Artificial Neural Networks (Gerstner). Solutions for week 4

Policy Gradient

Exercise 1. (in Class): Single neuron as an actor

Assume an agent with binary actions ¥ € {0,1}. Action y =
(Y = 1T, W) = g(W - T), where @ are a set of weights and ¥ is the input signal that contains the state

information. The function g is monotonically increasing and limited by the bounds 0 < g < 1.

For each action, the agent receives a reward R(Y,).

a. Calculate the gradient of the mean reward (R) = >y > R(Y, Z)m (Y2 o) P(Z) wi
Hint: Insert the policy n(Y = 1|#;%) = g(3>_, wrxr) and (Y = 0|Z; @)

the gradient.

b. The rule derived in (a) is a batch rule. Can you transform this into an ‘online rule’?

1 is taken with a probability

ith respect to the weight w;.
1 —g(>, wrxy). Then take

Hint: Pay attention to the following question: what is the condition that we can simply ‘drop the sum-

mation signs’?

Solution:

a. gu-(R) = ; P(@)[R(y =1,7

J

— R(y =0,2)]g'z;

b. If the online statistics matches the true statistics of the data in the batch, then we can drop the sum-
signs. However, here this is not the case because the two outcomes y = 1 and y = 0 do not have equal
probabilities. Therefore, the weight-factors in y need to be added. This can be done by the log-likelihood

trick explained in class.

Exercise 2. Subtracting the mean

You have two stochastic variables, z and y with means (x) and (y).

interested in the product z = (x — b)(y — (y)) with a fixed parameter b.

a. Show that (z) is independent of the choice of the parameter b.

b. Show that (2%) is minimal if b =

) where f(y) = (y — (v)*.

Hint: write (22) = F(b) and set dF'/db = 0

c. What is the optimal b, if and f(y) are approximately independent?

d. Make the connection to policy gradient rules.

Angles denote expectations.

We are

Hint: take x = r (reward) and y the action taken in state s. Compare with the policy gradient formula
of the simple 1-neuron actor. What can you conclude for the best value of b7 Consider different states s.

Why should b depend on s?

Solution:

F(b) = ((z = b)*f(y))
d
= 0= F(b) = =2((z —) /(y))
=0=(zf(y)) — b(f(v))
(zf(y))
(f(y)

=b=

c. If z and f(y) are approximately independent, (zf(y)) =~ (z){f(y)) and we find b =~ (z).

d. If we set 7 = z and introduce states s as a further stochastic variable, we see that y — (y) appears in the
derivative of the log-policy (e.g. for a Gaussian policy -= log ((1/v2r)exp(—(y — ws)?/2)) = (y — ws)s
with ws = (y); see also next exercise), and thus (r — b)(y — (y)) o (r — b)-= log 7(y|s;w) = - R(y,s).
Since r and y are now state dependent, the optimal baseline should also be state dependent.

Exercise 3. Policy gradient

a. Policy gradient for binary actions: Find an online policy gradient rule for the weights for the same
setup as in exercise 1 by calculating the gradient of the log-likelihood log 7(Y|Z; W) with respect to the
weights. Hint: the policy 7 can be written as m(Y|%;w) = (1 — p)'~Y p¥ with p = g(-).

b. Other parameterizations: What happens to the policy gradient rule in exercise 3.a if the likelihood p
of action 1 is parameterized not by the weights & but by other parameters: p = p(6)? Derive a learning
rule for 6.

c. Generalization to the natural exponential family: The natural exponential family is a family
of probability distributions that is widely used in statistics because of its favorable properties. These
distributions can be written in the form

p(Y) = h(Y) exp (9 — A(6)) - (8)

This family includes many of the standard probability distributions. The Bernoulli, the Poisson and
the Gaussian distribution (with fixed variance) are all member of this family. A nice property of these
distributions is that the mean can easily be calculated from the function A(6):

ElY] = A'(0). 9)

Assume that the policy 7(Y|Z;) is an element of the natural exponential family. Show that the online
rule for the policy gradient has the shape:

A0 =R(Y — E[Y)). (10)
Can you give an intuitive interpretation of this learning rule?

Solution:

a. Policy gradient for binary actions: Let’s first calculate the derivative of log (Y |#; &) with respect to
wj, using the hint:

d 1 d
Z Jog n(Y|T5) = ——— —— (Y |75
dw,; 8TV 0) = TR G T 18 0
1 d 1-Y Y
= 1 _p)l—Yprj [(1 p) P]
1 d
= — ~(1-Y)(1-p) +Y(1—p) Yt p
(1_p)1 YpY [] dwj

:{_<1—1wu~—m-y Yo'~

B
el 2531%) (V1) P

1 d
— Y, D) (Y |7 0) ———— — (Y |Z; @) P(Z
;m,m1mmﬂwmwwﬂuw>m

ﬁj log 7 (Y| &;w)

=m£@mm»

where we multiplied by 7(-)/m() = 1 and identified the derivative of the log. This suggest an online rule
with an update term:

1-Y) + Y] g (@ - B)z;. (11)

d
Aw; = R—
g 1-p) »

dw;

log w(Y|Z; @) = R [—

b. Other parameterizations: Replacmg W by 0, we can follow the same development as in 3.a. The only
difference comes in the expression of < %5, for which we don’t have an explicit expression anymore. The
learning rule is:

(1 — Y) Y] /
A0:R[— +—| p'(0).
(I-p) »

c. Generalization to the natural exponential family: Let’s calculate d% logp(Y):
4 logp(Y) = 4 log [h(Y) exp (Y — A(6))]
a0 °8P a0 %8 Xp
1

=) e @7 —A@)) e OY = A@) - (Y = A(0))

=Y - A'(0) = (Y - E[Y)).

With that simple expression, the online rule of Eq. (11) becomes:
d
Al = R@ log P(y) = R(Y — E[Y)). (12)

This learning rule will look for correlation between the reward and the deviations of Y from its expectation
value. If R is systematically higher when Y is higher than its expectation value, theta will increase,
leading to higher probabilities of higher Y. Inversely, if R is systematically lower when Y is higher than
its expectation value, theta will decrease and the probability of lower Y will decrease.

Exercise 4. Debugging of RL algorithms
You work with an implementation of 2-step SARSA and have doubts whether your algorithm performs correctly.

You have 2 possible actions from each state. You read-out the values after n episodes and find the following
values:

Q(1,al) =0, Q(2,al) =5 Q(3,al) = 3 Q(4,al) = 4 Q(5,al) = 6 Q(6,al) = 12 Q(7,al) = 10 Q(8,al) = 11
Q(9,a1) =9 Q(10,al) = 10
Q(1,a2) = 1, Q(2,a2) = 1 Q(3,a2) = 3 Q(4,a2) = 2 Q(5,a2) = 1 Q(6,a2) = 4 Q(7,a2) = 2 Q(8,a2) = 6

Q(9,a2) = 11 Q(10,al) = 10

You run one episode and observe the following sequence (state, action, reward)
(1,a2,1) (2,a2,1) (3,al,0) (5,al,4) (6,al,1) (8,a2,1)

What are the updates of 2-step SARSA that the algorithm should produce?

Solution:

The update algorithm for 2-step SARSA is

AQ(st,at) = a(ris1 + Vrera + V2 Q(S142, ar2) — Q(se, ar)) (13)

with step size/learning rate a and discount factor . As a result, the update for the episode above should be

AQ(1,a2) = a(l + 1y + 39 — 1)
AQ(2,a2) = a1+ 0y + 69 — 1)
AQ(3,al) = a0 + 4y + 127> — 3)
AQ(5,al) = a4 + 1y + 67* — 6)
AQ(6,al) = a(l 4+ 1y —12)
AQ(8,a2) = a(l —6).

Here, we use the fact that no rewards can be received after the episode ends to truncate the summation. This
can be thought of as a special “terminal” state at the end of each episode, that always transitions into itself
with reward 0, and all Q-values equal to 0.

Exercise 5. Analysis of RL algorithms

Your friend proposes the following algorithm, using the pseudocode convention of Sutton and Barto.

Initialize Q(s,a) =0 forallse8,aec A

Initialize 7 to be e-greedy

Parameters: step size a € (0,1], smalle >0 -

All store and access operations (for Sy, A;, and R;) can take their index mod 4

Repeat (for each episode):
Initialize and store Sy # terminal
Select and store an action Ag ~ 7(:|Sp)

T + 10000
Fort=20,1,2,...:
If t <T, then:

|
| Take action Ay

| Observe and store the next reward as R;1; and the next state as Siy1
| If S;41 is terminal, then:

| T+—t+1

| else:

| Select and store an action Ay ~ 7(+[Si+1)

| 7+t- 3

| If7>0:

[X eI 4R,

\ If 74+ 4 <T, then X + X+~v*Q(S; +4 A; +4)

} Q(Sr, A7) + Q(Sr, A7) + a[X — Q(S7, Ar)]

Until7 =T -1

a. Is the algorithm On-Policy or Off-Policy?

Answer:

b. What does the variable X represent?

Answer

c. Is this algorithm novel, similar to, or equivalent to an existing algorithm?
Answer (fill in/choose)
This algorithm is identical/very similar to

There is no difference to the named algorithm/the main difference is

d. Is this algorithm a TD algorithm? What is the reason for your answer?

Answer: Yes/No, because

Solution:

a. Is the algorithm On-Policy or Off-Policy?

The algorithm is On—Policy. In the third—to-last line, the value is bootstrapped using the Q—value estimate
Q(St44,a144), i.€. the action that was taken in state s;14 according to the agent’s actual policy.

b. What does the variable X represent?

The variable X represents the 4-step truncated discounted returns. That is, X is a sample from the
distribution over the returns that the agent can expect from taking action A, in state S;; the agent
estimates the mean of this distribution with Q(S;, A,).

The agent gets this sample using the actual (discounted) rewards observed in the episode over the first 4
steps, plus an estimate of the average discounted returns from step 5 onwards (given by v*Q(S; 44, Ar44))-
c. Is this algorithm novel, similar to, or equivalent to an existing algorithm?
The algorithm is equivalent to 4-step SARSA, which itself is very similar to the more commonly used
1-step SARSA.
d. Is this algorithm a TD algorithm? What is the reason for your answer?

The algorithm is a TD algorithm because it uses bootstrapping (updating estimates from other, later
estimates) to estimate the target (the Q—value function).

