Artificial Neural Networks (Gerstner). Exercises for week 4

Policy Gradient

Exercise 1. (in Class): Single neuron as an actor

Assume an agent with binary actions $Y \in\{0,1\}$. Action $y=1$ is taken with a probability $\pi(Y=1 \mid \vec{x} ; \vec{w})=g(\vec{w} \cdot \vec{x})$, where \vec{w} are a set of weights and \vec{x} is the input signal that contains the state information. The function g is monotonically increasing and limited by the bounds $0 \leq g \leq 1$.
For each action, the agent receives a reward $R(Y, \vec{x})$.
a. Calculate the gradient of the mean reward $\langle R\rangle=\sum_{Y, \vec{x}} R(Y, \vec{x}) \pi(Y \mid \vec{x} ; \vec{w}) P(\vec{x})$ with respect to the weight w_{j}. Hint: Insert the policy $\pi(Y=1 \mid \vec{x} ; \vec{w})=g\left(\sum_{k} w_{k} x_{k}\right)$ and $\pi(Y=0 \mid \vec{x} ; \vec{w})=1-g\left(\sum_{k} w_{k} x_{k}\right)$. Then take the gradient.
b. The rule derived in (a) is a batch rule. Can you transform this into an 'online rule'?

Hint: Pay attention to the following question: what is the condition that we can simply 'drop the summation signs'?

Exercise 2. Subtracting the mean

You have two stochastic variables, x and y with means $\langle x\rangle$ and $\langle y\rangle$. Angles denote expectations. We are interested in the product $z=(x-b)(y-\langle y\rangle)$ with a fixed parameter b.
a. Show that $\langle z\rangle$ is independent of the choice of the parameter b.
b. Show that $\left\langle z^{2}\right\rangle$ is minimal if $b=\frac{\langle x f(y)\rangle}{\langle f(y)\rangle}$, where $f(y)=(y-\langle y\rangle)^{2}$.

Hint: write $\left\langle z^{2}\right\rangle=F(b)$ and set $d F / d b=0$.
c. What is the optimal b, if x and $f(y)$ are approximately independent?
d. Make the connection to policy gradient rules.

Hint: take $x=r$ (reward) and y the action taken in state s. Compare with the policy gradient formula of the simple 1-neuron actor. What can you conclude for the best value of b ? Consider different states s. Why should b depend on s ?

Exercise 3. Policy gradient

a. Policy gradient for binary actions: Find an online policy gradient rule for the weights \vec{w} for the same setup as in exercise 1 by calculating the gradient of the \log-likelihood $\log \pi(Y \mid \vec{x} ; \vec{w})$ with respect to the weights. Hint: the policy π can be written as $\pi(Y \mid \vec{x} ; \vec{w})=(1-\rho)^{1-Y} \rho^{Y}$ with $\rho=g(\vec{w} \cdot \vec{x})$.
b. Other parameterizations: What happens to the policy gradient rule in exercise 3.a if the likelihood ρ of action 1 is parameterized not by the weights \vec{w} but by other parameters: $\rho=\rho(\theta)$? Derive a learning rule for θ.
c. Generalization to the natural exponential family: The natural exponential family is a family of probability distributions that is widely used in statistics because of its favorable properties. These distributions can be written in the form

$$
\begin{equation*}
p(Y)=h(Y) \exp (\theta Y-A(\theta)) \tag{1}
\end{equation*}
$$

This family includes many of the standard probability distributions. The Bernoulli, the Poisson and the Gaussian distribution (with fixed variance) are all member of this family. A nice property of these distributions is that the mean can easily be calculated from the function $A(\theta)$:

$$
\begin{equation*}
E[Y]=A^{\prime}(\theta) \tag{2}
\end{equation*}
$$

Assume that the policy $\pi(Y \mid \vec{x} ; \theta)$ is an element of the natural exponential family. Show that the online rule for the policy gradient has the shape:

$$
\begin{equation*}
\Delta \theta=R(Y-E[Y]) \tag{3}
\end{equation*}
$$

Can you give an intuitive interpretation of this learning rule?

Exercise 4. Debugging of RL algorithms

You work with an implementation of 2-step SARSA and have doubts whether your algorithm performs correctly.
You have 2 possible actions from each state. You read-out the values after n episodes and find the following values:
$Q(1, a 1)=0, Q(2, a 1)=5 Q(3, a 1)=3 Q(4, a 1)=4 Q(5, a 1)=6 Q(6, a 1)=12 Q(7, a 1)=10 Q(8, a 1)=11$ $Q(9, a 1)=9 \quad Q(10, a 1)=10$
$Q(1, a 2)=1, Q(2, a 2)=1 Q(3, a 2)=3 Q(4, a 2)=2 Q(5, a 2)=1 Q(6, a 2)=4 Q(7, a 2)=2 Q(8, a 2)=6$ $Q(9, a 2)=11 Q(10, a 1)=10$
You run one episode and observe the following sequence (state, action, reward)
$(1, a 2,1)(2, a 2,1)(3, a 1,0)(5, a 1,4)(6, a 1,1)(8, a 2,1)$
What are the updates of 2 -step SARSA that the algorithm should produce?

Exercise 5. Analysis of RL algorithms

Your friend proposes the following algorithm, using the pseudocode convention of Sutton and Barto.

```
Initialize \(Q(s, a)=0 \quad\) for all \(s \in \mathcal{S}, a \in \mathcal{A}\)
Initialize \(\pi\) to be \(\varepsilon\)-greedy
Parameters: step size \(\alpha \in(0,1]\), small \(\varepsilon>0\)
All store and access operations (for \(S_{t}, A_{t}\), and \(R_{t}\) ) can take their index mod 4
Repeat (for each episode):
    Initialize and store \(S_{0} \neq\) terminal
    Select and store an action \(A_{0} \sim \pi\left(\cdot \mid S_{0}\right)\)
    \(T \leftarrow 10000\)
    For \(t=0,1,2, \ldots\) :
        If \(t<T\), then:
            Take action \(A_{t}\)
            Observe and store the next reward as \(R_{t+1}\) and the next state as \(S_{t+1}\)
            If \(S_{t+1}\) is terminal, then:
                    \(T \leftarrow t+1\)
            else:
                Select and store an action \(A_{t+1} \sim \pi\left(\cdot \mid S_{t+1}\right)\)
        \(\tau \leftarrow t-3\)
        If \(\tau>0\) :
            \(X \leftarrow \sum_{i=\tau+1}^{\min (\tau+4, T)} \gamma^{i-\tau-1} R_{i}\)
            If \(\tau+4<T\), then \(X \leftarrow X+\gamma^{4} Q\left(S_{\tau}+4 A_{\tau+4}\right)\)
            \(\left.Q\left(S_{\tau}, A_{\tau}\right) \leftarrow Q\left(S_{\tau}, A_{\tau}\right)+\alpha \mid X-Q\left(S_{\tau}, A_{\tau}\right)\right\rfloor\)
        Until \(\tau=T-1\)
```

a. Is the algorithm On-Policy or Off-Policy?

Answer: \qquad
b. What does the variable X represent?

Answer \qquad
c. Is this algorithm novel, similar to, or equivalent to an existing algorithm?

Answer (fill in/choose)
This algorithm is identical/very similar to .. \qquad
There is no difference to the named algorithm/the main difference is
d. Is this algorithm a TD algorithm? What is the reason for your answer?

Answer: Yes/No, because

