Wulfram Gerstner

Artificial Neural Networks: Lecture BL2 - ... suierionc
Variants of TD-learning methods and continuous space

Objectives for today:

- TD learning refers to a whole class of algorithms

- There are many Variations of SARSA

- All set up to iteratively solve the Bellman equation

- Eligibility traces and n-step Q-learning to extend over time
- Continuous space and ANN models

- Models of actions and models of value

Reading for this week:

Sutton and Barto, Reinforcement Learning
(MIT Press, 2"d edition 2018, also online)

Chapter: 5.1-5.4 and 6.1-6.3 and 6.5-6.6, and 7.1-7.2 and 9.3

Background reading:
Temporal Difference Learning and TD-Gammon
by Gerald Tesauro (1995) pdf online

1. Review: Deep reinforcement learning

Chess Artificial neural network
R Y LT LY (AlphaZero) discovers different
?%i{f ﬁ'l“%lj ,;‘
E @f%;’% 2 strategies by playing against itself.
sl W W
B, -
eBAn KK In Go, it beats Lee Sedol
| af?éﬁ? -E-Jf %% : ;

il. y
T 4) i
il :-T‘: ‘-:“I
ik IALP : \
. WY 02:00:
15 15 HEE) ety g

~ {6: AlphaGo Lee Sedol

1. Review: Deep reinforcement learning

Network for choosing action

action;
Advance king

outpute I &+ + 1 »
5 QDO
R

RO
0’ - ‘r

\

INnput

=) O
i g ® ©

Today:

How can we set-up such a network?
What Is the error function?
How can we optimize weights?

(previous slide)
The basic idea of Reinforcement Learning (RL) was introduced In a previous

lecture. Today we make a first step to link RL to artificial neural networks.

Training In networks Is via an error-function — so what is the error function for RL?
And how can we optimize the weights?

1. Review: Branching probabilities and polic

Policy (s, a) (s, ay

probability to choose
action a In state s

1=>,,m(s,a’)

Examples of policy:
-epsilon-greedy
-softmax

Stochasticity P2

probabllity to end In state s’
taking action a In state s

1. Review Total expected (discounted) rewara

Starting In state s with action a

Q(s,a) =

2 3
<7”t TYTig1T VT2 T Y rt+3+”’>

Discount factor: y <1

-Important Is graph of states Is recurrent !
-avolds blow-up of summation

-gives less weight to reward In far future

(previous slides)

We need from previous lectures that RL works with states and actions that allow
probabilistic transitions between the states.

An important quantity Is the Q-value which represents the expectation of the
accumulated reward (discounted with a factor gamma smaller than one).

1. Review: Beliman equation

@ Z Psa—>s'

Bellman equation =

value consistency of
neighboring states

R +7 Q2 7(s, a’
a’ _

(previous slide)

The Q-value Q(s,a) further up in the graph is the expected total discounted reward
— summed over all possible future actions and states.

It can be decomposed in an average over the iImmediate rewards, actions, and
states, and the Q-values Q(s’,a’) of all possible next states.

The Bellman equation can therefore be interpreted as summarizing the
consistency between the Q-values In state s, and the Q-values in neighboring
states s'.

The difference between Q(s,a) and Q(s’,a’) must be explained by the immediate
reward.

We will exploit and extend the notion of consistency several times In the lecture
today.

1. Review: SARSA algorithm

Initialise Q values
Start from Initial state s

1) being In state s
choose action a
[according to policy (s, a)]
2) Observe reward r
and next state S’
3) Choose action a’in state s’
[according to policy 7(s,a)]
4) Update with SARSA update rule

AQ(s,a) =M [+vQ(s,a) — Q(s,a)]

b)set:s < s, a< a
6) Goto 1)

Stop when all Q-values have converged

(previous slide)
The SARSA update In step 4 implements the idea that the immediate reward must
account for the difference in Q-values between neighboring states.

(previous slide)
The backup diagram describes how many states and actions the algorithm has to
keep in memory so as to enable the next update step.

1. Review: SARSA algorithm and Backup Diagram

Sarsa (on-policy TD control) for estimating @ = g,

L}
4

Repeat (for each episode):

Initialize S

Choose A from S using policy derived from @ (e.g., e-greedy)

Repeat (for each step of episode): _
Take action A, observe R, S’ In algo: 7 Is called R
Choose A’ from S’ using policy derived from Q (e.g., e-greedy)
Q(S,A)+ Q(S,A) + « [E’. +vQ(S", A") — Q(S, A}]
S« S8 A A

until S 1s terminal

Initialize Q(s,a), for all s € 8, a € A(s), arbitrarily, and Q(terminal-state,-) = 0

T action

(f State

e action pick next action a’ before you update
Sarsa Sutton and Barto, Ch. 6.4

(previous slide)

In SARSA, we can update Q(s,a), once we have seen the next state s’ and the
next action a'. In other words, the current action is a’ and we had to keep the most
recent state s’ and the earlier action a in memory.

Note: one could argue that you also need to keep the earlier state s In memory
because you update Q(s,a) and not Q(a); therefore you need to know s! -- But
Sutton and Barto use a slightly different convention and that is the one we follow
here.

The backup diagrams play a role in the following for the analysis of other
algorithms.

Wulfram Gerstner

Artificial Neural Networks: Lecture BL2 - ... suierionc
Variants of TD-learning methods and continuous space

1. Review and introduction of BackUp diagrams
2. Variations of SARSA

(previous slide)
SARSA is one example of a whole family of algorithms that all look very similar.

2. Expected SARSA

Expected SARSA for estimating Q ~ ¢

Initialize Q(s,a), for all s € 8§, a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., e-greedy)
Repeat (for each step of episode):

Take action A, observe R, S’
Choose A’ from S’ using policy deriuee) (e.o.. e-oreedv)

Q(S,A)«— Q(S,A) + ol R 1
S« 8§ A« A
until S 1s terminal

In algo: 7; Is called R

action I
state
action R

Expected Sarsa Sutton and Barto, Ch. 6.6

(previous slide)

The first variant is ‘Expected SARSA..

In standard SARSA, we pick the next action a’ and actually take it, before the
updata of Q(s,a) Is done.

In expected SARSA we do not yet take the next action but average over all
possible next action with a weight given by the policy .

2. Bellman equation

Q(s,a) = Z P .| R: .+ yz 7(s’,a")Q(s’,a’)

Bellman equation =

value consistency of
neighboring states

Remark:

Sometimes Bellman eqguation 1s written

for greedy policy:
with action

(previous slide)

The next variant is Q-learning.

Q-learning uses not an average with the current policy, but performs the averaging
with the best policy, i.e., the greedy policy.

The idea Is that you run a policy that includes exploration. However, since you
know that after learning you will use the greedy policy so as to maximize your
returns, you already update the Q-values according the greedy policy.

2. 0-Learning algorithm

Q-learning (off-policy TD control)

Initialize Q(s,a), for all s € §,a € A(s), arbitrarily, and Q(terminal-state,-) = 0

L]
L

Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)

Take action A, observe R, S’ In algo: 7; is called R
Q(S, A) «— Q(S. A) + a[R + ﬁ —Q(S. A)]
S+ 5

until 5 1s terminal

action I

state -max operation

. ® o ©
action Q-learning

Sutton and Barto, Ch. 6.5

(previous slide)
Q-learning is called ‘off-policy’ because you update as if you used a greedy policy

whereas during learning you are really running a different policy: it Is as If you
turn-off the current policy during the update.

In Q-learning the update step Is such that the current reward should explain the

difference between Q(s,a) and the maximum Q(s’,a’) running over all possible
actions a'. It is a TD algorithm (Temporal Difference), because neighboring states

are visited one after the other. Hence neighbors are one time step away.

It does not play a role which action a’ you actually choose (according the your
current policy). The max-operation iIs indicated In the back-up diagram by the little

alcC.

2. SARSA and related algorithms

[action SARSA: you actual perform next action,
state C? and then you update Q(s,a)

e action

Sarsa

I action Exp. SARSA: you look ahead and average
state /P\ over potential next actions to update Q(s,a)
J &N actions and then you update Q(s,a)

Expected Sarsa

I action Q-learning: you look ahead and imagine
state greedy next action to update Q(s,a)
/EB\ best (but you perform the actual next action

¢ o0 based on your current policy)

Q)-learning action

(previous slide)
Summary of the three variations of SARSA and their back-up diagrams.

Wulfram Gerstner

Artificial Neural Networks: Lecture BL2 - ... suierionc
Variants of TD-learning methods and continuous space

1. Review

2. Variations of SARSA
3. TD — learning (Temporal Difference)

(previous slide)
We now explore other Temporal Difference algorithms

J. TD-learning

Temporal Difference

Q(81 a) — Z Psa—>s'

‘bootstrap’: summary
of previous Information

N T
R, +7) (s, a)Q(s',a)

Bellman equation = value consistency of
neighboring states O C

Nelghboring states = neighboring time steps E K

(previous slide)

1) As mentioned before:

If the agent runs through the state-action graph, neighboring states are one time
step away from each other. This explains the term "Temporal Difference (TD)’

2) As mentioned before:

The Q-value Q(s,a) further up in the graph iIs the expected total discounted reward
— summed over all possible future actions and states.

It can be decomposed in an average over the immediate rewards, actions, and
states, and the Q-values Q(s’,a’) of all possible next states. Since calculation of
Q(s,a) relies on (earlier) calculation of Q(s’,a’), Sutton and Barto call this a
‘bootstrap’ algorithm.

Value V(s) of a state s
= total (discounted) expected reward the agent
gets starting from state s

V(s) = 2 (s, 2)0(s, @)

a

Bellman equation for V(s)

V(S) — 2 TI,'(S, a) z PSa_)S/[Rg_)S/ +)/V(S’)]
S’

a

(previous slide)

Instead of working with Q-values, we can work with V-values that describe the
value of a state (as opposed to the value of a state-action pair).

While each Q-value Is associated with a state-action pair, V-values are the value
of a state: V-values are defined as the expected total discounted reward that the
agent will collect under policy = starting at that state.

The value of a state V(s) Is the average over the Q-values Q(s,a) averaged over
all possible actions that start from that state. The correct weighting factor for

averaging Is given by the policy n(s,a).
V(s) =) n(s,@)Qs,a)

a

The resulting Bellman equation for V-values looks similar to that of Q-values,
except that the location of the summation signs has been shifted.

J. Standard TD-learning

Tabular TD(0) for estimating v,

Input: the policy = to be evaluated
Initialize V' (s) arbitrarily (e.g., V(s) = 0, for all s € 8T)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
A + action given by 7w for S
Take action A, observe R, S’
V(S)+ V(S)+ &[R + vV (8") — V(S)]
S« 5

until S is terminal

r+ IS called R

State O
action ®

State O

AV(s) =N [re +yV(s) =V(s)]

(previous slide)
The iterative update for V-values Is analogous to that of Q-values, but the back-up

diagram looks different. Once the agent is in the next state s’, you can update the

value V(s).
The resulting update rule iIs called TD learning.

Quiz: TD methods in Reinforcement Learning

SARSA s a TD method

expected SARSA s a TD method
Q-learning is a TD method

TD learning Is an on-policy TD method

Q-learning 1s an on-policy TD method

[]
[]
[]
H
[] SARSA Is an on-policy TD method

(previous slide)
This quiz applies a few definitions to a few algorithms.

3. TD-learning as hootstrap estimation
Q(s,a) = Z P | R: .+ yz 7(s’,a")Q(s’,a’)

Bellman equation = value consistency of
neighboring states

Nelghboring states = neighboring time steps

Temporal Difference Methods (TD methods)
- explore graph over time
- compare values (Q-values or V-values)
at neighboring time steps
- ‘bootstrap’ estimation of values
- update after next time step, based on ‘temporal difference’

(previous slide)
Summary — add your own comments. All terms should be clear by now.

Wulfram Gerstner

Artificial Neural Networks: Lecture BL2 - ... suierionc
Variants of TD-learning methods and continuous space

1. Review

2. Variations of SARSA
3. TD — learning (Temporal Difference)
4. Monte-Carlo methods

(previous slide)
Instead of using TD methods, the same state-action graph can also be explored
with Monte-Carlo methods

4. Monte-Garlo Estimation

play a trial (episode) until the end; (s

then update, using
the total accumulated
reward (='Return’) =

2 3
e TY Tt VoTiaoT V7 Tiys

I action

end of trial

(previous slide)
1) Suppose you want to estimate the value V(s) of state s.
V(s) Is the EXPECTED total discounted reward.

To estimate V(s) you start in state s, run until the end and evaluate for this single
episode the return

Return (s) =1, + Y 1ot V21t y3 1piq

This Is a single episode. If you start several times in s, you get a Monte-Carlo
estimate of V(s).

2) You can be smart and you the SAME episode also to estimate the value V(s’) of
other states s'. Thus while you move along the graph, you open an estimation
variable for each of the states that you visit.

Combining points 1) and 2) give the following algorithm.

4. Monte-Garlo Estimation of V-values

— 2 3
Return(s)= 1, +y 1o b yor ot v? 1y

First-visit MC prediction, for estimating V

Initialize:
m +— policy to be evaluated
V' <« an arbitrary state-value function
Returns(s) + an empty list, for all s € 8

Repeat forever:
(Generate an episode using
[FDI' each state s appearing 1n the episode:]
(< the return that follows the first occurrence of s
Append G to Returns(s)
V(s) + average(Returns(s))

I action

4)
single episode starting In state sO also allows to| end of trial

_update V(s) of children states

/

(previous slide)
In this (version of the) algorithm you first open estimators for all states.

For each state s that you encounter, you observe the (discounted) rewards that
you accumulate until the end of the episode. The total accumulated discounted

reward starting from s is the ‘Return(s)

After many episode you estimate the V-values V(s) as the average over the
Returns(s).

Note that the above estimations are done in parallel for all states s that you
encounter on your path.

Also note that the Backup diagram Is much deeper than that of Q-learning, since
you always continue until the end of the trial before you can update Q-values of
state-action pairs that have been encountered many steps before.

4. Monte-Carlo Estimation of Q-values (hatch)
Start at a random state-action pair (s,a) (exploring starts)

Return(s,a) = r, +y 1o+ Yoris,+ y3 riaa+...
action

Monte Carlo ES (Exploring Starts),

Initialize, for all s € 8, a € A(s):
Q(s,a) < arbitrary state
m(s) + arbitrary
Returns(s,a) <+ empty list .

{ action

Repeat forever:

Choose Sy € § and Ag .t. all pairs have probability > 0

(Generate an episode starting from Sy, Ag, following
For each pair s, a appearing in the episode:
(+ + the return that follows the first occurrence of s, a I aCthn

Append G to Returns(s, a)

(s, a) + average(Returns(s,a))
For each s 1n the episode:

m(s) + argmax, Q(s, a)

Q(s,a) = average[Return(s,a)| end of trial
Note: single episode also allows to update Q(s’a’) of children

(previous slide)

The Monte-Carlo estimation of Q-values is completely analogous to that of V-
values, except that you need to provide estimates for all state-action pairs.

We call this a Monte-Carlo Batch algorithm because at the end of several
episodes you calculate the estimated Q-Values.

Note: Standard Q-learning or standard SARSA Is an online algorithm since you

make updates after every step of every episode (except the first 2 steps until you
have filled up the back-up memory).

Oh, so many, many variants

Question:
We have three variants to estimate Q-values:
1) Q-learning (online, like In SARSA, but max operator)

2) Q-learning (batch) =bootstrap=Dyn. Programming
3) Monte-Carlo (Batch)

We have played N trials.
How do the three algorithms rank?

Which one Is best? =2 commitment:
write down 1 or 2 or 3

(previous slide)
There are many variants of algorithms — but which one Is the best?

In both batch algorithms you have to play several episodes before you do the
update. The Bellman equation approach uses the idea of ‘bootstrapping’ whereas
Monte-Carlo does not. The Bellman equation can be used by dynamic
programming: starting from the bottom leaves of the graph (end of episodes).

Q-learning or SARSA also use ‘bootstrapping’ since they update Q-values based
on other Q-values. Q-learning has the max-operation, whereas SARSA is ‘on-
policy’. Both Q-learning and SARSA are Online

To find out which one Is best, consider the following example.

4. Monte-Garlo versus TD methods (Exercise 1, preparation}

Not discounted. 10 example episodes:
s,a2—2> r=0.2,s’,a4-> r=0
s,a3—2 r=1

s ,a4—-> r=0

s ,a3—2 r=1

s,al 2 r=0

s ,a4—-> r=0

s ,a4-> r=0.5

s ,a3—2 r=1

s,a2—2> r=0.2,s',a4-> r=0.5
10 s,al 2 r=0

Batch update of Q(s,a) after all 10 trials:
() Monte-Carlo: average over total accumulated reward for given (a,s)
() Q-learning batch (with oo =1/number of examples) = Dynamic Prog.

OCXNTHWNR

(previous slide)

Batch mode means that we update after having played all 10 trials (as opposed to
normal Q-learning where you update while you run through each trial). Take the
learning rate inversely proportional to the number of examples FOR THIS state-

action pair.

Tip: For batch Q-learning start from the bottom of the graph.
Notes: set the discount factor y to one; initialize Q-values with zero.

Space for your calculations.

Exercise 1 a and b (c and d at home!)

example trials:
1: s,a2-> r=0.2s" a4-> r=0

Exercise 1a and 1b, now: 10 min

2. 5,23 r=1 Monte Carlo batch mode:

. 23 update once after 10 trials

5. s,al =2 r=0

6: s’,ad4—-> r=0 _

7. s,ad> =05 ad gl Q-learning batch:

8: s .a3> r=1 n=0-5£%0 %‘1 g f 10 trial

9. s,a2-> =025 ad-> =05 . update once arter trials

10.s,a1 = r=0 use learning rate n =1/N(s,a)
The aim is to estimate Q-values on the graph as shown in the figure on top. We run 10 N(S,a):number examples fOr
exploration trials with the rewards as indicated in the figure. Some trials start in state s State_action pair (S,a)

others in state s'.
Return
1
a. Use Monte-Carlo in batch version to calculate the cumulative expected reward R(s, {1}‘
by averaging along all trials that start at s, a (discount factor v = 1) for all state-action
pairs.

b. Use Q-learning in batch version (= dynamic programming) to evaluate the estimated
Q-values (s, a) by exploiting the Bellman equation.

Hint: Start at the terminal state and work up backwards.
I
(c, Use QQ-learning in online version to evaluate the estimated Q-values Q)(s, a) AQ (S; Cl) — N [rt Ty maxQ (S y A) _ Q (S; a)]

d. Which of the algorithms performs best on this example? n:OS y:l

Space for your calculations.

4. Monte-Garlo versus TD methods:

Comparison in batch mode: We have observed N episodes,
and update (once) after these N episodes.

Example: 1d random walk 25,
LN S S L e e S BATCH TRAINING
N/ N ;;;t NS / 9
RMS 15
veraged Monte-Carlo
=1 overstates . Ve
. .05 TD o
Conclusion: ' -
" 0
TD Is better than .
Monte Carlo Walks / Episodes

Figure 6.2: Performance of TD(0) and constant-a« MC under batch training on the random walk task.

(previous slide) All episodes start in the center state, C, then proceed either left or
right by one state on each step, with equal probability (random walk). Episodes
terminate either on the extreme left (reward zero) or the extreme right, (reward 1);

all other rewards are zero.

Because we do not discount future rewards, the true value of each state can be
calculated as, from A through E, 1/6; 2/6; 3/6; 4/6; 5/6.

The root-mean-square error (RMS) compares the estimated value with the above

true’ values.
We see that TD performs better than MC In this case.

Sutton and Barto, 2018

4. Monte-Carlo versus TD methods:
TD Is better than Monte Carlo

The averaging step in TD methods (‘bootstrap’) is
more efficient (compared to Monte Carlo methods)
to propagate information back into the graph,

since Information from different starting states Is
combined and compressed In a Q-value or V-value.
->similar to Dynamic programming

(previous slide)
If we go back to the example: in Monte-Carlo methods you only exploit information

of trials that go through the state-action pair (s,a) to evaluate Q(s,a); in TD
methods (or the Bellman equation) you compare Q(s,a) with Q(s’,a’) and all trials
that pass through (s’,a’) contribute to estimate Q(s’,a’) even those that have
started somewhere else and have never passed through (s,a). Hence in the latter
case you exploit more information.

4. Monte-Carlo Estimation of Q-values (on-policy}
Combine epsilon-greedy policy with Monte-Carlo Q-estimates

On-policy first-visit MC control (for e-soft policies),

Initialize, for all s € 8, a € A(s): » action
(Q(s, a) < arbitrary
Returns(s, a) < empty list

m(a|s) < an arbitrary s-soft policy (e-g-; ep3i|0n'greedY) ? State

Repeat forever:
(a) Generate an episode using T ®
(b) For each pair s,a appearing in the episode:

(< the return that follows the first occurrence of s, a
Append G to Returns(s,a)
(s, a) + average(Returns(s,a))
(¢) For each s in the episode:
A" + arg max, (s, a)
For all a € A(s):
l—=s+¢c/|A(s) ifa=A"

action

(with ties broken arbitrarily)

I action

m(als) + { - /1A()] ifa £ A" |
Q(s,a) = average[Return(s,a)] end of trial

Note: single episode also allows to update Q(s’a’) of children

(previous slide)
This algorithm combines Monte-Carlo estimates with an epsilon-greedy policy.

Note for Monte-Carlo estimates, the agent waits until the end of the episode (end
of trial), before it can update the Q-values.

Similar to the earlier Monte-Carlo algorithms, the Q-values of all those state-action
pairs that have been visited Iin that trial are updated (as opposed to an algorithm
where you would only update Q(s0,a0) of the initial state and action.)

Note that this is an on-policy algorithm because the epsilon-greedy policy is
reflected In the final Q-values.

Quiz: Monte Carlo methods

We have a network with 1000 states and 4 action choices
IN each state. There Is a single terminal state.

We do Monte-Carlo estimates of total return to estimate
Q-values Q(s,a).

Our episode starts with (s,a) that i1s 400 steps away from
the terminal state. How many return R(s,a) variables do |
have to open In this episode?

| | one, I.e. the one for the starting configuration (s,a)
|] about 100 to 400

| | about 400 to 4000
[] potentially even more than 4000

[] up to here, | have the feeling that | have been able to follow
(at least) 80% of the lecture.

Wulfram Gerstner

Artificial Neural Networks: Lecture BL2 - ... suierionc
Variants of TD-learning methods and continuous space

1. Review
2. Variations of SARSA
3. TD — learning (Temporal Difference)

4. Monte-Carlo methods
5. Eligibility traces and n-step methods

(previous slide)
So far we have worked with discrete states.

2m -

Exercise from last week: one-dimensional track

lop view Discretize state

goal goal

I
O HHHT

(previous slide)
However, If you think of an animal that walks along a corridor towards a piece of

cheese (reward), then the natural space Is continuous and any discretization IS
arbitrary. Why should we choose 10 states and not 20?

Once we are In the discrete space, the situation is similar to the random walk
example considered earlier, except that here we are interested Iin an agent that
adapts its policy so that it walks as quickly as possible to the reward.

Exercise from last week: one-dimensional track

e Update of Q values in SARSA

AQ(s,a)=m [r +y Q(s’,a’) - Q(s,a)]

@ pPolicy for action choice:
Pick most often action

a, =argmaxQ, (s, a)
d

Linear sequence of states.

Reward only at goal.

Actions are up or down.

Initialise Q values at 0. Start trials at top.

|] After 2 trials the Q-value
Q(sl1,a1)>0

|] After 2 trials the Q-value
Q(s3,a1)>0

N NN N A A B
N
Q
o
2

(previous slide)
Your comments. See also the solution of exercise from last week.

J. Probiem of TD algorithms

Problem:

-‘Flow of information’ back from target is slow

- Information flows 1 step per complete trial (‘episode’)

- 20 trials needed to get information 20 steps away from target

BUT:
- the discretization of states has been an arbitrary choice!!!

- Something Is wrong with the discrete-state SARSA algo

(previous slide)
In the SARSA algorithm and all other TD learning algorithms that we have seen so

far, iInformation about a reward at the target needs several trials before it shows up
In the Q-values (or V-values) that are not close to the target.

In fact, If all Q-values are initialized at zero, it takes 10 trials before the Q-value of
a state that is 10 steps away from the target is updated the first time.

So If we decide to discretize 1m of corridor into 20 states (instead of 10 states),
then it will take 20 trials for the information to arrive at the start.

This Is strange, because the performance of the agent (an animal!) should not
depend on the discretization scheme that we have chosen.

5. Solution 1: Eligibility Traces, SARSA())
0 dea:

() (m=++) - keep memory of previous state-action pairs
(o (hy - memory decays over time
[- update eligibility trace for all state-action pairs

OO @

e(s,a) <« Me(s,a) decay of all traces
O OO O e(s,a) <« e(s,a)+ 1 ifactionachosen in state s
) (P{) <) -update all Q-values at all time steps t:

AQ(,]: [t+ Q t+1,dt+1 -Q t,dt y
Q Q @ s,a)= \r v Q(s 7) -0Q(s a}]]e[sa]
Q%Q & TD error ot

Note: A=0 gives standard SARSA

(previous slide)
Eligibility traces are a first solution to the above problem:

For each state-action pair we Introduce a variable e(s,a), called eligibility trace.
The eligibility trace Is increase by one, if the corresponding state-action pair
occurs. In each time step, all eligibility traces decrease by a factor A <1.

In each time step t, all Q-values Q(s,a) are update proportional to the TD error for

the time step t.
The update Is proportional to the corresponding eligibility trace e(s,a).

Note: In the original SARSA algorithm we have for each state-action pair a
variable Q(s,a). In the new algorithm, we have for each state-action pair two
variables: Q(s,a) and e(s,a). | will sometimes call e(s,a) the ‘'shadow’ variables:
each eligibility trace Is the shadow of the corresponding Q-value.

9. Solution 1: Eligibility Traces

7.9 Sarsa()) Sutton and Barto 1998
First edition

Initialize Q(s, @) arbitrarily
Repeat (for each episode):
Initialize s, @ and set e(s,a)=0 for all actions a and states s
Repeat (for each step of episode):
Take action a, observe r, s’
Choose a’ from s’ using policy derived from Q (e.g., e-greedy)
6 «—r+yQ(s',a) — QO(s, a)
e(s,a) «<—e(s,a) + 1
For all s, a:
Q(s,a) < Q(s,a) + ade(s, a)
e(s,a) < yre(s,a)
s<s:a<«a
until s 1s terminal

Figure 7.11 Tabular Sarsa(2.).

(previous slide)
Note: In some published versions of the algorithm the decay of the eligibility traces
IS the product of y and A, and not just A.

9. Quiz: Eligibility Traces

| | Eligibility traces keep information of past state-action pairs.
| | For each Q-value Q(s,a), the algorithm keeps
one eligibility trace e(s,a), I.e., If we have 200 Q-values
we need 200 eligibility traces

| | Eligibility traces enable Information to travel rapidly
backwards into the graph

[] The update of Q(s,a) is proportional to [rt + yQ(st+1,at+1) - Q(stat)]

[] In each time step all Q-values are updated

(previous slide)
Your comments

J. Probiem of TD algorithms

Problem:

-‘Flow of information’ back from target is slow

- Information flows 1 step per complete trial

- 20 trials needed to get information 20 steps away from target

- First solution: eligibility traces.

(previous slide)
Eligibility traces make the flow of information from the target back into the graph

more rapid. The speed of flow Is now controlled by the decay constant A of the
eligibility trace — therefore we can keep the flow constant even If the discretization

changes by readjusting A.

However, there Is also a second solution, called n-step SARSA.

9. Solution 2: n=step SARSA

Standard SARSA 2-step SARSA
AQ(s,a)=n [r + yQ(s,a’) - Q(s,a)f
AQ(syat)=m [re + y Q(se+1,at+1) - Q(ssar)] AQ(svac)=m [re+ yres1i+ v ¥y Q(st+2,ae+2) - Q(star)]

Temporal Difference (TD) 2-step TD
Asa) —_ Q(ssar) —
Q(s,a’) —| & Q[St+2,at+2] —»_irj” t’:fl
@ Yol @ voal

(previous slide)

Reminder:
SARSA and other standard TD methods compare the reward with neighboring Q-

values.

In two step SARSA, we compare the two-step reward with the difference in Q-
values of next-nearest neighbors.

In other words, the sum of the two rewards between s: and s:+2 must be explained
by the difference between the Q-values Q(s;a:) and (discounted) Q(stzac:2).

The greek symbol ydenotes the discount factor, as before.

1-step Sarsa

- aka Sarsa(0) 2-step Sarsa
action T I
State O
action ®

3-step Sarsa

;

|

Q

y
¢

I

.‘_O*.__.

co-step Sarsa
n-step Sarsa aka Monte Carlo Expected Sarsa

T

O

?

n-step

T action
O State

. action

Y

Cf State
e action

action

state at time t+n

& & Y hext actions
welghted with policy

(previous slide)
The idea of 2-step SARSA can be extended to an arbitrary n-step SARSA.

Interestingly, If the number n of steps equals the total number of steps to the end
of the trial, we are back to standard Monto-Carlo estimation.

Hence, n-step SARSA Is In the middle between normal SARSA and Monte-Carlo
estimation.

n-step Sarsa for estimating () ~ g, or () ~ ¢, for a given =«

Initialize Q(s,a) arbitrarily, for all s € 8,a € A

Initialize 7 to be e-greedy with respect to @), or to a fixed given policy
Parameters: step size a € (0, 1], small € > 0, a positive integer n -
All store and access operations (for S, A;, and R;) can take their index mod n 3_St e p

Repeat (for each episode):
Initialize and store Sy # terminal

Select and store an action Ay ~ 7 (:|Sp)
T + o0 . " =
ot 0L In algo: 7; Is called R+)
If t <T, then:) -
Take action A '
Observe and siore the next reward as R;; 1 and the next state as S;11 Take a tIOn’ Observe —
If S;41 is terminal, then: - next stgte and reward, 5
T'<+—t+1 :
else: choose|next action -
Select and store an action A;1q ~ w(-|S¢r1) J
b= 1 is the ti h timate is bei dated
irszozn (7 is the time whose estimate is being updated) update Of Q(S,a)' B
(1) ¢ — Zgnzii(ﬂ-nff) ~i—T-LR, i - .
@167 45T then G G018, 11041 o) with actions and
Q(Sr, A;) < QS Ar) +a[G — Q(Sy. A,)] ' n -
If 7 is being learned, then ensure that 7(-|S;) is e-greedy wrt @ - state at time t-n
Until 7 =T —1

Sutton and Barto, Ch. 7.2

(previous slide)
The backup graph for three-step SARSA now contains 3 state-action pairs, because

we need to keep more information in memory.
Note that we can update Q(st, at) once we have chosen action dt+3 in state St+3

Lines marked (1), (2), (3).
(1) G isthe reward summed over n steps (with discounts for steps >1)
(2) To this G the Q-value of the nth state is added (unless the episode terminates

before)
(3) The update then happens with this new G as a target and learning rate alpha.

9. Example: 10-step SARSA

Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa

| Y

<4

e

—» ()
—» ()

4

(previous slide).
The graphic suggests that the results of 10-step SARSA are very similar to an

eligibility trace — which Is indeed the case. therefore the two solutions (eligibility
trace and n-step TD learning) are In fact closely related.

We will come back to this issue In lectures 11 and 12 on reinforcement learning.

9. 3caling Problem of TD algorithms

TD algorithms do not scale correctly If
the discretization Is changed

either
-2 Introduce eligibility traces (temporal smoothing)

Oor

-> Switch from 1-step TD to n-step TD
(temporal coarse graining)

Remark: the two methods are mathematically closely related.

(previous slide)

One-step TD algorithms have problems as approximations to continuous states.
There are two solutions, eligibility trades and n-step TD algorithms.

In fact, the two solutions are closely related.

J. Detour: n=step D methods for V-values

1-step TD co-step TD
and TD(0) 2-step TD 3-step TD n-step TD and Monte Carlo
state O O ® O O State
action e ¢ ¢ o ¢ action
state O O O O O state
¢ ¢ o ¢ action
O O <*[> O
¢ o ¢
A .

O :
T action

Sutton and Barto, Ch. 7.1

(previous slide)
Remarks regarding n-step V-value TD methods are completely analogous to those
for Q-values.

J. Detour: n=step D methods for V-values

n-step TD for estimating V = v,

Initialize V' (s) arbitrarily, s € S
Parameters: step size a € (0, 1], a positive integer n
All store and access operations (for S; and R;) can take their index mod n

Repeat (for each episode):
Initialize and store Sy # terminal
I ¢+ o0
Fort =0,1,2,...: _
If t < T, then: In algo: 7; Is called R
Take an action according to m(-|St)
Observe and store the next reward as R¢.1 and the next state as S¢11
It S¢1q is terminal, then 7" <t + 1
T+ t—n+1 (7 isthe time whose state’s estimate is being updated)
If > 0:
G D yimr-ip,

If 7 +n<T, then: G G +~"V(Sson) (Grorin)
“V(S,) V(S +alG @ ’ '
vt =4 Sutton and Barto. Ch. 7.1

(previous slide)
The essential step of the algorithm Is the update in the blue ellipse where G are

the discounted accumulated rewards over n step.

The algorithm looks a bit more complicated because there Is a clever way of
dealing with the summation over the intermediate rewards while the agent moves

along the graph.

Wulfram Gerstner

Artificial Neural Networks: Lecture BL2 - ... suierionc
Variants of TD-learning methods and continuous space

1. Review

2. Variations of SARSA

3. TD — learning (Temporal Difference)
4. Monte-Carlo methods

5. Eligibility traces and n-step methods
6. Modeling the input space

(previous slide)
Continuous Iinput spaces have a second problem: there are many Q-values are V-
values that you need to compute.

6. Problem of TD algorithms: representation of input

All algorithms so far are ‘tabular’:

Q-learning or SARSA:
-> build a table Q(s,a) with entries

for all states s and actions a
T

TD-learning of V-values:
-> build a table V/(s) for all states s

~._ discrete states and

actions

(previous slide)

Two observations:
First, in a table all entries are independent — the only relation between Q-values or

V-values arises from the self-consistency condition of the Bellman equation.
Second, there are many (!) entries.

Probiem of TD algor

- for control problems, input space Is naturally continuous

Moon lander

Alm:

)
D
.
o
-
O
5
=
O
O
(e
C
©

- for discrete games, the input space often too big

18 17 16 15 14 13

19

23 22 21 20

24

W
m
mﬂ& of
e
S £
CRET T

EEEEEEEE

abcds-fgh

(previous slide)
Even in cases where the natural input space Is descrete, such as in games, there
might simply be too many states to keep fill tables with meaningful values.

Schematically (theory will follow):

action;
Advance king

outpute I &+ + 1 »

INnput

L [
&‘ﬁ%*
i]
xﬁ\
\\%\

.
%ﬁ&\
[
.

e O
a5
| % s

5 e e

learning:
- change connections

aim:

- Predict value of position
- Choose next action to win

2¢ output for V-value
for current situation:

Note: alternatively,
action outputs could present

Q-values

(previous slide)
The basic idea that we will explore this week and the following weeks is that the

mapping from the input states to actions; or from the input states to value
functions can be represented by a model with parameters, typically a neural

network with adjustable weights.

Example: Mountain Car

action: al =right
al = left

for action al for action a2

(previous slide)

In the mountain car task, the input space Is two dimensionals: the position x and
the speed.

Suppose both dimensions are discretized into 3 values. The Q-values therefore
have 9 entries for action al (force to the left) and 9 further entries for action a2
(force to the right).

Example: Mountain Car

action: al =right
al = left

for action al for action a2

(previous slide)

Instead of considering 9 separate table entries of Q-values Q(s,al) for action al,
we can also think of a smooth function on the two-dimensional input space that
represents Q(s,al) as a function of s.

Similarly, Q(s,a2) Is a smooth function of s, but for action aZ2.

A first advantage Is, that the question of discretization of the input space has now
disappeared, since we can model the Q-values as a function of the continuous
state variable s=(x,y).

The question arises how to model such Q-value functions.
One possibility Is to use a combination of basis functions ¢
SO as to describe the Q-value

Q(s,a) = Zj W, D(s—S;)

where the weights between basis function | and action a are denoted by wyj

target
Q(s,a) =r+vyQ(s)a)

(previous slide)
Your notes.

Discrete time stepS' s,aa—>s.,a
Q(s,a) = Z iss| Ress +yZﬂ(S’ a’)Q(s’,a’)

target
Q(sa) =r+yQ(s.a)

Error function (local consistency condition)

target

E(w) = [Tt +yQ(S’, a'[w)- Q(S, a\MQ]

take gradient w.r.t. this w

(previous slide)

During the discussion of the Bellman equation and SARSA, we stated repeatedly
that, If we neglect the discount factor, the difference between Q-values In
neighboring time steps must be explained by the reward.

If we Iinclude the discount factor, the above statement reduces to

Q(sa)=r+yQ(s,a)

Where the equality sign has to be interpreted as ‘should ideally on average be
close to’ and the right hand side is the ‘target of learning’

Therefore we can construct an error function E that measures how close we are to
such an ideal case. The squared error function that implements this ideal is noted
at the bottom of the slide.

Since the ‘target of learning’ should be considered as momentarily fixed, we
optimize the error function by taking the derivative of E with respect to w but
ignore that the target also depends on w. We will explore this further in the next
week and In the applications of Deep RL.

In Class Exercise 5 now: 10 minutes

Exercise 5. Gradient-based learning of Q-values

Assume again that the Q-values are expressed as a weighted sum of 400 basis functions:
Q(s,a) = ;'iﬂl Wt P(s — sx). For the moment the function & is arbitrary, but you may
think of it as a Gaussian function. Note that s and s, are usually vectors in RY in this case.
There are 3 different actions so that the total number of weights is 1200. Now consider the
error function F; = %Jf, where

6 =re+7-Qs',a') — Q(s, a) (3)

is the reward prediction error. Our aim is to optimize @)(s,a) by changing the parameters w.

a. Find a learning rule that minimizes the error function £, by gradient decent. Consider
the case where the actions a and a’ are different.

Write down the learning rule. How many weights need to be updated in each time step?
b. Find a learning rule that minimizes the error function E; by gradient decent. Consider

the case where the actions a and a’ are the same.

Write down the learning rule.

Is there any difference to the case considered in a?

Exercise 6. Consistency condition for 3-step SARSA

In class we have seen the arguments leading to the error function arising from the consistency
condition of)-values.

E=05) [&]

with 6, = r, + vQ(s',a’) — ()(s.a) This specific consistency condition corresponds to 1-step

SARSA.

Write down an analogous consistency condition for 3-step SARSA.

(your calculations)

6. Error function: full gradient and semi-gradient
Discrete time steps: s,a =2 s’,a

target

Ew) == [r. +yQ(S',d'[w)- Q(S, a\w\)]z

take gradient w.r.t. this w

Full gradient: you take the correct derivative with respect to w

Semi-gradient: you take the derivative with respect to w
in Q(S,alw) but you ignore the w-dependence of the target.

(This Is a heuristic trick to stabilize learning)

(previous slide)

In the exercise, the difference between full gradient and semi-gradient becomes
visible if a=a’.

However, the problem that the target needs to be considered as ‘fixed’ to make
learning converge Is a fundamental one that needs to kept in mind for all
applications of deep reinforcement learning or reinforcement learning in

continuous space.

simmary: Many Variations of a few ideas in TD learning

Learning outcomes and Conclusions
- TD —learning (Temporal Difference)

- work with V-values, rather than Q-values
- Variations of SARSA

- off-policy Q-learning (greedy update) Basis of all:

- Monte-Carlo | terative solution of
- n-step Bellman equation .
Bellman equation

- Eligibility traces
- allows rescaling of states, smoothes over time
- similar to n-step SARSA

- Continuous space

-> use neural network to model and generalize

(previous slide)

Today we have seen a large variety of TD algorithms. All of these can be
understood as iterative solutions of the Bellman equation.

The Bellman equation can be formulated with V-values or with Q-values. Bellman
equations normally formulate a self-consistency condition over one step (nearest
neighbors), but can be extended to n steps.

Monte Carlo methods do not exploit the ‘bootstrapping’ aspect of the Bellman
equation since they do not rely on a self-consistency condition.

An n-step SARSA Is somewhere intermediate between normal SARSA and Monte-
Carlo.

Discretization of continuous spaces poses several problems.

The first problem is that a rescaling becomes necessary after a change of
discretization scheme. This problem Is solved by eligibility traces as well as by the
n-step TD methods

The second problem is that a tabular scheme brakes down for fine discretizations.
It Is solved by a neural network where we learn the weights. Such a neural
network enables generalization by forcing a ‘smooth’ V-value or Q-value.

The END

Exercise 6. Consistency condition for 3-step SARSA

In class we have seen the arguments leading to the error function arising from the consistency
condition of ()-values.

E=05) [&]

with 0, = r, + vQ(s",a') — Q(s,a) This specific consistency condition corresponds to 1-step

SARSA.

Write down an analogous consistency condition for 3-step SARSA.

Teaching monitoring — monitoring of understanding

|] today, In the second part, at least 60% of material
was new to me.

[] In the second part, | have the feeling that | have been able
to follow (at least) 80% of the lecture.

