Semiconductor Devices II

Chapter 2: Introduction to 2D materials

<u>Andras Kis</u> andras.kis@epfl.ch

EPFL – École Polytechnique Fédérale de Lausanne

Electrical Engineering Institute

Introduction

Why semiconducting nanostructures for nanoelectronics

Historic overview

- Graphene
- Transition metal dichalcogenides and 2D materials

Charged impurities

- Point defects
- Screening and its signatures in electrical transport
- Disorder engineering

Material growth

• CVD

Electrical contacts to 2D materials

Moore's Law

Gordon Moore, co-founder of Intel stated in 1965: "The number of transistors that can be inexpens circuit is increasing exponentially, doubling appl

Dissipated Heat

Processor coolers 20 years ago and now

Dissipated Heat

Frying eggs on processors

http://www.phys.ncku.edu.tw/~htsu/humor/fry_egg.html

Melting-butter Benchmark

Source: Android and Me.com

MOSFET

Metal-oxide-semiconductor field-effect transistor (MOSFET)

Approaching atomistic limits

Channel length in Intel processors:

14 nm 2014 10 nm 2017 7 nm 2018?

Why Heat Dissipation in Small Transistors?

Example:

2nm thin Si, 1nm SiO₂: L_g >10nm

Ferain et al., Nature 479, 310 (2011) Colinge, Sol. State El. 48, 897 (2004)

Graphite and Graphene

Graphite and Graphene

Graphite and Graphene

(Some) Carbon Nanostructures

Smalley group web site http://smalley.rice.edu/

Dimensions in Geometry and Semiconductor Physics

Geometry

- Refers to the system size
- Planes (2D), lines (1D), dots (0D)

Semiconductor Physics

- Refers to the free motion of charge carriers
- Can be constrained due to quantum confinement
- Quantum wells (2D), quantum wires (1D), quantum dots (0D)

Dimensions in Semiconductor Physics

assuming $E = \frac{\hbar^2 k^2}{2m}$

 \rightarrow Exercise session today

2D Circuits

Example: Flip-flop circuit

Areshkin et al., Nano Letters 7, 204 (2007)

2D Materials: Wide Range of Geometries

Heterostructures Based on 2D Materials

Vertical: FETs, solar cells

Britnell, Novoselov et al. Science 340, 1311 (2013)

Lateral/vertical: Flash memory

Bertolazzi, Krasnozhon, Kis ACS Nano (2013)

Early Attempts

Graphene in 3-Dimensions: Towards Graphite Origami

By Thomas W. Ebbesen* and Hidefumi Hiura

Fig. 1. AFM picture of a graphitic ribbon folded 4 times on the surface of HOPG reminiscent of origami.

AFM image of a folded graphitic ribbon

Ebbesen et al., Adv. Mater. 7, 582 (1995)

Fig. 6. Schematic diagram of possible approaches for fabricating carbon structures by design (see text).

Proposed device fabrication procedure

Early Attempts

APPLIED PHYSICS LETTERS

VOLUME 75, NUMBER 2

Xuekun Lu,^{a)} Hui Huang, Nikolay Nemchuk, and Rodney S. Ruoff^{b)} Department of Physics, Washington University, CB1105, St. Louis, Missouri 63130

(Received 18 January 1999; accepted for publication 18 May 1999)

We were motivated to pattern HOPG because of our interest in the mechanical strength of graphite in the basal plane, which has not been determined to date. Mechanical strengths as high as ~ 300 GPa for defect-free regions are theoretically predicted from local-density approximation cal-

FIG. 5. SEM images of HOPG islands smeared on a Si(001) substrate. (a) Stacked thin platelets. (b) Example of a very thin layer left on the substrate while the platelet folds over.

First Devices: Geim and Novoselov

Electric Field Effect in Atomically Thin Carbon Films

K. S. Novoselov,¹ A. K. Geim,^{1*} S. V. Morozov,² D. Jiang,¹ Y. Zhang,¹ S. V. Dubonos,² I. V. Grigorieva,¹ A. A. Firsov²

Novoselov et al., Science 306, 666 (2004)

De Heer Group: Epitaxial Graphene

Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics

Claire Berger,[†] Zhimin Song, Tianbo Li, Xuebin Li, Asmerom Y. Ogbazghi, Rui Feng, Zhenting Dai, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, and Walt A. de Heer*

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430

Received: October 7, 2004

Berger et al., J. Phys. Chem. B 108, 19912 (2004) Berger et al., Science 312, 1191 (2006) Berger et al., J. Phys. Chem. B 108, 19912 (2004) Berger et al., Science 312, 1191 (2006)

Kim Group: Mechanical Exfoliation

Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices

Yuanbo Zhang, Joshua P. Small, William V. Pontius, and Philip Kim^{a)} Department of Physics and the Columbia Nanoscale Science and Engineering Center, Columbia University, New York, New York 10027

(Received 31 August 2004; accepted 11 December 2004; published online 7 February 2005)

Zhang et al., Phys. Rev. Lett. 94, 176803 (2005) Zhang et al., App. Phys. Lett. 86, 073104 (2005)

First Actual Measurements on Graphene

& A. A. Firsov²

2

 $2R_{xx}$

8

6

B (T)

2

5

Graphene FET Characteristics

Ambipolar behavior

Large current density – 10⁸ A/cm²

- Moser et al.; APL 91, 163513 (2007)
- High mobility 200 000 cm²/Vs
- Bolotin et al.; Sol. St. Comm. 146, 351 (2008)

Suppression of noise in double layers

• Lin and Avouris; Nano Letters 8, 2119 (2008)

Graphene Band Structure

Dispersion relation:

$$E(k) = \pm t \left[1 + 4\cos\left(\frac{\sqrt{3}k_x a}{2}\right) \cos\left(\frac{k_y a}{2}\right) + 4\cos^2\left(\frac{k_y a}{2}\right) \right]^{1/2}$$

Graphene Has No Band Gap

Possible solutions

Hongjie Dai group: Science 319 1229 (2008) Kim group: PRL 98, 206805 (2007) Avouris group: Physica E 40, 228 (2007)

Max band gap: 400 meV for 5 nm

Zettl, Crommie, Wang: Nature 459, 820 (2009) Avouris group: NanoLet 10, 715 (2010)

Max band gap: 250 meV for 120 V

2D Transition Metal Dichalcogenides (TMDCs)

Common formula: MX₂

Electrical property	Material
semiconducting	MoS ₂ MoSe ₂ WS ₂ WSe ₂ MoTe ₂ WTe ₂
semimetallic	TiS ₂ TiSe ₂
metallic, CDW, superconducting	$NbSe_2 NbS_2 NbTe_2$ TaS ₂ TaSe ₂ TaTe ₂

Metal M = Ta, Nb, Mo, W, Ti, Re

Chalcogenide X = S, Se, Te

MoS₂

Band gap:	1.2 eV (bulk); 1.8 eV direct (optical) gap (single layer)					
Stability:	> 1000 °C in inert atmosphere					
	no dangling bonds					
Max J:	5×10 ⁷ A/cm ² (copper: 10 ⁵ , graphene: 10 ⁸)					
Stiffness:	280 GPa (slightly higher than stainless steel)					
Mech. failure:	6-11% strain (30x stronger than steel)					

Kam et al., J. Phys. Chem. 86, 463 (1982) Splendiani et al., Nano Let. 10, 1271 (2010) Mak et al., PRL 105, 136805 (2010) Bertolazzi et al., ACS Nano 5, 9703 (2011) Lembke et al., ACS Nano 6, 10070 (2012) Review papers:

Wang et al., Nature Nanotech. (2012) Allain...Kis; Nature Mater. (2015)

Physical properties of layer structures : optical properties and photoconductivity of thin crystals of molybdenum disulphide

> By R. F. FRINDT AND A. D. YOFFE Physics and Chemistry of Solids, Cavendish Laboratory,

University of Cambridge

(Communicated by F. P. Bowden, F.R.S.—Received 16 August 1962— Revised 23 November 1962)

[Plates 1 and 2]

Very thin crystals of molybdenum disulphide, less than 100 \AA thick, have been prepared by cleavage. The optical absorption spectra in the thickness range several micrometres to less than 100 Å are similar. Absorption coefficients have been measured to values close to $10^{\circ} \text{ cm}^{-1}$. The absorption bands observed with thin crystals are associated with bulk rather than surface properties.

SINGLE-LAYER MoS2

Per Joensen, R.F. Frindt, and S. Roy Morrison Energy Research Institute Department of Physics Simon Fraser University Burnaby, B.C., Canada V5A 1S6

(Received January 27, 1986; Communicated by A. Wold)

Frindt and Yoffe, Proc. Roy. Soc. A (1963)

10⁻⁴ $V_{s} = +10 \text{ V}$ 10⁻⁶ 300 K 220 K $I_{\rm SD}$ (A) 200 K 10⁻⁸ ب 180 K 160 K 140 K 120 K 10⁻¹⁰ 100 K 80 K 60 K 25 -100 -75 -50 -25 0 50 75 100 $V_{a}(V)$ Podzorov et al. APL (2004)

Joensen et al., Mat. Res. Bull. 21, 457 (1986)

Novoselov et al., PNAS (2005)

Prevailing Opinion at the Time

Perspectives on the 2010 Nobel Prize in Physics for Graphene

Mildred S. Dresselhaus* and Paulo T. Araujo

ACS Nano 4, 6297 (2010)

In 2005, Novoselov and Geim performed comparative studies in other atomically layered 2D systems like boron nitride (BN), MoS₂, NbSe₂, and $Bi_2Sr_2CaCu_2O_x$.³¹ All of the materials were exfoliated in the same way as had been done for graphene and were shown to be morphologically stable, although with electrical and mechanical properties much inferior to those of 2D graphene. Later, the production of monolayer graphene suspended over microfabricated trenches exhibited striking stability and opened a new channel for technological devices.^{32,33}

Was the Mobility Really Supposed to Be low?

PHYSICAL REVIEW

VOLUME 163, NUMBER 3

Mobility of Charge Carriers in Semiconducting Layer Structures

R. FIVAZ* AND E. MOOSER

Cyanamid European Research Institute, Cologny, Geneva, Switzerland (Received 26 May 1967)

FIG. 7. Mobility of the electrons in MoS_2 .

Our First MoS₂ Transistor (5 layers, 2009)

TMCN 2010, Rehovot, Israel

Monolayer MoS₂ Transistor

Radisavljevic...Kis, Nature Nanotechnology (2011)

Gate length:	500 nm
Channel width:	4 µm
On/Off:	10 ⁸
ON current:	2.5 μA/μm
OFF current:	25 fA/µm
Transconductance:	1 μS/μm

Devices Based on Monolayer MoS₂

Structure

Radisavljevic...Kis; Nature Nanotech. (2011)

Kuc...Kis; MRS Bull. (2015)

н		MX ₂													He		
Li	Be		M =Transition metal X = Chalcogen								В	С	N	0	F	Ne	
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	Ρ	S	CI	Ar
к	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	La L u	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac -Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Fl	Uup	Lv	Uus	Uuo

Chhowalla...Zhang; Nature Chemistry (2013)

Eda...Chhowalla; ACS Nano (2012)

Tip of the Iceberg

>500 potentially interesting 2D materials

Transition metal trichalcogenides

 $AMo_{3}X_{3}$, NbX_{3} , TiX_{3} , and TaX_{3} (X = S, Se, or Te)

Metal phosphorous trichalcogenides (MPX₃)

Metal phosphorous trichalcogenides (MPX₃), such as $MnPS_{3'}$, $CdPS_{3'}$, $NiPS_{3'}$, $ZnPS_{3'}$, and $Mn_{0.5}Fe_{0.5}PS_{3}$

Transition metal
Chalcogen
Phosphorus

MnPS₃top view

Transition metal dihalides

Transition-metal dihalides*

Transition metal oxides

Transition metal oxides : Ti oxides, $Ti_{0.91}O_2$, $Ti_{0.87}O_2$, Ti_3O_7 , Ti_4O_9 , Ti_5O_{11} ; Nb oxides, Nb₃O₈, Nb₆O₁₇, HNb₃O₈; S Mn oxides, MnO₂, Ti_3O_7 , Na_x(Mn⁴⁺,Mn³⁺)₂O₄

Na_x(Mn⁴⁺,Mn³⁺)₂O₄ (birnessite) side view

Nicolosi...Coleman; Science (2013)

Band Structure of 2H MoS₂

Yazyev and Kis; Materials Today (2014)

Charge Scattering Mechanisms

Most Common Point Defects in MoS₂

Zhou...Idrobo; Nano Letters (2013)

CV Measurements

Bertolazzi, Kis et al, under review

Screening of Charged Impurities by the Environment

FIG. 1. Electric flux lines originating from a fixed ionized impurity and terminating on a mobile electron, and the effect of the dielectric environment. The flux lines bunch closer inside the semiconductor layer if $\epsilon_e < \epsilon_s$, and spread farther apart if $\epsilon_e < \epsilon_s$, thus enhancing Coulomb interaction in the former case and damping it in the latter.

Jena and Konar, PRL 98, 136805 (2007)

Screening of Charged Impurities by the Environment

Temperature-dependent El. Transport

With top-gate dielectric $V_{ds} \xrightarrow{\bar{}} V_{tg} \xrightarrow{\bar{}} V_{tg} \xrightarrow{\bar{}} HfO_2$ Cr/Au

Radisavljevic and Kis; Nature Materials (2013)

Temperature-dependent El. Transport

Temperature-dependent El. Transport

Radisavljevic and Kis; Nature Materials (2013)

0.010

 $V_{tg} = -3.4 V$

0.008

1/T (K⁻¹)

 $V_{tg} = -1.4 V$

Screened vs. Unscreened Disorder Potential

S. Adam and D. Sarma., PRB (2008): $\sigma \sim n \quad \text{screened ch. impurities}$ $\sigma \sim n^2 \quad \text{unscreened}$

Mobility vs. Temperature

High-quality Devices With No Encapsulation

See also: Baugher, Herrero et al., Nano Lett. (2013) Jariwala, Hersam et al., Appl. Phys. Lett. 102, 173107 (2013)

Encapsulation in Boron Nitride

Cui...Hone; Nat. Nano (2015)

Material Preparation

Scotch Tape Exfoliation

Benameur et al., Nanotechnology (2011)

MoS₂: CVD Growth

Van der Zande et al. Nature Materials (2013) Najmaei et al. Nature Materials (2013)

CVD Growth

Dumcenco, Kis et al. ACS Nano 9, 4611 (2015)

AFM image of a sapphire surface

Being commissioned at EPFL: MOCVD – BM 2D NOVO

The Contacts

Electrical Contacts to 2D Materials

Allain...Bannerjee, Kis; Nature Materials (2015)

mature materials

REVIEW ARTICLE

PUBLISHED ONLINE: 20 NOVEMBER 2015 | DOI: 10.1038/NMAT4452

Electrical contacts to two-dimensional semiconductors

Adrien Allain¹, Jiahao Kang², Kaustav Banerjee^{2*} and Andras Kis^{1*}

Lowest Reported Contact Resistance

Kappera...Chhowalla; Nat. Mater. (2014)

Recapitulation

Why semiconducting nanostructures for nanoelectronics

Historic overview

- Graphene
- Transition metal dichalcogenides and 2D materials

Charged impurities

- Point defects
- Screening and its signatures in electrical transport
- Disorder engineering

Material growth

• CVD

Electrical contacts to 2D materials