Artificial Neural Networks (Gerstner). Exercises for week 3

Variations of SARSA and continuous space

Exercise 1. Monte-Carlo Batch versus Bootstrap Batch

example trials:

: s,a2~> r=0.2,s",a4-> r=0
s',a3> r=1

s’,a4-> r=0

s',a32> r=1

s,al 2> r=0

s,a4-> r=0

s’,a4-> r=0.5

s,a3=2> r=1

. S,a2-> r=0.2,s',a4-> r=0.5
10.s,al = r=0

CoNOORWOWNME

The aim is to estimate Q-values on the graph as shown in the figure on top. We run 10
exploration trials with the rewards as indicated in the figure. Some trials start in state s
others in state s'.

a. Use Monte-Carlo in batch version to calculate the cumulative expected reward R(s, a)
by averaging along all trials that start at s,a (discount factor v = 1) for all state-action
pairs.

b. Use Q-learning in batch version (= dynamic programming) to evaluate the estimated
Q-values (s, a) by exploiting the Bellman equation.

Hint: Start at the terminal state and work up backwards.
c. Use Q-learning in online version to evaluate the estimated Q-values Q(s, a)

d. Which of the algorithms performs best on this example?

Exercise 2. Q-values for continuous states

We approximate the state-action value function Q(s,a) by a weighted sum of basis functions
(BF):
Q(Sv a) = dejé(s - Sj) s
J

where ®(z) is the BF “shape”, and the s;’s represent the centers of the BF's.

Calculate

dQ(s,a)

dwai

b

the gradient of Q(s,a) along w,; for a specific weight linking the basis function i to the action
a.

Exercise 3. Eligibility traces

In week 2 in exercise 3, we applied the SARSA algorithm to the case of a linear track with
actions 'up’ and 'down’. We found that it takes a long time to propagate the reward information
through state space. The eligibility trace is introduced as a solution to this problem.

Reconsider the linear maze from Fig 2. in exercise 3, but include an eligibility trace: for each
state s and action a, a memory e(s, a) is stored. At each time step, all the memories are reduced
by a factor A: e(s,a) = Ae(s,a), except for the memory corresponding to the current state s*
and action a*, which is incremented:

e(s*,a") = Xe(s*,a") + 1. (1)

Now, unlike the case without eligibility trace, all Q-values are updated at each time step
according to the rule

\V/(S, CI,) AQ(S, Cl) =" [T - (Q(S*v a*) - Q(Sla a/))] 6(57 CL) : (2)
where s*, a* are the current state and action, and s, @’ are the immediately following state and

action.

We want to check whether the information about the reward propagates more rapidly. To find
out, assume that the agent goes straight down in the first trial. In the second trial it uses a
greedy policy. Calculate the Q-values after two complete trials and report the result.

Hint: Reset the eligibility trace to zero at the beginning of each trial.

Exercise 4. Eligibility traces in continuous space
n=4 n==8

= A Q(s,a)
N

X =03 oo \

up down

The left part of the figure above shows a different representation of last week’s “linear track”
exercise: the vertical divisions represent different states, and the two column correspond to
the two possible actions available to the agent: go up or down. Each square represents a
possible state-action combination, and thus a @)-value. (Note that the uppermost “up” action
and the lowermost “down” action should be “greyed out”: they are impossible. But this is
not relevant to the rest of this exercise.)

Suppose now that the agent moves in a continuous 1-dimensional space 0 < x < 1, with the
target located at x = 0. Separate this state space into n equal bins of width Az = 1/n. In
each time step, the agent moves by one bin. Vary the discretization by varying n:
n=4,816...

a. Suppose that one action (such as move down) corresponds to one time step At in 'real
time’. How should we rescale the parameter At, so that the speed v = Az/At remains
constant when we change the discretization?

b. We use an eligibility trace with decay parameter A\. How should we rescale A, in order
that the "speed of information propagation” in SARSA()) remains constant?

Hint: Consider for example, the Q-value at x = 0.5 after 2 complete learning trials.

Exercise 5. Gradient-based learning of Q-values

Assume again that the Q-values are expressed as a weighted sum of 400 basis functions:
Q(s,a) = S0 wh®(s — ;). For the moment the function ® is arbitrary, but you may think
of it as a Gaussian function. Note that s and s, are usually vectors in RY in this case. There
are 3 different actions so that the total number of weights is 1200. Now consider the error
function E, = 167, where

0p=re+7-Q(s',a) — Q(s, a) (3)

is the reward prediction error. Our aim is to optimize Q(s,a) by changing the parameters w.

a. Find a learning rule that minimizes the error function E; by gradient decent. Consider
the case where the actions a and o' are different.

Write down the learning rule. How many weights need to be updated in each time step?
b. Find a learning rule that minimizes the error function E; by gradient decent. Consider
the case where the actions a and @’ are the same.
Write down the learning rule.
Is there any difference to the case considered in a?
c. Suppose that the input space is two-dimensional and you discretize the input in 400 small

square 'boxes’ (i.e., 20 x 20). The basis function ®(s — s;) is now the indicator function:
it has a value equal to one if the current state s is in ‘box’ k and zero otherwise.

How do your results from (a) and (b) look like in this case?
d. The learning rule in c is very similar to standard SARSA. What is the difference?

e. Assume that Q(s',d’) in Equation 3 does not depend on the weights. How does the
learning rule look like for a, b and ¢. How is your result related to standard discrete
SARSA?

Exercise 6. Consistency condition for 3-step SARSA

In class we have seen the arguments leading to the error function arising from the consistency
condition of Q-values.

E=05) [6]

with 0, = r, + vQ(s',a’) — Q(s,a) This specific consistency condition corresponds to 1-step
SARSA.

Write down an analogous consistency condition for 3-step SARSA.

