

+1/1/60+

TCP/IP Networking 2017 Test 2

Question 1 A sends one unicast IPv4 packet to C over Ethernet. The IPv4 destination address observed at point 1 is

Question 2 A host sends an IPv4 packet with TTL = 255.

This packet cannot be forwarded by a bridge but can be forwarded by a router.

This packet can be forwarded by a router or a bridge.

This packet cannot be forwarded by neither a router nor a bridge.

This packet cannot be forwarded by a router but can be forwarded by a bridge.

Question 3 Lisa makes a local area network by installing 6 Ethernet standard bridges, connected with Ethernet cables to form a ring.

This works because bridges automatically disable one port on one switch.

____ This does not work because bridges must be cabled without loop.

This works only for unicast traffic; broadcast traffic has to be disabled because it would loop.

This works because bridges learn source MAC addresses on the frames they observe.

Question 4 When an IPv6 host A wants to know the MAC address that corresponds to a target IPv6 address B, it sends an NDP NS message. The IPv6 destination address of this message is:

this packet does not have an IP destination address because it is not an IP packet.

the link-local broadcast address.

the IPv6 broadcast address ffff:ffff:ffff:ffff:ffff:ffff:ffff.

a multicast address algorithmically derived from B.

Question 5 A sends one unicast Ethernet frame to C. The MAC destination address observed at point 1 is

	Host A	west 1	Layer-2 switch S1	west	Layer-2 switch S2		Host C	
the ter	e MAC face e MAC	address address	of S2's west i of S1's west i	in-	terface] ff:ff:ff:f;] C's MAC ad	f:ff:: ldress	ff	
Question 6 Say what is true about the spanning tree protocol.								
 bridges compute a shortest path tree to every other bridge bridges elect a root 								
Bo	th.		1 and not 2	2.] 2 and not 1.		Neith 2.	er 1 nor
Questio result?	n7 \	We flip t	he 17th bit of	the IP a	ddress: 2001:	:1::be	ebe. Wh	at is the

2001:8001::bebe	2001:2::bebe
2001:0::bebe	2001:3::bebe

Question 8 Homer makes a LAN with two WIFi base stations BS1 and BS2, interconnected by Ethernet cables and a bridge. A is associated to BS1 and B is associated to BS2. By which mechanism does the bridge know where to send packets destined to A and B?

- The bridge remembers all MAC source addresses and broadcast frames if it does not know where the destination is.
- The base stations inform the bridge of the presence of A and B (which they know from their association data) using the spanning tree protocol.
- The spanning tree protocol learns all addresses without intervention of the WiFi association data.
- The bridge computes shortest paths to all destinations.

Question 9 When an IPv4 host A wants to know the MAC address that corresponds to a next-hop IPv4 address B, say what it can use:

- 1. the ARP protocol
- 2. the DHCP protocol

1 and not 2.	Neither 1 nor	Both.	\square 2 and not 1.
	2.		

Question 10 With SLAAC, an IPv6 host obtains:

- 1. A link-local address.
- 2. A valid subnet prefix, when a router that participates in SLAAC is present in the subnet.

1 and not 2.	\square 2 and not 1.	Neither 1 nor	Both.
		2.	