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Exercise 1 : Nullclines

1.1 For the nullclines of h1, d
dth1(t) , we have

0 = −h1(t) + hext + (wee − α)g(h1(t))− αg(h2(t)) (1)

i.e. numerically

0 = −h1(t) + 0.8 + 0.5g(h1(t))− g(h2(t)).

We can also solve for g(h2) along the h1 nullcline:

αg(h2) = −h1(t) + hext + (wee − α)g(h1(t))

The table is

h1 g(h2) h2
0 0.85 0.9

0.2 0.7 0.7
0.8 0.4 0.4

1 0.25 0.25

The steps for the h2 nullcline are the same. The two nullclines are plotted in figure 1.

0
1
=h

dt

d

0
2
=h

dt

d

extext
hh
21

8.0 ==

Figure 1.

1.2 & 1.3
The arrows of the phase plane and the three trajectories can be seen in figure 2. As we can see
from the direction of the arrows and as we will show in the next exercise, the middle fixed point is
a saddle point. The point (0,0) belongs to the stable manifold of the saddle point, so the trajectory
that starts from there moves along this manifold, is attracted towards the saddle point and stops
when it reaches it. The other two trajectories are pushed away from the saddle point and depending
on their starting point go to one of the other two (stable) fixed points.
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Figure 2.

Exercise 2 : Stability of the homogeneous solution

2.1 Rewriting the system of equation with the numerical values ( g(h) = h, wee = 1.5, α = 1):

d

dt
h1 = b− 0.5h1 − h2 (2)

d

dt
h2 = b− 0.5h2 − h1. (3)

The nullclines are given by:
h2 = b− 0.5h1

h1 = b− 0.5h2.

Since the system of equation is symmetric, there is a fixed point that follows the symmetry at
h∗ ≡ h1 ≡ h2, solving yields:

h∗ =
2

3
b.

One could analyze the stability of the system given in 2. With a view to exercise 2.3, we want to
keep track of the parameters wee and α, and start from the original system given in the exercise
sheet. The stability of that nonlinear system is analyzed by linearizing it around the fixed-point
of interest and studying the eigenvalues of the Jacobian matrix:(

d
dth1

d
dth2

)
≈

(
∂

∂h1
(dh1

dt ) ∂
∂h2

(dh1

dt )

∂
∂h1

(dh2

dt ) ∂
∂h2

(dh2

dt )

)
|(h∗,h∗)

(
∆h1
∆h2

)
Plugging in the expressions given on the exercise sheet we get the following Jacobian:

J =

(
−1 + (wee − α) ∂

∂h1
g(h1) −α ∂

∂h2
g(h2)

−α ∂
∂h1

g(h1) −1 + (wee − α) ∂
∂h2

g(h2)

)
|(h∗,h∗)

(4)

We have (wee − α) = (1.5− 1) = 0.5, g(h) = h, d
dhg(h∗) = 1. Therefore



J =

(
−0.5 −1
−1 −0.5

)
For a 2x2 matrix, it is convenient to express the eigenvalues in terms of its determinant and trace:

λ± =
Tr J ±

√
(TrJ)2 − 4Det J

2
. (5)

With
TrJ = −2 + 2(wee − α)g′(h∗)

Det J = 1− 2(wee − α)g′(h∗) + (w2
ee − 2weeα)g′(h∗)2

we find λ− = −1.5 and λ+ = 0.5. We look at the sign of the two real eigenvalues to determine the
stability: (pos/pos) → unstable, (neg/neg) → stable, (pos/neg) → saddle point. Hence, for the
given parameters, the fixed point (h∗, h∗) is unstable, and it is a saddle point.

2.2 We have h1 = h2 = h∗ and

0 = −h∗ + b+ (wee − α)g(h∗)− αg(h∗)

From which we find the following implicit equation for the fixed points in the general case:

h∗ = b+ (wee − 2α)g(h∗)

2.3 We express the Jacobian found above (eq. 4) using β and the given parameters. Simplifying
gives:

J =

(
−1 + β −β
−β −1 + β

)
With Det(J) = 1− 2β and Tr(J) = −2 + 2β. Using eq. 5 we find

λ± = −1 + β ± β.

2.4 In the case where the fixed point is in the region where g′(h∗) = 0 we have λ± = −1. This
corresponds to a stable fixed point. In the case where g′(h∗) = 1 then λ− = −1 and λ+ = 1

2 . The
fixed point is unstable. In fact the point is stable if and only if β < 1

2 .

2.5 With wee = 3/2 and α = 3/4 we have h∗ = b. Then β = 3
4g
′(h∗) = 3

4g
′(b). At b = 0.8 we

have g′(b) = 1 and so β = 3/4. This is larger than 1/2 so according to the previous question the
fixed point is a saddle point. As we decrease b from 0.8, g′(h) decreases and eventually becomes 0.
Then β = 0 < 1/2, so the fixed point becomes stable. Thus, for strong symmetric input (b > 0.8)
the monkey is forced to make a decision, and it depends on the initial conditions and the noise in
the input whether the system ends up left or right (as we saw in figure 2). But for weak symmetric
input there is a stable fixed point and the monkey may not respond at all.


