
′
1) =

5

2
and

Q(s, a2) = 0 +Q(s′2, a
′
3) = 3 .

Notice that now the “best” action in state s is a2, whereas it was a1 for the total exploration policy.

Exercise 5. 3-step SARSA algorithm

In class we have discussed the SARSA algorithm (for discount factor γ ≤ 1) and shown that, after
convergence, the resulting Q-values solve (in expectation) the Bellman equation for neighboring states.
Your friend claims that a 3-step SARSA for

∆Q(st, at) = η
[
rt + γrt+1 + γ2rt+2 + γ3Q(st+3, at+3)−Q(st, at)

]
, (18)

should work just as well.

To simplify the analysis, we assume that the environment has no loops (i.e., the graph is directed) so
that we can consider γ = 1.

a. Assume that the 3-step SARSA algorithm converges in expectation. Proceed as during the
lecture to show that 〈∆Q(st, at)〉 = 0 implies



Q(st, at) =
∑
s′

patst→s′

[
Rat

st→s′ +
∑
a′

π(s′, a′)B1(s
′, a′)

]

where

B1(s
′, a′) =

∑
s′′

pa
′

s′→s′′

[
Ra′

s′→s′′ +
∑
a′′

π(s′′, a′′)B2(s
′′, a′′)

]

B2(s
′′, a′′) =

∑
s′′′

pa
′′

s′′→s′′′

[
Ra′′

s′′→s′′′ +
∑
a′′′

π(s′′′, a′′′)Q(s′′′, a′′′)

]

b. Show the equivalence of the previous equation to the 1-step Bellman equation.

Solution:

a. 〈∆Q(st, at)〉 = 0 implies

Q(st, at) =
∑
s′

patst→s′R
at
st→s′ + 〈γrt+1 + γ2rt+2 + γ3Q(st+3, at+3)〉st+1=s′ (19)

=
∑
s′

patst→s′

(
Rat

st→s′ + γ
∑
a′

π(s′, a′)

(∑
s′′

pa
′

s′→s′′R
a′
s′→s′′ + 〈γrt+2 + γ2Q(st+3, at+3)〉st+2=s′′

))
(20)

where we used the fact that the probability of action a′ given state s′ is determined by the policy
π(s′, a′). Continuing along the same lines we find the claimed result.

b. If we expand the 1-step Bellman equation by iteratively inserting the right-hand-side of the
Bellman equation, we arrive at the 3 equations in a.


