« Real Time Embedded systems »
Multi Masters Systems

rene.beuchat@epfl.ch
LAP/ISIM/IC/EPFL
Chargé de cours
rene.beuchat@hesge.ch
LSN/hepia
Prof. HES

RB - 2005/2017

mailto:rene.beuchat@epfl.ch
mailto:rene.beuchat@hesge.ch

Multi Master on Chip

* On a System On Chip, Master can be:

» A Processor
» A DMA Master module
»An accelerator composed of 1-2 DMA units

* Masters can communicate by:

»Shared common memory
»Network On Chip

» Specialized interfaces with local memory as
hardware mailbox

3 -
[
RB - 2005/2017

PrL

Simple Multl processors system

Processor 1

Processor 2

Memory 1

UART 1

Timer 1

Memory 2

UART 2

Timer 2

* Independents
Processors

« Each processor has
it's own local memory
and programmable
Interface

« NO communication
between processors

) cPrL

RB - 2005/2017

Multi Masters architecture

» Each processor has it's own local
memory and/or cache memory and/or
programmable interfaces

* A global memory is shared by all
processor

* Mutual exclusion primitives are necessary
for access to common resources

° cPrL

RB - 2005/2017

Multi Masters architecture

fprocessor Local Local “/Processor Local Local 7
Memory Interfaces Memory Interfaces
1 1 1 2 2 2
U J
Global bus
s I
Local Local
Processor Memory Interfaces Global Global
n
n n Memory Interfaces
U N B
° =PrL

RB - 2005/2017

Multi Masters architecture

Processor 1

Processor 2

Memory 1

UART 1

Timer 1

———
| |
P —
mr——
gpmmm———

Shared
Memory

Memory 2

Timer 2

« Example with 2
Processors .
» Processor 1:
» Memory 1

> UART1
> Timer 1

» Processor 2:
» Memory 2
> Timer 2

» Shared Memory

’ cPrL

RB - 2005/2017

Multiprocessors

« Symmetrical Multi Processors (SMP) are
widely used in workstation and high end
PC. They are quite complexes. Tasks are
send to a free processor.

* On an embedded system, especially
FPGA bases embedded systems,
asymmetric multiprocessor systems are
common now. The hardware development
IS not too difficult.

8
RB - 2005/2017

mnm
v
r

Multiprocessors

« Example of asymmetrical multiprocessor on
Avalon system

System CPU DSP /O CPU
Masters (Master 1) (Master 2) (Master 3)

Arbiter Arbiter

Custom
Slaves “ Accelerator
Peripheral

9 EPFL

RB - 2005/2017

Multi Masters, Avalon interconnection

The arbiter is at the Slave level on the Avalon Bus

M1 Address

M1 Write Data
Request Control

M2 Address
M2 Write Data

YYVYY

Address
- —-
1] .
5 Write Data > Slave
< | Control
-

Request Control

Slave Read Data

10
RB - 2005/2017

P

=

L

Multi Master, Slave Arbiter view

51 Read Data & Control

Data-Path

M1 wait
M2 wait

Master Select

Multiplexing
Logic

Master 1
(M1)

M1 Address, Write
Data & Control

Data-Path

Multiplexing
Logic

Master 2
(M2)

M2 Address, Write
Data & Control

M1 wait

mm g Slave 2 M2 wait
Arbiter

Master Select

52 Read Data & Control

11
RB - 2005/2017

m
1

Multl master round robin fairness arbitration

« With SOPC, the number of authorized consecutive
cycles for one master can be specified,

« eXx: Master 1: 3, Master 2: 4
* |f a master don’t use all of its shares, it will wait until its

next slot

ek (1L e e e e e e e e e

M1_transfer_request /|

| | | | | | | | | | |
M1_waitrequest | ' ' r”l '\I ' ')./ : i i }\ ' ' !

M2 tansfervequest B | |, N) o, o, o o o0 0y 4o
M2_wairequest B |, N/ . o W o o 4 oo Ny
Current_Master)l(Master; 1)Kmasterz)l(Master; 1](| Master 2 |)I(Master 1 j(Master 2 |

«N°» — -
cPr-L

RB - 2005/2017

Multl master round robin fairness arbitration

« SOPC: arbitration and bus selection

 For each slave, the number of shares between master is
configurable

* View menu -2 Show Arbitration

Module Name Description Clock
=l cpu Miog | Processor - Alte.. |clk
instruction_master |Master port
I ¢ data_master Master port
1 1 = jtag_debug_module |[Slave port
I 'l B sys_clk_timer Interval timer clk
1 |1 E ext_ram_bus Avalon Tri-State Bridge |clk
ext_flash Flash Memory (Commo...
ext_ram IDT71%416 SRAM
1 |1 @ epcs_controller EPCS Setial Flash Cont..\clk
I lan91c111 LANSTC111 Interface (...
1 @ jtag_uart JTAG LUART clk
«N°®
=B

RB - 2005/2017

Multiprocessors, resource sharing

* Resources sharing with mutual exclusion
have to be realized

» A specific hardware interface Mutex Core
IS available on Altera Avalon based
systems, the mutex core has the following
basic behavior :

» There are multiple processors accessing a
single mutex core (it's a Global Interface)

»Each processor has a unigue identifier (ID)

. EPFL

RB - 2005/2017

Multiprocessors exclusion primitives

« To access a common resource mutual
exclusion primitive is needed

 Aindivisible Read-Modify-Write cycle is
necessary

* Depending on the architecture this function can
be implemented at:
» Bus level with a lock bus primitive
» Peripheral level with mutex programmable interface
primitive
» Message passing synchronization
» ...similar functionality

- cPrL

RB - 2005/2017

Multiprocessors exclusion primitives

* The principle is the same as semaphore
primitive in multi-thread on a mono processor
system. In this case uninterruptible access to a
semaphore (single bit or counter) is needed.

* |In multi processor system locked read-modify-
write of a semaphore Is needed

* Bus level with a lock bus primitive
» Possible if the bus provides this primitive
» The master needs to be able to use this primitive

- cPrL

RB - 2005/2017

Multiprocessors (mutex)

Peripheral level with mutex primitive:

A special register has 2 fields:
» Processor ID and Value

When value is 0, the mutex is unlocked (free)
Otherwise, the mutex is locked (busy)

The mutex register can always be read by any
processor

When the mutex Is locked, the Processor ID
contain the value of the locking processor

i EPFL

RB - 2005/2017

Multiprocessors (mutex)

* A write operation changes the mutex
register only if one or both of the following
conditions Is true:

»The VALUE field of the mutex register is zero.

»The OWNER field of the mutex register
matches the OWNER field in the data to be
written.

- cPrL

RB - 2005/2017

Multiprocessors (mutex)

* A processor attempts to acquire the mutex
by writing its ID to the OWNER field, and
writing a non-zero value to VALUE.

* The processor then checks Iif the
acquisition succeeded by verifying the
OWNER field.

19
RB - 2005/2017

M
T

1

Multiprocessors (mutex)

: Bit Description
Offset F‘;g's‘er R/W
ame 31...16 | 15...1 ‘ 0
0 mutex RW OWNER VALUE
1 reset RW - — RESET

« Mutex register,
» Owner: CPU ID

» Value : can be modified by CPU owner or every processor if
Owner =0

* Reset =1 at reset and must be cleared
 An Owner can be initialized at FPGA compile time

20 EPFL

RB - 2005/2017

Multiprocessors (mutex)

 Avalon Mutex functions

Function Name

altera avalon mutex open()

Description

Claims a handle to a mutex, enabling all the other functions to
access the mutex core.

altera avalon mutex trylock()

Tries to lock the mutex. Returns immediately if it fails to lock
the mutex.

altera avalon mutex lock()

Locks the mutex. Will not return until it has successfully
claimed the mutex.

altera avalon mutex unlock()

Unlocks the mutex.

altera avalon mutex is mine ()

Determines if this CPU owns the mutex.

altera avalon mutex first lock()

Tests whether the mutex has been released since reset.

21
RB - 2005/2017

m

P

1
=

Multiprocessors (mutex)

Example: Opening and locking a mutex
#include <altera avalon mutex.h>

/* get the mutex device handle */
alt mutex dev* mutex = altera avalon mutex open(“/dev/mutex”);

/* acquire the mutex, setting the value to one */
altera avalon mutex lock(mutex, 1);

/*
* Access a shared resource here.

*/

/* release the lock */
altera avalon mutex unlock(mutex) ;

22 q:F’q:
RB - 2005/2017

L

Multiprocessors (Mailbox)

 Multiprocessor environments can use the mailbox core
with Avalon® interface (the mailbox core) to send
messages between processors.

« The mailbox core contains mutexes to ensure that only
one processor modifies the mailbox contents at a time.
The mailbox core must be used in conjunction with a
separate shared memory which is used for storing the
actual messages.

« The mailbox core Is designed for use in Avalon-based
processor systems, such as a Nios® Il processor
system.

* The mailbox core is SOPC Builder-ready and integrates
easily into any SOPC Builder-generated system.

= cPrL

RB - 2005/2017

Multiprocessors (Mailbox) deprecated

« Mailbox functionality using the mutexes and memory is
Implemented entirely in software.
« 2 Mutexes for the mailbox interface:

> 1 mutex for write access to the software mailbox
> 1 mutex for read access to the software mailbox

Offset H;g:zt:r AW Bit Description
31...16 15 ... 1 ‘ 0
0 mutex0 RW OWNER VALUE
1 reset0 RW — — RESET
2 mutexl RW OWNER VALUE
3 resetl RW — — RESET

(No) — -
= P
RB - 2005/2017

Multiprocessors (Mailbox) deprecated

« A complete mailbox for message passing need:

» The mailbox interface
» A shared memory

 Both of them need to be available for all of the
processors In the systems who need to
communicate together

«N°»
RB - 2005/2017

[—

B-L

Multiprocessors (Mailbox) deprecated

« Some part of function are available to manage

and use the mailbox

Function Name

altera aval c::n_mai lbox close ()

Closes the handle to a mailbox.

Description

altera avalon mailbox get ()

Returns a message if one is present, but does not block

waiting for a message.

altera avalon mailbox open()

Claims a handle to a mailbox, enabling all the other functions
to access the mailbox core.

altera avalon mailbox pend/()

Blocks waiting for a message to be in the mailbox.

altera avalon maillbox post ()

Posts a message to the mailbox.

«N°»
RB - 2005/2017

Multiprocessors (Mailbox) deprecated

Example: Writing to and reading from a mailbox

#include <stdio.h=
#include "altera avalon mailbox.h"

2 mailbox in this example

int main()

{

alt u32 message = 0;

alt mailbox dev* send dev, recv dev;

/* Open the two mailboxes between this processor and another */
send dev = altera avalon mailbox open("/dev/mailbox 0");
recv_dev = altera avalon mailbox open("/dev/mailbox 1");

while (1)
{

/* Send a message to the other processor */
altera avalon mailbox post (send dev, message);

/* Wait for the other processor to send a message back */
message = altera avalon mailbox pend(recv _dev) ;

return 0 Message could be a pointer
} to a shared memory

27
RB - 2005/2017

m
oy
1

Multiprocessor cache memories

* In multiprocessor with data cache memories a big
problem is cache coherency for shared common
memories

 |If a write access Is done by a master, bus snooping
by other caches need to invalidate them If necessary

* Or shared memory access could by-pass the cache
memory (I.e. bit 31=1 on Avalon bus)

 Or flush of local data cache needs to be done before
shared memory access

28 EPFL

RB - 2005/2017

Multi Masters architecture

Local memory for each processor
Global memory for shared data/instr

Local Local Local Local
Processor | | Memory | | interfaces | | P°eSS°" | | Memory | | interfaces
Global bus
Local Local
Processor Memory Interfaces Global Global
n
n n shared Interfaces
| I I Memory
Localbus

29
RB - 2005/2017

m

PrL

Multi Masters architecture

“Local memories” can be in separate area on the global
physical memory

Processors could have local cache memories (instr/data)

Processor

1

Processor

n

— 1

Local bus

Local Local
Cache Interfaces
1 1
Global bus
Local Local
Cache Interfaces

n

n

30

Processor Cl:'ggﬁle |n'!_ecr)1%%|es
2 2 2
Local Mem1
Local Mem2
Local Mem3 Global

Interfaces
Shared Mem
—I cPrL

RB - 2005/2017

Multiprocessor instruction memories

* |Instruction cache memories need to be
flushed after a new modification of the code
(code loading).

* The problem iIs to be able to signal that fact to
the corresponding processor ! i.e. by
Interruption.

31
RB - 2005/2017

mnm
v
r

Multiprocessors on Avalon, memory mapping

» Each processor can have a reserved local
access to the main common memory.

* NIOS IDE use the Exception address
specified in SOPC from the NIOS
description

Local Meml1

Local Mem2
Local Mem3

Shared Mem |

” EPFL

RB - 2005/2017

Memory Map on a typical processor (ex. NIOSII)

OxOOFFFFF

0x00000000

1 Mbyte Memory

stack

.rwdata

rodata

text

Areas used by the linker:

.stack— where function-call
parameters and other
temporary data is stored

.heap— where dynamically
allocated memory is located

rwdata— where read-write
variables and pointers are
stored

rodata— any read-only data
used in the execution of the
code

text— the actual executable
code

33
RB - 2005/2017

mnm
v
r

 The memory used for each area Is
specified in NIOS IDE through System
Library Settings

34
RB - 2005/2017

m
1

Mapping for two processors

 Memory Map Specification for 2

NIrOC.eS<NrsS
32 Mbytes of Memory)
0x5FFFFFF stack \\

heap l
rwdata > Processor 2
rodata

Processor 2:

Exception Address — g 0x05000020 text

Code Entry Point — e 0x05000000

> Processor 1

Processor 1:
Exception Address — e x04000020
Code Entry Point — g 0x04000000

" cB-L

RB - 2005/2017

Memory configuration rules

 Be careful as NO barrier are available between
the two memory maps

« Left 0x20 between Reset and Exception
addresses: it corresponds to 1 instruction cache
line

 The end of a processor area Is the starting
address of the next area

 For common memory, allocate it on one
processor area and pass the pointer by
message passing or use an separate internal
SRAM available to all processors
%0 cPrL

RB - 2005/2017

Debugging with NIOS IDE

« With NIOS IDE, multiprocessors can be
debugged as n single processors through
processor ID specification for each NIOS
program.

* A collection can be specified to group n
processor and run their program
automatically, ! They are NOT
synchronized to start at the same time, it's
the user responsibility to do that.

37
RB - 2005/2017

mnm
T
r

> =PrL

RB - 2005/2017

Multli master DMA accelerator

 An accelerator is based on a DMA unit:

« Direct Memory Access unit capable of reading/Writing In
memory as an Avalon Master (altera sopc system)

Avalon Slave

— Control
v v v
Accelerator
DMA Logic DMA

Hardware Accelerator

Avalon Read Master Avalon Write Master

. EPFL

RB - 2005/2017

NIOS Il Processor,
hardware accelerator

 To assist the processor efficiency in some tasks,
a specialized accelerator can be provide.

* It has the capacity of reading and writing in
memory by itself.

» It can make (complex) operations between
reading and writing,

* The processor has to initialize the
source/destination addresses, the length and
some parameters depending on the accelerator

0 EPFL

RB - 2005/2017

NIOS Il Processor,
hardware accelerator

Processor

Avalon
Switch
Fabric

Program

Memory

41
RB - 2005/2017

NIOS Il Processor,
hardware accelerator, examples (Stratix Il, from Altera)

Algorithm

Altocorrelation
EBit Allocation
Comnvolution Encoder

Fast Fourier Transform
{FFT})

High Pass Filter
Matrix Rotate
RGE to CMYK
RGE to Y10

Speed
Increase
(vs. Nios |l

CPLU)

41.0%
42.3%
13.3%
15.0%

42.9x%
73.6x
41.9%
34.9x

110
43

120
110

System Resource
Increase (1)

124%
152%
133%
205%

181%
106%
£4%

158%

42
RB - 2005/2017

m
1

NIOS Il Processor,
hardware accelerator

* The accelerator can be design in HDL
language as VHDL or Verilog

* |t can be extracted directly from C code an
translated in HDL language with initializing
and API functions in C automatically

* |t was the C2H compiler tool (deprecated)

43
RB - 2005/2017

mnm
v
r

NIOS Il Processor,
hardware accelerator

* More “universal” language OpenCL C
code:

> Kernel modules translated:

»for multiprocessor
»for GPU
»>for FPGA

a4
RB - 2005/2017

[—

PrL

NIOS Il Processor,
hardware accelerator design flow

- - Software Hardware
" e

C2H Compiler

accelerator.v

driver.o

User setting:
Use accelerator
instead of original
softwane

45
RB - 2005/2017

Profiling

* To determine which part of code Is useful
to accelerate, code profiling is the best
tool.

« Code with :

»Loop

»specific algorithm between source and
destination

»a large amount of data
* IS a good candidate to accelerate

46
RB - 2005/2017

mnm
T
r

Profiling, GNU Profiler

* Minimal source code changes are
required to take measurements for
analysis with the GNU profiler. The only
changes needed are as follows:

1. Add the profiler library via a checkbox in
the Nios Il IDE.

2. Change the main() function to call exit().
3. Rebuild the project.

47
RB - 2005/2017

mnm
T
r

Profiling, GNU Profiler Advantage

The major advantage to measuring with the
profiler is that it provides an overview of the
entire system. Although there is some
overhead, it is distributed evenly throughout the
system.

The functions that are identified as consuming
the most CPU time will still consume the most
CPU time when run at full speed without
profiler instrumentation.

* cPrL

RB - 2005/2017

Profiling, GNU Profiler Drawback

Adding instructions to each function call
for use with the profiler affects the
code’s behavior.

Each function is slightly larger. Each
function calls another function to collect
profiling information.

49
RB - 2005/2017

m
1

SOC + FPGA (ex.CycloneV)

6.144-Gbps -

Transceivers

ALMs and

Distributed Memory

PLLs —

6.144-Gbps

Transceivers PCS

Hard |P Blocks for
PCle Gen 2 and .

PCla Gen 1

External Memaory
Interface Controllers

HPS /O

ARM Cortex-A9
MPCore HFS

M10K Embedded
Memory Blocks

Variable-Precision
Digital Signal Processing
(DSP) Hard IP Blocks

Up to 469 D pins
(HPS + FPGA)

Two CorelTransceiver
Power Regulators
Required (1.1, 2.5V

51
RB - 2005/2017

cPrL

SOC + FPGA (ex.CycloneV)

Single- or Dual-Core Processor

HPS IO
Hard Processor System (HPS)
‘ ARM Cortex-A9
FPGA NEON/FPU US&S)TG E"(’fz";e‘
L1 Cache
L2 Cache GPIO 2C
I (x2)

JTAG 64-KB Timers SPI CAN
- Debug/Trace(1 RAM (x11) (x2) (x2)
NAND QSPI SD/SDIO/ DMA UART
Hard Memory Flash (142 Flash Ctrl MMC (x2)
Controller*

Shared Multiport DDR HPSto FPGA to FPGA
3.125-Gbps and 5-Gbps SDRAM Controlleri2 FPGA HPS Configuration
Transceivers® T T T T l T l
Hard PCle*

*Optional Configuration

> cPrL

RB - 2005/2017

SOC + FPGA (ex.CycloneV)

SCU:
ACP:

Snoop Control Unit
Accelerator Coherency Port

Hard Processor System
ARM Cortex-A9 | ARM Cortex-A9 JIR'EL: Ethormet
NEON/FPU NEON/FPU 0TG e;“e
L1 Cache L1 Cache (x2) (x2)
ACP scu o
GPIO (s
L2 Cache
g
(48]
o 64 KB I;g:f; f SP| CAN a
Flash RAM Trace (x4) (x2)
NAND Sf}lljé} / Timers DMA UART
Flash VNG (x6) (8 ch. (x2)
Multiport DDR HPS+to- | | FPGA- MZ';S:H
SDRAM Controller FPGA to-HPS (Config)
i
1=
-
| <&
Multiport DDR o 3-5-6-10-Gbps | & &
SDRAM Controller Transceivers
53 -

RB - 2005/2017

=P

—

SOC + FPGA (ex.CycloneV)

Configuration Lightweight :
Controller FPGA-to-HPS HPS-to-FPGA HPS-to-FPGA FPGA Fabric FPGA-to-HPS SDRAM
A A A
FPGA
Manager HPS
b v vV
Ethernet | | ARM Cortex-A9 MPCore
MAC (2x)
CPUO CPU1
usB 15| (ARM Cortex-A9 (ARM Cortex-A9
OTG (2x) 64 KB with NEON/FPU, with NEON/FPU,
32 KB Instruction Cache 32 KB Instruction Cache
B 1]]
NAND Flash =] 0 32 KB Data Cache, and 32 KB Data Cache, and ,
Controller ROM . . Multiport
Memory Management Unit) | Memory Management Unit)
DDR SDRAM
SD/MMC/SDIO > Level 3 Controller
Controller Interconnect T ACP scu with
| |
DMA | 1 Optional ECC
—
Controller Rt L2 Cache (512 KB) —
ETR 64 KB
(Trace) Rt B On-Chlp
RAM
Debug
Access Port > >
Low Speed Peripherals
(Timers, GPIOs, UART, SPI, 12C, CAN, Quad SPI Flash Controller, System Manager, Clock Manager, Reset Manager, and Scan Manager)

54
RB - 2005/2017

m
1

SOC + FPGA (ex.Zyng Xilinx)

Cortes - AMANPCare

| BB W Cachm

Thermal Sersm

M- Starhardd L9 {107 4 fogh-Speed | Y

56
RB - 2005/2017

cPrL

Ultra-Scale Psoc Architecture (ex: Zynq UltraScale+ EG)

« guad-core ARM® Cortex
A53 up to 1.5GHz.

e dual-core Cortex-R5 real
time processors,

« Mali-400 MP2 graphics

Processing System

Application Processing Unit Memory Graphics Processing Unit High-Speed
] ARM Mali™-400 MP2 Connectivity
| ONEON™ | .
ARM® DisplayPort vi.2a
Cortex™-A53 DDR4/3/3L
‘ Floating Paint Unit |
LPDDR4/3 USB 3.0
3K 328 Wemory | Embedded | sopsnitwecc || O
iy | i | v Sas
258KB OCM | PCle®1.0/2.0
with ECC

3CU CCISMMU IMB L2 WECC

PS-GTR

. = . General Connectivity
Real-Time Processing Unit latform System GigE
gement Unit Functions USB 20
System ‘ | CAN
Cortex™-R5 Management Multichannel DMA R
| 128KE ” 32KB I -Cache || 32KB D-Cache Pawer ‘ | 3Pl
TCM WEGC WECT WIECC Management Voltage/Temp Timers, |' Quad SPI NOR
p Monitar WDT, Resets,
Functional ‘ Clocking & Debug NAND
Safety TrustZone |' SD/eMMC

processing unit,
« and 16nm FINFET+

programmable logic

Programmable Logic

Storage & Signal Processing

Block RAM

System Monitor

General-Purpose 110

High-Performance HP /O

High-Density HD 1O

High-Spsed Connectivity

Interlaken
GTH
GTY

100G EMAC

PCle Gend

https://www.xilinx.com/content/dam/xilinx/i
mgs/products/zynqg/zynqg-eg-block.PNG

> cPrL
RB - 2005/2017

Multiprocessor, ex. T4240 Freescale QorlQ serie

QorlQ T4240 Communications Processor

‘ ' 1 [|b12Ke Coreet|| 64-bit boRa/AL
Ui U 4 ¥z L5 re b V& Platform Cache ||Memory Controller
Power e cl:‘gwer Power Power 5
26500 A “"’Eg'fg&f‘” gl 3 '5;: KB Corele | 64-bit DDRAL
a2ke | a2ke |[s2s |[s2ke [[s2ks |[32k8 |[32k |[s2k8 | |£ SRR | (Mercn DM
D-Cache | 1-Cache ||D-Cache | I-Cache |||D-Cache || 1-Cache [||D-Cache || I-Cache Gore el | shaLCoRTL
[ll 2 MB Banked L2 | L Platform Cache ||Memory Controller
[Security Fuse Processorl
CoreNet Coherency Fabric
| Security Monitor | Paioheral A
| 2xUSB2.0w/PHY | PAMU PAMU PAMU PAMU " Management Unit
[IFC] | , | - ' " Frame Manager Frame Manager 1 7] Rapidio = Real-Time Debug
| Power Management || BCE |Security Queue| | Parse, Classify, Parse, Classify, | | _ M DMA Watchpoint
| e | 1.0 || 50 || Mgr. Distribute Distribute <l lol lof [Unit 1%roea
| | | micig | pce | [HiGig || pcs F S | St
4x DUART [I y
|| patem| 16e|1GE feelice) |2 3| |3 Montir | Trace |
| 4x I'C | |aman|| Match || Bufer| | 4/ || 1/ == =R ARY £ P o |Bensp
T | Engine| Mar. | 106106 EI1GE] l10G10G|'SEICE] |= o s
| SPI, GPIO |» heE1E hegieg | L] L @ Aurora
| 16-Lane 10 GHz SerDes (| 16-Lane 10 GHz SerDes

[C] Core Complex (CPU, L2, L3 Cache) [] Basic Peripherals and Interconnect [[] Accelerators and Memory Control [[] Networking Elements

58
RB - 2005/2017

I
v
r

