Artificial Neural Networks (Gerstner). Solutions for week 4

Policy Gradient

Exercise 1. (in Class): Single neuron as an actor

Assume an agent with binary actions $Y \in\{0,1\}$. Action $y=1$ is taken with a probability $\pi(Y=1 \mid \vec{x} ; \vec{w})=g(\vec{w} \cdot \vec{x})$, where \vec{w} are a set of weights and \vec{x} is the input signal that contains the state information. The function g is monotonically increasing and limited by the bounds $0 \leq g \leq 1$.
For each action, the agent receives a reward $R(Y, \vec{x})$.
a. Calculate the gradient of the mean reward $\langle R\rangle=\sum_{Y, \vec{x}} R(Y, \vec{x}) \pi(Y \mid \vec{x} ; \vec{w}) P(\vec{x})$ with respect to the weight w_{j}. Hint: Insert the policy $\pi(Y=1 \mid \vec{x} ; \vec{w})=g\left(\sum_{k} w_{k} x_{k}\right)$ and $\pi(Y=0 \mid \vec{x} ; \vec{w})=1-g\left(\sum_{k} w_{k} x_{k}\right)$. Then take the gradient.
b. The rule derived in (a) is a batch rule. Can you transform this into an 'online rule'?

Hint: Pay attention to the following question: what is the condition that we can simply 'drop the summation signs'?

Solution:

a. $\frac{d}{d w_{j}}\langle R\rangle=\sum_{\vec{x}} P(\vec{x})[R(y=1, \vec{x})-R(y=0, \vec{x})] g^{\prime} x_{j}$
b. If the online statistics matches the true statistics of the data in the batch, then we can drop the sumsigns. However, here this is not the case because the two outcomes $y=1$ and $y=0$ do not have equal probabilities. Therefore, the weight-factors in y need to be added. This can be done by the log-likelihood trick explained in class.

Exercise 2. Subtracting the mean

You have two stochastic variables, x and y with means $\langle x\rangle$ and $\langle y\rangle$. Angles denote expectations. We are interested in the product $z=(x-b)(y-\langle y\rangle)$ with a fixed parameter b.
a. Show that $\langle z\rangle$ is independent of the choice of the parameter b.
b. Show that $\left\langle z^{2}\right\rangle$ is minimal if $b=\frac{\langle x f(y)\rangle}{\langle f(y)\rangle}$, where $f(y)=(y-\langle y\rangle)^{2}$.

Hint: write $\left\langle z^{2}\right\rangle=F(b)$ and set $d F / d b=0$.
c. What is the optimal b, if x and $f(y)$ are approximately independent?
d. Make the connection to policy gradient rules.

Hint: take $x=r$ (reward) and y the action taken in state s. Compare with the policy gradient formula of the simple 1-neuron actor. What can you conclude for the best value of b ? Consider different states s. Why should b depend on s ?

Solution:

a.

$$
\begin{align*}
\langle z\rangle & =\langle(x-b)(y-\langle y\rangle)\rangle \tag{1}\\
& =\langle x y\rangle-\langle x\rangle\langle y\rangle-b\langle y\rangle+b\langle y\rangle \tag{2}\\
& =\langle x y\rangle-\langle x\rangle\langle y\rangle \tag{3}
\end{align*}
$$

b.

$$
\begin{align*}
F(b) & =\left\langle(x-b)^{2} f(y)\right\rangle \tag{4}\\
\Rightarrow 0=\frac{d}{d b} F(b) & =-2\langle(x-b) f(y)\rangle \tag{5}\\
\Rightarrow 0 & =\langle x f(y)\rangle-b\langle f(y)\rangle \tag{6}\\
\Rightarrow b & =\frac{\langle x f(y)\rangle}{\langle f(y)\rangle} \tag{7}
\end{align*}
$$

c. If x and $f(y)$ are approximately independent, $\langle x f(y)\rangle \approx\langle x\rangle\langle f(y)\rangle$ and we find $b \approx\langle x\rangle$.
d. If we set $r=x$ and introduce states s as a further stochastic variable, we see that $y-\langle y\rangle$ appears in the derivative of the log-policy (e.g. for a Gaussian policy $\frac{d}{d w} \log \left((1 / \sqrt{2 \pi}) \exp \left(-(y-w s)^{2} / 2\right)\right)=(y-w s) s$ with $w s=\langle y\rangle$; see also next exercise $)$, and thus $(r-b)(y-\langle y\rangle) \propto(r-b) \frac{d}{d w} \log \pi(y \mid s ; w)=\frac{d}{d w} R(y, s)$. Since r and y are now state dependent, the optimal baseline should also be state-dependent.

Exercise 3. Policy gradient

a. Policy gradient for binary actions: Find an online policy gradient rule for the weights \vec{w} for the same setup as in exercise 1 by calculating the gradient of the \log-likelihood $\log \pi(Y \mid \vec{x} ; \vec{w})$ with respect to the weights. Hint: the policy π can be written as $\pi(Y \mid \vec{x} ; \vec{w})=(1-\rho)^{1-Y} \rho^{Y}$ with $\rho=g(\vec{w} \cdot \vec{x})$.
b. Other parameterizations: What happens to the policy gradient rule in exercise 3.a if the likelihood ρ of action 1 is parameterized not by the weights \vec{w} but by other parameters: $\rho=\rho(\theta)$? Derive a learning rule for θ.
c. Generalization to the natural exponential family: The natural exponential family is a family of probability distributions that is widely used in statistics because of its favorable properties. These distributions can be written in the form

$$
\begin{equation*}
p(Y)=h(Y) \exp (\theta Y-A(\theta)) \tag{8}
\end{equation*}
$$

This family includes many of the standard probability distributions. The Bernoulli, the Poisson and the Gaussian distribution (with fixed variance) are all member of this family. A nice property of these distributions is that the mean can easily be calculated from the function $A(\theta)$:

$$
\begin{equation*}
E[Y]=A^{\prime}(\theta) \tag{9}
\end{equation*}
$$

Assume that the policy $\pi(Y \mid \vec{x} ; \theta)$ is an element of the natural exponential family. Show that the online rule for the policy gradient has the shape:

$$
\begin{equation*}
\Delta \theta=R(Y-E[Y]) \tag{10}
\end{equation*}
$$

Can you give an intuitive interpretation of this learning rule?

Solution:

a. Policy gradient for binary actions: Let's first calculate the derivative of $\log \pi(Y \mid \vec{x} ; \vec{w})$ with respect to w_{j}, using the hint:

$$
\begin{aligned}
\frac{d}{d w_{j}} \log \pi(Y \mid \vec{x} ; \vec{w}) & =\frac{1}{\pi(Y \mid \vec{x} ; \vec{w})} \frac{d}{d w_{j}} \pi(Y \mid \vec{x} ; \vec{w}) \\
& =\frac{1}{(1-\rho)^{1-Y} \rho^{Y}} \frac{d}{d w_{j}}\left[(1-\rho)^{1-Y} \rho^{Y}\right] \\
& =\frac{1}{(1-\rho)^{1-Y} \rho^{Y}}\left[-(1-Y)(1-\rho)^{-Y} \rho^{Y}+Y(1-\rho)^{1-Y} \rho^{Y-1}\right] \frac{d}{d w_{j}} \rho \\
& =\left[-\frac{(1-Y)(1-\rho)^{-Y}}{(1-\rho)^{1-Y}}+\frac{Y \rho^{Y-1}}{\rho^{Y}}\right] g^{\prime}(\vec{w} \cdot \vec{x}) x_{j} \\
& =\left[-\frac{(1-Y)}{(1-\rho)}+\frac{Y}{\rho}\right] g^{\prime}(\vec{w} \cdot \vec{x}) x_{j}
\end{aligned}
$$

Now let's consider the term $\frac{d}{d w_{j}}\langle R\rangle$ again. We can write

$$
\begin{aligned}
\frac{d}{d w_{j}}\langle R\rangle & =\sum_{Y, \vec{x}} R(Y, \vec{x}) \frac{d}{d w_{j}} \pi(Y \mid \vec{x} ; \vec{w}) P(\vec{x}) \\
& =\sum_{Y, \vec{x}} R(Y, \vec{x}) \pi(Y \mid \vec{x} ; \vec{w}) \underbrace{\frac{1}{\pi(Y \mid \vec{x} ; \vec{w})} \frac{d}{d w_{j}} \pi(Y \mid \vec{x} ; \vec{w})}_{\frac{d}{d w_{j}} \log \pi(Y \mid \vec{x} ; \vec{w})} P(\vec{x}) \\
& =\left\langle R \frac{d}{d w_{j}}(\log \pi)\right\rangle,
\end{aligned}
$$

where we multiplied by $\pi(\cdot) / \pi(\dot{)}=1$ and identified the derivative of the log. This suggest an online rule with an update term:

$$
\begin{equation*}
\Delta w_{j}=R \frac{d}{d w_{j}} \log \pi(Y \mid \vec{x} ; \vec{w})=R\left[-\frac{(1-Y)}{(1-\rho)}+\frac{Y}{\rho}\right] g^{\prime}(\vec{w} \cdot \vec{x}) x_{j} \tag{11}
\end{equation*}
$$

b. Other parameterizations: Replacing \vec{w} by θ, we can follow the same development as in 3.a. The only difference comes in the expression of $\frac{d \rho}{d \theta}$, for which we don't have an explicit expression anymore. The learning rule is:

$$
\Delta \theta=R\left[-\frac{(1-Y)}{(1-\rho)}+\frac{Y}{\rho}\right] \rho^{\prime}(\theta)
$$

c. Generalization to the natural exponential family: Let's calculate $\frac{d}{d \theta} \log p(Y)$:

$$
\begin{aligned}
\frac{d}{d \theta} \log p(Y) & =\frac{d}{d \theta} \log [h(Y) \exp (\theta Y-A(\theta))] \\
& =\frac{1}{h(Y) \exp (\theta Y-A(\theta))} \cdot h(Y) \exp (\theta Y-A(\theta)) \cdot\left(Y-A^{\prime}(\theta)\right) \\
& =Y-A^{\prime}(\theta)=(Y-E[Y])
\end{aligned}
$$

With that simple expression, the online rule of Eq. (11) becomes:

$$
\begin{equation*}
\Delta \theta=R \frac{d}{d \theta} \log P(y)=R(Y-E[Y]) \tag{12}
\end{equation*}
$$

This learning rule will look for correlation between the reward and the deviations of Y from its expectation value. If R is systematically higher when Y is higher than its expectation value, theta will increase, leading to higher probabilities of higher Y. Inversely, if R is systematically lower when Y is higher than its expectation value, theta will decrease and the probability of lower Y will decrease.

Exercise 4. Debugging of RL algorithms

You work with an implementation of 2-step SARSA and have doubts whether your algorithm performs correctly. You have 2 possible actions from each state. You read-out the values after n episodes and find the following values:

$$
\begin{aligned}
& Q(1, a 1)=0, Q(2, a 1)=5 Q(3, a 1)=3 Q(4, a 1)=4 Q(5, a 1)=6 Q(6, a 1)=12 Q(7, a 1)=10 Q(8, a 1)=11 \\
& Q(9, a 1)=9 Q(10, a 1)=10 \\
& Q(1, a 2)=1, Q(2, a 2)=1 Q(3, a 2)=3 Q(4, a 2)=2 Q(5, a 2)=1 Q(6, a 2)=4 Q(7, a 2)=2 Q(8, a 2)=6 \\
& Q(9, a 2)=11 Q(10, a 1)=10
\end{aligned}
$$

You run one episode and observe the following sequence (state, action, reward)
$(1, a 2,1)(2, a 2,1)(3, a 1,0)(5, a 1,4)(6, a 1,1)(8, a 2,1)$
What are the updates of 2-step SARSA that the algorithm should produce?

Solution:

The update algorithm for 2-step SARSA is

$$
\begin{equation*}
\Delta Q\left(s_{t}, a_{t}\right)=\alpha\left(r_{t+1}+\gamma r_{t+2}+\gamma^{2} Q\left(s_{t+2}, a_{t+2}\right)-Q\left(s_{t}, a_{t}\right)\right) \tag{13}
\end{equation*}
$$

with step size/learning rate α and discount factor γ. As a result, the update for the episode above should be

$$
\begin{aligned}
& \Delta Q(1, a 2)=\alpha\left(1+1 \gamma+3 \gamma^{2}-1\right) \\
& \Delta Q(2, a 2)=\alpha\left(1+0 \gamma+6 \gamma^{2}-1\right) \\
& \Delta Q(3, a 1)=\alpha\left(0+4 \gamma+12 \gamma^{2}-3\right) \\
& \Delta Q(5, a 1)=\alpha\left(4+1 \gamma+6 \gamma^{2}-6\right) \\
& \Delta Q(6, a 1)=\alpha(1+1 \gamma-12) \\
& \Delta Q(8, a 2)=\alpha(1-6)
\end{aligned}
$$

Here, we use the fact that no rewards can be received after the episode ends to truncate the summation. This can be thought of as a special "terminal" state at the end of each episode, that always transitions into itself with reward 0 , and all Q -values equal to 0 .

Exercise 5. Analysis of RL algorithms

Your friend proposes the following algorithm, using the pseudocode convention of Sutton and Barto.

```
Initialize Q(s,a)=0 for all }s\in\mathcal{S},a\in\mathcal{A
```

Initialize π to be ε-greedy
Parameters: step size $\alpha \in(0,1]$, small $\varepsilon>0$
All store and access operations (for S_{t}, A_{t}, and R_{t}) can take their index mod 4
Repeat (for each episode):
Initialize and store $S_{0} \neq$ terminal
Select and store an action $A_{0} \sim \pi\left(\cdot \mid S_{0}\right)$
$T \leftarrow 10000$
For $t=0,1,2, \ldots$:
If $t<T$, then:
Take action A_{t}
Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
If S_{t+1} is terminal, then:
$T \leftarrow t+1$
else:
Select and store an action $A_{t+1} \sim \pi\left(\cdot \mid S_{t+1}\right)$
$\tau \leftarrow t-3$
If $\tau \geq 0$:
$X \leftarrow \sum_{i=\tau+1}^{\min (\tau+4, T)} \gamma^{i-\tau-1} R_{i}$
If $\tau+4<T$, then $X \leftarrow X+\gamma^{4} Q\left(S_{\tau}+4 A_{\tau+4}\right)$
$\left.Q\left(S_{\tau}, A_{\tau}\right) \leftarrow Q\left(S_{\tau}, A_{\tau}\right)+\alpha \mid X-Q\left(S_{\tau}, A_{\tau}\right)\right\rfloor$
Until $\tau=T-1$
a. Is the algorithm On-Policy or Off-Policy?

Answer: \qquad
b. What does the variable X represent?

Answer \qquad
c. Is this algorithm novel, similar to, or equivalent to an existing algorithm?

Answer (fill in/choose)
This algorithm is identical/very similar to . \qquad
There is no difference to the named algorithm/the main difference is
d. Is this algorithm a TD algorithm? What is the reason for your answer?

Answer: Yes/No, because

Solution:

a. Is the algorithm On-Policy or Off-Policy?

The algorithm is On-Policy. In the third-to-last line, the value is bootstrapped using the Q -value estimate $Q\left(s_{t+4}, a_{t+4}\right)$, i.e. the action that was taken in state s_{t+4} according to the agent's actual policy.
b. What does the variable X represent?

The variable X represents the 4 -step truncated discounted returns. That is, X is a sample from the distribution over the returns that the agent can expect from taking action A_{τ} in state S_{τ}; the agent estimates the mean of this distribution with $Q\left(S_{\tau}, A_{\tau}\right)$.
The agent gets this sample using the actual (discounted) rewards observed in the episode over the first 4 steps, plus an estimate of the average discounted returns from step 5 onwards (given by $\gamma^{4} Q\left(S_{\tau+4}, A_{\tau+4}\right)$).
c. Is this algorithm novel, similar to, or equivalent to an existing algorithm?

The algorithm is equivalent to 4 -step SARSA, which itself is very similar to the more commonly used 1 -step SARSA.
d. Is this algorithm a TD algorithm? What is the reason for your answer?

The algorithm is a TD algorithm because it uses bootstrapping (updating estimates from other, later estimates) to estimate the target (the Q -value function).

