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Multi Master on Chip

• On a System On Chip, Master can be:

➢A Processor

➢A DMA Master module

➢An accelerator composed of 1-2 DMA units

• Masters can communicate by:

➢Shared common memory

➢Network On Chip

➢Specialized interfaces with local memory as 
hardware mailbox

3

RB - 2005/2017



Simple Multi processors system

• Independents 

processors

• Each processor has 

it's own local memory 

and programmable 

interface

• NO communication 

between processors
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Multi Masters architecture

• Each processor has it's own local

memory and/or cache memory and/or 

programmable interfaces

• A global memory is shared by all 

processor

• Mutual exclusion primitives are necessary 

for access to common resources
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Local bus

Multi Masters architecture
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Multi Masters architecture

• Example with 2 

processors :

➢Processor 1:

➢Memory 1

➢UART1

➢Timer 1

➢Processor 2:

➢Memory 2

➢Timer 2

➢Shared Memory
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Multiprocessors

• Symmetrical Multi Processors (SMP) are 
widely used in workstation and high end 
PC. They are quite complexes. Tasks are 
send to a free processor.

• On an embedded system, especially 
FPGA bases embedded systems, 
asymmetric multiprocessor systems are 
common now. The hardware development 
is not too difficult.  
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Multiprocessors

9

RB - 2005/2017

• Example of asymmetrical multiprocessor on 

Avalon system



Multi Masters, Avalon interconnection
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The arbiter is at the Slave level on the Avalon Bus 



Multi Master, Slave Arbiter view
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‹N°›

Multi master round robin fairness arbitration

• With SOPC, the number of authorized consecutive 

cycles for one master can be specified, 

• ex: Master 1: 3, Master 2: 4

• If a master don’t use all of its shares, it will wait until its 

next slot

12

RB - 2005/2017



‹N°›

Multi master round robin fairness arbitration

• SOPC: arbitration and bus selection

• For each slave, the number of shares between master is 

configurable

• View menu → Show Arbitration
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Multiprocessors, resource sharing

• Resources sharing with mutual exclusion 

have to be realized

• A specific hardware interface Mutex Core

is available on Altera Avalon based 

systems, the mutex core has the following 

basic behavior :

➢There are multiple processors accessing a 

single mutex core (it's a Global Interface)

➢Each processor has a unique identifier (ID)  
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Multiprocessors exclusion primitives

• To access a common resource mutual 

exclusion primitive is needed

• A indivisible Read-Modify-Write cycle is 

necessary 

• Depending on the architecture this function can 

be implemented at:

➢Bus level with a lock bus primitive

➢Peripheral level with mutex programmable interface 

primitive

➢Message passing synchronization

➢…similar functionality 
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Multiprocessors exclusion primitives

• The principle is the same as semaphore 

primitive in multi-thread on a mono processor 

system. In this case uninterruptible access to a 

semaphore (single bit or counter) is needed.

• In multi processor system locked read-modify-

write of a semaphore is needed

• Bus level with a lock bus primitive

➢Possible if the bus provides this primitive

➢The master needs to be able to use this primitive 
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Multiprocessors (mutex)

• Peripheral level with mutex primitive:

• A special register has 2 fields:
➢Processor ID and Value

• When value is 0, the mutex is unlocked (free)

• Otherwise, the mutex is locked (busy)

• The mutex register can always be read by any 
processor

• When the mutex is locked, the Processor ID 
contain the value of the locking processor
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Multiprocessors (mutex)

• A write operation changes the mutex 

register only if one or both of the following 

conditions is true:

➢The VALUE field of the mutex register is zero.

➢The OWNER field of the mutex register 

matches the OWNER field in the data to be 

written.
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Multiprocessors (mutex)

• A processor attempts to acquire the mutex 

by writing its ID to the OWNER field, and 

writing a non-zero value to VALUE. 

• The processor then checks if the 

acquisition succeeded by verifying the 

OWNER field.
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Multiprocessors (mutex)
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• Mutex register, 
➢ Owner: CPU ID

➢ Value : can be modified by CPU owner or every processor if 
Owner = 0

• Reset = 1 at reset and must be cleared

• An Owner can be initialized at FPGA compile time



Multiprocessors (mutex)
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• Avalon Mutex functions



Multiprocessors (mutex)
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Multiprocessors (Mailbox)

• Multiprocessor environments can use the mailbox core
with Avalon® interface (the mailbox core) to send 
messages between processors.

• The mailbox core contains mutexes to ensure that only 
one processor modifies the mailbox contents at a time. 
The mailbox core must be used in conjunction with a 
separate shared memory which is used for storing the 
actual messages.

• The mailbox core is designed for use in Avalon-based 
processor systems, such as a Nios® II processor 
system. 

• The mailbox core is SOPC Builder-ready and integrates 
easily into any SOPC Builder-generated system.
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‹N°›

Multiprocessors (Mailbox) deprecated

• Mailbox functionality using the mutexes and memory is 
implemented entirely in software.

• 2 Mutexes for the mailbox interface:
➢ 1 mutex for write access to the software mailbox

➢ 1 mutex for read access to the software mailbox
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‹N°›

Multiprocessors (Mailbox) deprecated

• A complete mailbox for message passing need:
➢ The mailbox interface

➢ A shared memory

• Both of them need to be available for all of the 
processors in the systems who need to 
communicate together
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‹N°›

Multiprocessors (Mailbox) deprecated

• Some part of function are available to manage 

and use the mailbox
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Multiprocessors (Mailbox) deprecated
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2 mailbox in this example

Message could be a pointer 

to a shared memory



Multiprocessor cache memories

• In multiprocessor with data cache memories a big 

problem is cache coherency for shared common 

memories 

• If a write access is done by a master, bus snooping 

by other caches need to invalidate them if necessary

• Or shared memory access could by-pass the cache 

memory (i.e. bit 31=1 on Avalon bus)

• Or flush of local data cache needs to be done before 

shared memory access 
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Multi Masters architecture
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Multi Masters architecture
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Multiprocessor instruction memories

• Instruction cache memories need to be 

flushed after a new modification of the code 

(code loading).

• The problem is to be able to signal that fact to 

the corresponding processor ! i.e. by 

interruption.
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Multiprocessors on Avalon, memory mapping

• Each processor can have a reserved local 

access to the main common memory.

• NIOS IDE use the Exception address 

specified in SOPC from the NIOS 

description
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Memory Map on a typical processor (ex. NIOSII)

• Areas used by the linker:

• .stack— where function-call 

parameters and other 

temporary data is stored

• .heap— where dynamically 

allocated memory is located

• .rwdata— where read-write 

variables and pointers are 

stored

• .rodata— any read-only data 

used in the execution of the 

code

• .text— the actual executable 

code
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• The memory used for each area is 

specified in NIOS IDE through System 

Library Settings
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‹N°›

Mapping for two processors

• Memory Map Specification for 2 

processors
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Memory configuration rules

• Be careful as NO barrier are available between 

the two memory maps

• Left 0x20 between Reset and Exception 

addresses: it corresponds to 1 instruction cache 

line

• The end of a processor area is the starting 

address of the next area

• For common memory, allocate it on one 

processor area and pass the pointer by 

message passing or use an separate internal 

SRAM available to all processors
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Debugging with NIOS IDE

• With NIOS IDE, multiprocessors can be 

debugged as n single processors through 

processor ID specification for each NIOS 

program.

• A collection can be specified to group n 

processor and run their program 

automatically, !! They are NOT 

synchronized to start at the same time, it’s 

the user responsibility to do that.
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MULTI MASTER DMA ACCELERATOR
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Multi master DMA accelerator
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• An accelerator is based on a DMA unit:

• Direct Memory Access unit capable of reading/Writing in 

memory as an Avalon Master (altera sopc system)



NIOS II Processor, 

hardware accelerator

• To assist the processor efficiency in some tasks, 
a specialized accelerator can be provide.

• It has the capacity of reading and writing in 
memory by itself.

• It can make (complex) operations between 
reading and writing, 

• The processor has to initialize the 
source/destination addresses, the length and 
some parameters depending on the accelerator
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NIOS II Processor, 

hardware accelerator

41

RB - 2005/2017



NIOS II Processor, 

hardware accelerator, examples (Stratix II, from Altera)
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NIOS II Processor, 

hardware accelerator

• The accelerator can be design in HDL 

language as VHDL or Verilog

• It can be extracted directly from C code an 

translated in HDL language with initializing 

and API functions in C automatically 

• It was the C2H compiler tool (deprecated)
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NIOS II Processor, 

hardware accelerator

• More “universal” language OpenCL C 

code:

➢Kernel modules translated:

➢for multiprocessor

➢for GPU

➢for FPGA
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NIOS II Processor, 

hardware accelerator design flow
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Profiling

• To determine which part of code is useful 
to accelerate, code profiling is the best 
tool. 

• Code with :

➢Loop

➢specific algorithm between source and 
destination

➢a large amount of data 

• is a good candidate to accelerate 
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Profiling, GNU Profiler

• Minimal source code changes are 
required to take measurements for 
analysis with the GNU profiler. The only 
changes needed are as follows:

1. Add the profiler library via a checkbox in 
the Nios II IDE.

2. Change the main() function to call exit().

3. Rebuild the project.
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Profiling, GNU Profiler Advantage

• The major advantage to measuring with the 

profiler is that it provides an overview of the 

entire system. Although there is some 

overhead, it is distributed evenly throughout the 

system. 

• The functions that are identified as consuming 

the most CPU time will still consume the most 

CPU time when run at full speed without 

profiler instrumentation.
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Profiling, GNU Profiler Drawback

• Adding instructions to each function call 

for use with the profiler affects the 

code’s behavior. 

• Each function is slightly larger. Each 

function calls another function to collect 

profiling information.
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SOC + FPGA (ex.CycloneV)
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SOC + FPGA (ex.CycloneV)
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SOC + FPGA (ex.CycloneV)
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SCU: Snoop Control Unit 

ACP: Accelerator Coherency Port 



SOC + FPGA (ex.CycloneV)
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SOC + FPGA (ex.Zynq Xilinx)
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Ultra-Scale Psoc Architecture (ex: Zynq UltraScale+ EG)

• quad-core ARM® Cortex-

A53 up to 1.5GHz. 

• dual-core Cortex-R5 real-

time processors, 

• Mali-400 MP2 graphics 

processing unit, 

• and 16nm FinFET+ 

programmable logic

57

RB - 2005/2017

https://www.xilinx.com/content/dam/xilinx/i

mgs/products/zynq/zynq-eg-block.PNG



Multiprocessor, ex. T4240 Freescale QorIQ serie
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