



+1/1/60+

## TCP/IP Networking 2017 Test 2



**Question 1** A sends one unicast IPv4 packet to C over Ethernet. The IPv4 destination address observed at point 1 is





**Question 2** A host sends an IPv4 packet with TTL = 255.

] This packet cannot be forwarded by a bridge but can be forwarded by a router.

This packet can be forwarded by a router or a bridge.

This packet cannot be forwarded by neither a router nor a bridge.

This packet cannot be forwarded by a router but can be forwarded by a bridge.

**Question 3** Lisa makes a local area network by installing 6 Ethernet standard bridges, connected with Ethernet cables to form a ring.

This works because bridges automatically disable one port on one switch.

\_\_\_\_ This does not work because bridges must be cabled without loop.

This works only for unicast traffic; broadcast traffic has to be disabled because it would loop.

This works because bridges learn source MAC addresses on the frames they observe.



**Question 4** When an IPv6 host A wants to know the MAC address that corresponds to a target IPv6 address B, it sends an NDP NS message. The IPv6 destination address of this message is:

] this packet does not have an IP destination address because it is not an IP packet.

the link-local broadcast address.

the IPv6 broadcast address ffff:ffff:ffff:ffff:ffff:ffff:ffff.

a multicast address algorithmically derived from B.

**Question 5** A sends one unicast Ethernet frame to C. The MAC destination address observed at point 1 is

|                    | Host A        | west<br>1           | Layer-2 switch S1                                     | west      | Layer-2 switch S2                                                 |        | Host C   |           |
|--------------------|---------------|---------------------|-------------------------------------------------------|-----------|-------------------------------------------------------------------|--------|----------|-----------|
| ter                | face<br>e MAC | address             | of S2's west if<br>of S1's west if<br>t is true about | in-       | terface<br>] ff:ff:ff:f:<br>] <u>C's MAC ad</u><br>nning tree pro | ldress |          |           |
|                    | -             | mpute a<br>ct a roo | shortest path<br>t                                    | tree to e | every other br                                                    | idge   |          |           |
| Bo                 | th.           |                     | $\boxed{1}$ and not $2$                               | 2.        | 2  and not  1.                                                    |        | Neith 2. | er 1 nor  |
| Questio<br>result? | on 7 V        | <i>N</i> e flip t   | he 17th bit of                                        | the IP ε  | ddress: 2001:                                                     | 1::be  | ebe. Wh  | at is the |

 2001:8001::bebe
 2001:2::bebe

 2001:0::bebe
 2001:3::bebe



| $\square$ | Τ |  |  |  |  |  |
|-----------|---|--|--|--|--|--|

**Question 8** Homer makes a LAN with two WIFi base stations BS1 and BS2, interconnected by Ethernet cables and a bridge. A is associated to BS1 and B is associated to BS2. By which mechanism does the bridge know where to send packets destined to A and B?

| A BS1 Bridge BS2 B                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| The bridge remembers all MAC source addresses and broadcast frames if it does not know where the destination is.                                   |
| The base stations inform the bridge of the presence of $A$ and $B$ (which they know from their association data) using the spanning tree protocol. |
| The spanning tree protocol learns all addresses without intervention of the WiFi association data.                                                 |
| The bridge computes shortest paths to all destinations.                                                                                            |
| <b>Question 9</b> When an IPv4 host $A$ wants to know the MAC address that corresponds to a next-hop IPv4 address $B$ , say what it can use:       |
| <ol> <li>the ARP protocol</li> <li>the DHCP protocol</li> </ol>                                                                                    |
| 1 and not 2.Neither 1 norBoth.2 and not 1.2.                                                                                                       |
| <b>Question 10</b> With SLAAC, an IPv6 host obtains:                                                                                               |
| <ol> <li>A link-local address.</li> <li>A valid subnet prefix, when a router that participates in SLAAC is present in<br/>the subnet.</li> </ol>   |

| $\Box$ 1 and not 2. | $\square$ 2 and not 1. | Neither 1 nor | Both. |
|---------------------|------------------------|---------------|-------|
|                     |                        | 2.            |       |