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License Information for Reinforcement Learning Slides

I This work is released under a Creative Commons License with the following terms:
I Attribution

I The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees must give the original authors credit.

I Non-Commercial
I The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees may not use the work for commercial purposes – unless they get the licensor’s
permission.

I Share Alike
I The licensor permits others to distribute derivative works only under a license identical
to the one that governs the licensor’s work.

I Full Text of the License
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Logistics

I Credits: 3

I Prerequisites: Previous coursework in optimization, probability theory, and linear
algebra is required. Familiarity with deep learning and programming in python is
useful.

I Grading: Course project and presentation
I Moodle: https://moodle.epfl.ch/course/view.php?id=15887
I TA’s: Kamalaruban Parameswaran, Paul Rolland, Igor Krawczuk, and Cheng Shi
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Outline

I This class:
1. Reinforcement Learning: A basic introduction
2. Markov Decision Process

I Next class:
1. Dynamic Programming
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Recommended reading

I Chapter 3 in S. Sutton, and G. Barto, Reinforcement Learning: An Introduction,
MIT Press, 2018.
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What is Reinforcement Learning?

Reinforcement learning is learning what to do — how to map situations to actions
— so as to maximize a numerical reward signal. The learner is not told which
actions to take, but instead must discover which actions yield the most reward
by trying them. In the most interesting and challenging cases, actions may
affect not only the immediate reward but also the next situation and, through
that, all subsequent rewards. These two characteristics — trial-and-error search
and delayed reward — are the two most important distinguishing features of
reinforcement learning.

Richard S. Sutton and Andrew G. Barto
Reinforcement Learning: An Introduction, 1998
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Applications: Humanoid (walking) Robot

Figure: https://www.bostondynamics.com/atlas

I see in action Link

I choose the forces applied at the joints based on the current walking position
I reward: (+) for forward motion; (−) for falling over
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Applications: Autonomous Helicopter Flight

Figure: http://heli.stanford.edu/

I see in action Link

I choose the speed of the motors based on the current helicopter position
I reward: (+) for following desired trajectory; (−) for crashing
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Applications: Playing Games Better Than Humans — Atari 2600

Figure: http://www.cs.toronto.edu/ vmnih/docs/dqn.pdf

I see in action Link

I choose the next move based on the current game position
I reward: (+) for increasing score; (−) for decreasing score
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Applications: Playing Games Better Than Humans — AlphaGo

Figure: https://deepmind.com/research/alphago/

I see in action Link

I choose the next move based on the current board position
I reward: (+) for winning the game; (−) for losing the game
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Applications: Playing Games Better Than Humans — AlphaStar

Figure: https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

I see in action Link

I multi-agent RL
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Applications: Portfolio Management

Figure: https://medium.com

I make buy/sell decisions according to market conditions
I reward: (+) for each $ in the bank
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More Applications

I wireless communication [1]

I display ads [2]

I energy management [3]

I chatbots [4]
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Reinforcement Learning vs. Regular Machine Learning

• Distinguishing features:

I lack of a supervisor, only a reward signal

I delayed feedback

I non i.i.d data

I actions affect the subsequent observations
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Reinforcement Learning vs. Imitation Learning

Reward hypothesis
Preferred behavior/goal can be described by the maximization of expected cumulative
reward.

• Reinforcement Learning:

I receives a feedback signal: reward
I learning from interaction

• Imitation Learning:

I no feedback signal available
I learning from (expert) demonstrations
I behavioral cloning and inverse reinforcement learning
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Motivation

Key question
How do we model the reinforcement learning problem?
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Markov Property

Definition (Markov property)
Consider a sequence of random variables S1, S2, . . . , St, . . . (called as states). A state
St is Markov if and only if

P (St+1 | St) = P (St+1 | S1, . . . St)

I future ⊥⊥ past | present

I the state summarizes the “past (history)” so as to retain all “essential”
information

I once the state is known, the history may be thrown away

I the state is a sufficient statistic of the history
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Markov Process

• Sequence of random states with Markov property

• Elements of a Markov Process:

S state space, St represents the state at time t

P state transition probability, St+1 ∼ P (· | St)

P0 initial state distribution, S0 ∼ P0(·)
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Markov Process

• Pong 1D: https://mathsimulationtechnology.wordpress.com/pong/

• Example:

I S = {S1, S2, S3, S4, S5}

I P (S1 | S2) = P (S3 | S2) = 0.3, P (S2 | S2) = 0.4

I sample episode: S2, S1, S1, S2, S3, S4, S3, S4, S5, . . .
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Markov Reward Process (MRP)

• MRP = Markov Process + Reward

• Elements of a Markov Reward Process:

S state space, St represents the state at time t

R reward function, Rt = R(St) ∈ R ⊆ R

P state transition probability, St+1 ∼ P (· | St)

P0 initial state distribution, S0 ∼ P0(·)
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Markov Reward Process (MRP)

• Example:

I S = {S1, S2, S3, S4, S5}

I R(S1) = +1, R(S2) = R(S3) = R(S4) = 0, R(S5) = +5

I P (S1 | S2) = P (S3 | S2) = 0.3, P (S2 | S2) = 0.4

I sample episode: S2, S1, S1, S2, S3, S4, S3, S4, S5, . . .
(0,+1,+1, 0, 0, 0, 0, 0,+5, . . . )

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 21/ 35



Markov Decision Process (MDP)

• MDP = MRP + Action

• Elements of a Markov Decision Process:

S state space, St represents the state at time t

A action space, At represents the action taken at time t

R reward function, Rt+1 = R(St, At, St+1) ∈ R ⊆ R

P state transition probability, St+1 ∼ P (· | St, At)

P0 initial state distribution, S0 ∼ P0(·)
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Markov Decision Process (MDP)

• Example:

I S = {S1, S2, S3, S4, S5}

I A = {left, right}

I R(S2, left, S1) = +1, R(S3, left, S2) = 0, R(S4, right, S5) = +5

I deterministic dynamics: P (S1 | S2, left) = P (S1 | S1, left) = 1,
P (S3 | S2, right) = 1

I sample episode: S2, left, S1,+1, left, S1,+1, right, S2, 0, . . .
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Policy

Definition (Policy)
A policy π is a distribution over actions given states,

π(a | s) = P (At = a | St = s)

I a policy specifies what action to take in each state

I MDP policies depend on the current state (not the history)

I policies are stationary (time-independent), At ∼ π(· | St), ∀t > 0

I example: π(left | s) = 1, ∀s ∈ S, a policy that always chooses left for all states.
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Reinforcement Learning Game

• Players:

I environment: MDPM = (S,A, R, P, P0)
I agent: deterministic or random policy π(a | s)

• At time step t = 0: S0 ∼ P0(·)
• At each time step t = 1, 2, . . .

I agent receives some representation of the environment’s state St ∈ S
I agent chooses an action At ∈ A(St) based on St or (S0:t, A0:t−1)
I agent receives a reward Rt+1 ∈ R ⊆ R, and finds itself in a new state St+1

• Trajectory:
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Agent Environment Interaction
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Dynamics of the Environment

• Probability of the next state and reward given the current state and action:

p(s′, r | s, a) := P (St = s′, Rt = r | St−1 = s,At−1 = a)

State transition probability

p(s′ | s, a) := P (St = s′ | St−1 = s,At−1 = a) =
∑
r∈R

p(s′, r | s, a)

Expected immediate reward

r(s, a) := E[Rt | St−1 = s,At−1 = a] =
∑
r∈R

r
∑
s′∈S

p(s′, r | s, a)

r(s, a, s′) := E[Rt | St−1 = s,At−1 = a, St = s′] =
∑
r∈R

r
p(s′, r | s, a)
p(s′ | s, a)
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Example: Gridworld
• Problem specification:
I state space: S = {cells in the grid}; |S| = 25
I action space: A = {north, south, east,west}; |A| = 4
I dynamics: deterministic
I if the action takes the agent off the grid: no move, but reward −1
I from state A, all four actions yield a reward of +10 and take the agent to A′
I from state B, all four actions yield a reward of +5 and take the agent to B′
I other actions result in a reward of 0
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Example: Recycling Robot

• Problem specification:

I state space: S = {high, low}; |S| = 2
I action space: A(high) = {search,wait}, and A(low) = {search,wait, recharge}
I rewards: rsearch = expected number of cans while searching, and rwait =
expected number of cans while waiting (rsearch > rwait).
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Returns

• Episodic tasks:

I interaction breaks naturally into episodes

I example: plays of a game, trip through a maze

I terminal state

I non-terminal states S

I set of all states plus the terminal state S+

I return Gt := Rt+1 +Rt+2 +Rt+3 + · · ·+RT , where at time step T terminal
state is reached
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Returns

• Continuing tasks:

I interaction does not have natural episodes, but just goes on and on

I example: controlling a power plant

I discount rate γ ∈ [0, 1]

I humans prefer γ < 1, e.g., financial returns

I γ = 0: only care about immediate reward

I γ = 1: future reward is beneficial as immediate reward

I discounted return Gt := Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∑∞

k=0 γ
kRt+k+1

I if Rt ∈ [0, 1], then Gt ≤
∑∞

k=0 γ
k = 1

1−γ

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 31/ 35



Returns

• Unified notation (for both episodic and continuing tasks):

I absorbing state for episodic tasks

I return Gt :=
∑T

k=t+1 γ
k−t−1Rk

I T =∞ or γ = 1 (but not both)

Recursive relationship

Gt := Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + . . .

= Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + . . . )
= Rt+1 + γGt+1.
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Planning and Learning

• Markov Decision Process:

I fully observable state and reward
I known reward distribution and transition probabilities
I At function of (S1:t, A1:t−1, R1:t)

• Reinforcement learning:

I observable state and reward
I unknown reward distribution
I unknown transition probabilities
I At function of (S1:t, A1:t−1, R1:t)
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Resources

• https://github.com/ShangtongZhang/reinforcement-learning-an-introduction

• https://github.com/openai/spinningup

• https://github.com/openai/baselines
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