
« Real Time Embedded systems »

Multi Masters Systems

rene.beuchat@epfl.ch

LAP/ISIM/IC/EPFL

Chargé de cours

rene.beuchat@hesge.ch

LSN/hepia

Prof. HES

RB - 2005/2017

1

mailto:rene.beuchat@epfl.ch
mailto:rene.beuchat@hesge.ch

Multi Master on Chip

• On a System On Chip, Master can be:

➢A Processor

➢A DMA Master module

➢An accelerator composed of 1-2 DMA units

• Masters can communicate by:

➢Shared common memory

➢Network On Chip

➢Specialized interfaces with local memory as
hardware mailbox

3

RB - 2005/2017

Simple Multi processors system

• Independents

processors

• Each processor has

it's own local memory

and programmable

interface

• NO communication

between processors

4

RB - 2005/2017

Multi Masters architecture

• Each processor has it's own local

memory and/or cache memory and/or

programmable interfaces

• A global memory is shared by all

processor

• Mutual exclusion primitives are necessary

for access to common resources

5

RB - 2005/2017

Local bus

Multi Masters architecture

6

RB - 2005/2017

Processor

1

Local
Memory

1

Local
Interfaces

1

Processor

n

Local
Memory

n

Local
Interfaces

n

Global

Interfaces

Processor

2

Local
Memory

2

Local
Interfaces

2

Global bus

Global

Memory

Multi Masters architecture

• Example with 2

processors :

➢Processor 1:

➢Memory 1

➢UART1

➢Timer 1

➢Processor 2:

➢Memory 2

➢Timer 2

➢Shared Memory

7

RB - 2005/2017

Multiprocessors

• Symmetrical Multi Processors (SMP) are
widely used in workstation and high end
PC. They are quite complexes. Tasks are
send to a free processor.

• On an embedded system, especially
FPGA bases embedded systems,
asymmetric multiprocessor systems are
common now. The hardware development
is not too difficult.

8

RB - 2005/2017

Multiprocessors

9

RB - 2005/2017

• Example of asymmetrical multiprocessor on

Avalon system

Multi Masters, Avalon interconnection

10

RB - 2005/2017

The arbiter is at the Slave level on the Avalon Bus

Multi Master, Slave Arbiter view

11

RB - 2005/2017

‹N°›

Multi master round robin fairness arbitration

• With SOPC, the number of authorized consecutive

cycles for one master can be specified,

• ex: Master 1: 3, Master 2: 4

• If a master don’t use all of its shares, it will wait until its

next slot

12

RB - 2005/2017

‹N°›

Multi master round robin fairness arbitration

• SOPC: arbitration and bus selection

• For each slave, the number of shares between master is

configurable

• View menu → Show Arbitration

13

RB - 2005/2017

Multiprocessors, resource sharing

• Resources sharing with mutual exclusion

have to be realized

• A specific hardware interface Mutex Core

is available on Altera Avalon based

systems, the mutex core has the following

basic behavior :

➢There are multiple processors accessing a

single mutex core (it's a Global Interface)

➢Each processor has a unique identifier (ID)

14

RB - 2005/2017

Multiprocessors exclusion primitives

• To access a common resource mutual

exclusion primitive is needed

• A indivisible Read-Modify-Write cycle is

necessary

• Depending on the architecture this function can

be implemented at:

➢Bus level with a lock bus primitive

➢Peripheral level with mutex programmable interface

primitive

➢Message passing synchronization

➢…similar functionality

15

RB - 2005/2017

Multiprocessors exclusion primitives

• The principle is the same as semaphore

primitive in multi-thread on a mono processor

system. In this case uninterruptible access to a

semaphore (single bit or counter) is needed.

• In multi processor system locked read-modify-

write of a semaphore is needed

• Bus level with a lock bus primitive

➢Possible if the bus provides this primitive

➢The master needs to be able to use this primitive

16

RB - 2005/2017

Multiprocessors (mutex)

• Peripheral level with mutex primitive:

• A special register has 2 fields:
➢Processor ID and Value

• When value is 0, the mutex is unlocked (free)

• Otherwise, the mutex is locked (busy)

• The mutex register can always be read by any
processor

• When the mutex is locked, the Processor ID
contain the value of the locking processor

17

RB - 2005/2017

Multiprocessors (mutex)

• A write operation changes the mutex

register only if one or both of the following

conditions is true:

➢The VALUE field of the mutex register is zero.

➢The OWNER field of the mutex register

matches the OWNER field in the data to be

written.

18

RB - 2005/2017

Multiprocessors (mutex)

• A processor attempts to acquire the mutex

by writing its ID to the OWNER field, and

writing a non-zero value to VALUE.

• The processor then checks if the

acquisition succeeded by verifying the

OWNER field.

19

RB - 2005/2017

Multiprocessors (mutex)

20

RB - 2005/2017

• Mutex register,
➢ Owner: CPU ID

➢ Value : can be modified by CPU owner or every processor if
Owner = 0

• Reset = 1 at reset and must be cleared

• An Owner can be initialized at FPGA compile time

Multiprocessors (mutex)

21

RB - 2005/2017

• Avalon Mutex functions

Multiprocessors (mutex)

22

RB - 2005/2017

Multiprocessors (Mailbox)

• Multiprocessor environments can use the mailbox core
with Avalon® interface (the mailbox core) to send
messages between processors.

• The mailbox core contains mutexes to ensure that only
one processor modifies the mailbox contents at a time.
The mailbox core must be used in conjunction with a
separate shared memory which is used for storing the
actual messages.

• The mailbox core is designed for use in Avalon-based
processor systems, such as a Nios® II processor
system.

• The mailbox core is SOPC Builder-ready and integrates
easily into any SOPC Builder-generated system.

23

RB - 2005/2017

‹N°›

Multiprocessors (Mailbox) deprecated

• Mailbox functionality using the mutexes and memory is
implemented entirely in software.

• 2 Mutexes for the mailbox interface:
➢ 1 mutex for write access to the software mailbox

➢ 1 mutex for read access to the software mailbox

24

RB - 2005/2017

‹N°›

Multiprocessors (Mailbox) deprecated

• A complete mailbox for message passing need:
➢ The mailbox interface

➢ A shared memory

• Both of them need to be available for all of the
processors in the systems who need to
communicate together

25

RB - 2005/2017

‹N°›

Multiprocessors (Mailbox) deprecated

• Some part of function are available to manage

and use the mailbox

26

RB - 2005/2017

Multiprocessors (Mailbox) deprecated

27

RB - 2005/2017

2 mailbox in this example

Message could be a pointer

to a shared memory

Multiprocessor cache memories

• In multiprocessor with data cache memories a big

problem is cache coherency for shared common

memories

• If a write access is done by a master, bus snooping

by other caches need to invalidate them if necessary

• Or shared memory access could by-pass the cache

memory (i.e. bit 31=1 on Avalon bus)

• Or flush of local data cache needs to be done before

shared memory access

28

RB - 2005/2017

Multi Masters architecture

29

RB - 2005/2017

Global bus

Processor

1

Local
Memory

1

Local
Interfaces

1

Processor

n

Local
Memory

n

Local
Interfaces

n

Global

Interfaces

Local bus

Processor

2

Local
Memory

2

Local
Interfaces

2

Global

shared

Memory

Local memory for each processor

Global memory for shared data/instr

Multi Masters architecture

30

RB - 2005/2017

Global bus

Processor

1

Local
Cache

1

Local
Interfaces

1

Processor

n

Local
Cache

n

Local
Interfaces

n

Global

Interfaces

Local bus

Processor

2

Local
Cache

2

Local
Interfaces

2

Local Mem1

Local Mem2

Local Mem3

Shared Mem

“Local memories” can be in separate area on the global

physical memory

Processors could have local cache memories (instr/data)

Multiprocessor instruction memories

• Instruction cache memories need to be

flushed after a new modification of the code

(code loading).

• The problem is to be able to signal that fact to

the corresponding processor ! i.e. by

interruption.

31

RB - 2005/2017

Multiprocessors on Avalon, memory mapping

• Each processor can have a reserved local

access to the main common memory.

• NIOS IDE use the Exception address

specified in SOPC from the NIOS

description

32

RB - 2005/2017

Local Mem1

Local Mem2

Local Mem3

Shared Mem

Memory Map on a typical processor (ex. NIOSII)

• Areas used by the linker:

• .stack— where function-call

parameters and other

temporary data is stored

• .heap— where dynamically

allocated memory is located

• .rwdata— where read-write

variables and pointers are

stored

• .rodata— any read-only data

used in the execution of the

code

• .text— the actual executable

code

33

RB - 2005/2017

• The memory used for each area is

specified in NIOS IDE through System

Library Settings

34

RB - 2005/2017

‹N°›

Mapping for two processors

• Memory Map Specification for 2

processors

35

RB - 2005/2017

Memory configuration rules

• Be careful as NO barrier are available between

the two memory maps

• Left 0x20 between Reset and Exception

addresses: it corresponds to 1 instruction cache

line

• The end of a processor area is the starting

address of the next area

• For common memory, allocate it on one

processor area and pass the pointer by

message passing or use an separate internal

SRAM available to all processors

36

RB - 2005/2017

Debugging with NIOS IDE

• With NIOS IDE, multiprocessors can be

debugged as n single processors through

processor ID specification for each NIOS

program.

• A collection can be specified to group n

processor and run their program

automatically, !! They are NOT

synchronized to start at the same time, it’s

the user responsibility to do that.

37

RB - 2005/2017

MULTI MASTER DMA ACCELERATOR

38

RB - 2005/2017

Multi master DMA accelerator

39

RB - 2005/2017

• An accelerator is based on a DMA unit:

• Direct Memory Access unit capable of reading/Writing in

memory as an Avalon Master (altera sopc system)

NIOS II Processor,

hardware accelerator

• To assist the processor efficiency in some tasks,
a specialized accelerator can be provide.

• It has the capacity of reading and writing in
memory by itself.

• It can make (complex) operations between
reading and writing,

• The processor has to initialize the
source/destination addresses, the length and
some parameters depending on the accelerator

40

RB - 2005/2017

NIOS II Processor,

hardware accelerator

41

RB - 2005/2017

NIOS II Processor,

hardware accelerator, examples (Stratix II, from Altera)

42

RB - 2005/2017

NIOS II Processor,

hardware accelerator

• The accelerator can be design in HDL

language as VHDL or Verilog

• It can be extracted directly from C code an

translated in HDL language with initializing

and API functions in C automatically

• It was the C2H compiler tool (deprecated)

43

RB - 2005/2017

NIOS II Processor,

hardware accelerator

• More “universal” language OpenCL C

code:

➢Kernel modules translated:

➢for multiprocessor

➢for GPU

➢for FPGA

44

RB - 2005/2017

NIOS II Processor,

hardware accelerator design flow

45

RB - 2005/2017

Profiling

• To determine which part of code is useful
to accelerate, code profiling is the best
tool.

• Code with :

➢Loop

➢specific algorithm between source and
destination

➢a large amount of data

• is a good candidate to accelerate

46

RB - 2005/2017

Profiling, GNU Profiler

• Minimal source code changes are
required to take measurements for
analysis with the GNU profiler. The only
changes needed are as follows:

1. Add the profiler library via a checkbox in
the Nios II IDE.

2. Change the main() function to call exit().

3. Rebuild the project.

47

RB - 2005/2017

Profiling, GNU Profiler Advantage

• The major advantage to measuring with the

profiler is that it provides an overview of the

entire system. Although there is some

overhead, it is distributed evenly throughout the

system.

• The functions that are identified as consuming

the most CPU time will still consume the most

CPU time when run at full speed without

profiler instrumentation.

48

RB - 2005/2017

Profiling, GNU Profiler Drawback

• Adding instructions to each function call

for use with the profiler affects the

code’s behavior.

• Each function is slightly larger. Each

function calls another function to collect

profiling information.

49

RB - 2005/2017

SOC + FPGA (ex.CycloneV)

51

RB - 2005/2017

SOC + FPGA (ex.CycloneV)

52

RB - 2005/2017

SOC + FPGA (ex.CycloneV)

53

RB - 2005/2017

SCU: Snoop Control Unit

ACP: Accelerator Coherency Port

SOC + FPGA (ex.CycloneV)

54

RB - 2005/2017

SOC + FPGA (ex.Zynq Xilinx)

56

RB - 2005/2017

Ultra-Scale Psoc Architecture (ex: Zynq UltraScale+ EG)

• quad-core ARM® Cortex-

A53 up to 1.5GHz.

• dual-core Cortex-R5 real-

time processors,

• Mali-400 MP2 graphics

processing unit,

• and 16nm FinFET+

programmable logic

57

RB - 2005/2017

https://www.xilinx.com/content/dam/xilinx/i

mgs/products/zynq/zynq-eg-block.PNG

Multiprocessor, ex. T4240 Freescale QorIQ serie

58

RB - 2005/2017

