Theory and Methods for Reinforcement Learning

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 5: n-step Bootstrapping

Laboratory for Information and Inference Systems (LIONS)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

EE-618 (Spring 2020)

‘

R STIFTUNG oSDSC PN
l'lonS@epﬂ i Google Al

License Information for Reinforcement Learning Slides

> This work is released under a Creative Commons License with the following terms:
> Attribution

> The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees must give the original authors credit.

> Non-Commercial

> The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees may not use the work for commercial purposes — unless they get the licensor’s
permission.

> Share Alike

> The licensor permits others to distribute derivative works only under a license identical
to the one that governs the licensor’'s work.

> Full Text of the License

ICLHEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 48

http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode

> This class:

1. n-step TD Prediction
2. n-step TD Control
3. Eligibility Traces

> Next class:
1. Value-based Methods for Deep RL

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 3/ 48

E

P

Recommended reading

> Chapters 7 & 12 in S. Sutton, and G. Barto, Reinforcement Learning: An
Introduction, MIT Press, 2018.

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 4/ 48

E

P

n-step bootstrapping

o Neither Monte-Carlo (MC) methods nor 1-step temporal-difference (TD) methods
are always the best.

e n-step TD methods span a spectrum with MC methods at one end (co-step) and
one-step TD methods at the other (1-step).

e The best method is often an intermediate between the two extremes.

e n-step TD prediction and control.

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 48

E

P

n-step TD prediction

o Lets the TD target look n steps into the future.

1-step TD co-step TD
and TD(0) 2-stepTD 3-step TD n-step TD and Monte Carlo

T
!

O

O—e—0O——0
O—e—C0O——0O——"0
o—O—e—0—e—0
o—O—e——0e—0 70

O—-e

Figure: Backup Diagram for n-step TD methods, the two extreme ends are respectively 1-step TD
and Monte-Carlo.

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 48

E

P

n-step return

Definition (n-step return)

Let T' be the termination time step in a given episode, v € [0, 1].

Ggl) = Rip1+7V(Ses1) (one-step return)
ng) = Ryy1 +Rit2 + 72V (Seq2) (two-step return)
ng) = Rip1+~YRiyo+ + 7" Ritn + 7V (Sitn) (n-step return)
G,EOO) = Riyy1 +YRipa+ - +4T " 'Ry (complete return)

Note that Gin) = Gioo) ift+n>T.

e The n-step return computes discounted rewards for n steps, and uses the discounted
V(St+n) as a proxy for the remaining terms.

e No real algorithm can use the n-step return until after it has seen R;y,,, as this
would mean looking into the future.

ICLHEIN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 7/ 48 EP

n-step TD update

e Incremental update rule for the state-value prediction:
V(St) « V(St)+ aftarget — V(St)],
while the value of all the other states remains unchanged: V(s) + V(s), Vs # S;.

e Different targets can be used:

o For one-step TD or TD(0): target = G,(fl)

o For two-step TD: target = G,(f)
o For n-step TD: target = G,(gn)
o For MC: target = Gioo)

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 48

n-step TD Prediction Algorithm

n-step TD for estimating V = v,

Input: a policy m

Algorithm parameters: step size « € (0, 1], a positive integer n

Initialize V (s) arbitrarily, for all s € 8

All store and access operations (for S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal

T ¢ o0
Loop for t =0,1,2,... :
| Ift < T, then:

| Take an action according to (-|St)

| Observe and store the next reward as R:y; and the next state as Si+1

| If S¢41 is terminal, then T' - ¢t + 1

| 7+ t—n+1 (7 is the time whose state’s estimate is being updated)

| Ifr>0:

| GeXL™ Oy R

| If 7+n<T,then: G G+ "V (Sr4n) (Grirtn)
| V(Sr) < V(S:)+alG—-V(S:)]

Untilt =T -1

IGEIIl Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 48 EPFL

Error reduction property of n-step returns

Theorem (Error reduction property)
For alln > 1,

max
sES

E [GE’”

St = s} — vr(s)

< A" max |V (s) — vr(s)].
sES

e Because of the error reduction property, one can show formally that all n-step TD
methods converge to the correct predictions under appropriate technical conditions.

e The error reduction property means that the worst error of the expected n-step
return is guaranteed to be less than or equal to y" times the worst error under V.

ICLHEIN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 48

E

P

15

Example: Random walk

e Recall the 5-state Random walk example from Lecture 4.

e The outcome for ending up on the left is —1 and there are 19 states.

RMS error

0.0 0.2 0.4 0.6 0.8 1.0
alpha

Figure: Performance of n-step TD methods as a function of «, for various values of n, on a
19-state random walk task.

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 48 EPFL

n-step TD control

e On-policy learning via n-step SARSA
e Off-policy learning with Importance Sampling

e Off-policy learning with n-step Tree Backup

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 12/ 48

E

P

=

Recall: SARSA Algorithm

Sarsa (on-policy TD control) for estimating @ ~ ¢.

Algorithm Parameters: step size a € (0, 1], small € > 0

Initialize: Q(s,a), for all s € ST and a € A(s), arbitrarily except that
Q(terminal,-) = 0

Loop for each episode:

Initialize state S

Choose A from S using policy based on Q (e.g., e-greedy)

Loop for each step of episode:
Take action A, observe reward R and next state S’
Choose A’ from S’ using the policy based on Q (e.g., e-greedy)
Q(S, 4) Q(S, 4) + a[R+7Q(S', A') - Q(S, A)]
S+ S A A

until S is terminal

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 48

n-step SARSA

e We require the target policy 7w to be e-greedy with respect to Q.

o Redefine the n-step return in terms of estimated action-values:

G'Em = Rip1 +yRip2+ -+ 7" Regn + 7" Q(Stans Atgn),
with G =G ift 4 n > T.
e n-step SARSA update rule:

Q(Si, Ay) Q(st,AtHa[G,E"LQ(st,At) . 0<t<T,

while the values of all other states remain unchanged: Q(s,a) < Q(s,a), for all
s# St,a # Ag.

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 14/ 48

n-step SARSA Algorithm

n-step Sarsa for estimating Q = g, or ¢,

Initialize Q(s, a) arbitrarily, for all s € §,a € A

Initialize 7 to be e-greedy with respect to @, or to a fixed given policy

Algorithm parameters: step size a € (0, 1], small € > 0, a positive integer n

All store and access operations (for S, A;, and R;) can take their index mod n+ 1

Loop for each episode:
Initialize and store So # terminal
Select and store an action Ag ~ m(+|Sg)

T < o0
Loop for t =0,1,2,... :
| If¢t<T, then:

| Take action A;

| Observe and store the next reward as R;+1 and the next state as Sy
| If S¢4q is terminal, then:

| T+t+1

| else:

| Select and store an action A1 ~ m(+|Set1)

| 74 t—n+1 (7 is the time whose estimate is being updated)

| Ifr>0:

I G« me(7+n o1 'YZ — lR

| If7+n <T,then G« G+7"Q(Sr+n, Aryn) (Grirtn)
| Q(S+,Ar) « Q(Sr,Ar) + |G — Q(S-, Ar)]

| If 7 is being learned, then ensure that 7(:|S;) is e-greedy wrt Q
Untilt =T -1

IGEIIl Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 15/ 48 EPFL

n-step expected SARSA

o Redefine the n-step return as

G™ = Rey1+7Rep2+ -+ 7" Reyn + W"Z m(a | St41)Q(St+n,a),

a
with G\ = G\ if t 4+ > T,
e n-step expected SARSA update rule:

Q(Si A) — Q(St, Ad) + o [G,E") - Q(St,At)} ,

while the values of all other states remain unchanged: Q(s,a) < Q(s,a), for all
s+ St,a # Ag.

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 16/ 48

Backup Diagrams for n-step Methods

1-step Sarsa oo-step Sarsa n-step
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa aka Monte Carlo Expected Sarsa

I
T 7

o—+—eo+——oe

!
!

o—(—eo+—D+—eo—D—e
O—e - e«—O—e—O—0e

o>:)<—o cor 0—D—eo—D—oe

!
[

Figure: The backup diagrams for the spectrum of n-step methods for state-action values. They
range from the one-step update of Sarsa(0) to the up-until-termination update of the MC method.

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 48

E

P

=

Example: Gridworld

e All action-state values and rewards are initialized to 0.
e Only the reward for G is set to 1.
e One-step SARSA focus on the last value.

e n-step SARSA “strengthens” last n actions.

Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa
I] >y
| | ¥
I e nall]
-— G G |y
(i ; ARERE T

Figure: One-step SARSA strengthens the last action leading to the destination. n-step SARSA
increases the action value for the last n actions. For a single episode, we could clearly see that
multiple step approach learns more than its single step counterpart.

IGEIIl Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 48 EPFL

n-step off-policy learning

e Off-policy learning: Learn the value function for a policy m, while following another
behaviour policy b.

o 7 is the greedy policy w.r.t. current action-value function estimate.

o b is a more exploratory policy (e.g., e-greedy).

Definition (Importance sampling ratio)

min(t+n—1,T7—-1)
S0 n(A4lS)
! b(Ak|Sk)

e Off-policy n-step TD:

V(s « V(s)+ar" D [6 —vis)], o<e<r

ICLHEIN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 19/ 48

n-step off-policy control

e Off-policy n-step SARSA:

QS A Qs A +apliT) [687 - Qs a0

e Note that the importance sampling ratio here starts and ends one step later than for
n-step TD (for state value prediction).

e This is because we are selecting a state-action pair instead of only a state.

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 48

E

P

=

Off-policy n-step SARSA Algorithm

Off-policy n-step Sarsa for estimating Q =~ g« or g

Input: an arbitrary behavior policy b such that b(als) > 0, for all s € 8,a € A
Initialize Q(s, a) arbitrarily, for all s € §,a € A

Initialize 7 to be greedy with respect to @, or as a fixed given policy

Algorithm parameters: step size a € (0, 1], a positive integer n

All store and access operations (for S, A¢, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sp # terminal
Select and store an action Ao ~ b(:|So)

T + o0
Loop for t =0,1,2,...:
| Ift <T, then:

| Take action A

| Observe and store the next reward as R11 and the next state as Si41
| If S¢41 is terminal, then:

| T+t+1

| else:

| Select and store an action A¢y1 ~ b(:|Se+1)

| 7+ t—n+1 (7 isthe time whose estimate is being updated)
|

|

|

|

|

|

Ifr>0:
p H;n_‘:‘.(ff" LIZL) %((2—“5—)2 (Pr41:t4n—1)
o0, T) i
G« Ty TR,
Ifr4+n<T, then G G+7"Q(Sr4n, Arin) (=)

Q(Sr,Ar) + Q(Sr, A7) + ap |G — Q(S-, Ar)]
If 7 is being learned, then ensure that n(:|S;) is greedy wrt @
UntilT=T-1

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 21/ 48 EPFL

n-step tree-backup algorithm: motivation

Motivation

Is off-policy learning possible without importance sampling?

Q-learning and Expected Sarsa do this for the one-step case, but is there a
corresponding multi-step algorithm?

Answer: Yes! Use n-step tree backup.

ICLHEIN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 48

n-step tree-backup algorithm

4-step 4-step
Sarsa Tree backup

I

SARSA vs Tree-backup

Consider the backup diagram on the right. The estimated
value for the top node can be updated in at least two ways:

—»

> So far (SARSA): (discounted) rewards along the way +
estimate for bottom nodes.

> Tree-backup: (discounted) rewards along the way +
estimate for bottom nodes and dangling action nodes
along the way.

° °

ICLHEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 23/ 48 EPF

[

Tree-backup return

e One-step return:

GV = Ripr+v) mal S141)Q(Sei1,0).

a

e Two-step return:

G® = Riy1+v Z m(a | St+1)Q(St+1,0)

+ym(Ar41 | St+1) § Reqo + “/ZW(a | St42)Q(St+2,a)

a

= Rey1+7 Z m(a | St+1)Q(St+1,a) + ym(At41 | 5t+1)G§?1-

e n-step return:

GM = R+ Z (a | Se41)Q(St4+1,a) +ym(Aey | SHl)GEil Y.
a#Ai4q

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 24/ 48

n-step tree-backup algorithm

e Q(s,a) arbitrarily, for all s € §,a € A

Initialize 7 to be e-greedy with respect to @, or as a fixed given policy
Parameters: step size a € (0,1], small € > 0, a positive integer n

All store and access operations can take their index mod n

Repeat (for each episode):

Initialize and store Sy # terminal

Select and store an action Ag ~ 7(-|Sp)

Store Q(So, Ao) as Qo

T+ o0

For t=0)1,2,...

| Kt<T:

| Take action Ay

| Observe the next reward R; observe and store the next state as Sy4q

| If Sy is terminal:

| T+t+1

| Store R — Q, as &,

| else:
| Store R+, (alSi41)Q(St1,a) — Q¢ as &,
| Select arbitrarily and store an action as A4
| Store Q(Si+1, Ar+1) as Qut1
| Store m(A¢1|Si+1) as T4
| 7 t—n+1 (7 is the time whose estimate is being updated)
|
|
[
[
|
|
|
|

Ifr>0:
Z<+1
G+ Q;
Fork=rm,..., min(r +n —1,T — 1):
G« G+ Zo
Z — YZ 741

Q(Sr, A;) « Q(Sr, Ar) + a[G — Q(Sr, Ar)]
If 7 is being learned, then ensure that 7(a|S;) is e-greedy wrt Q(S-,-)
Until 7 =T -1

WYXl Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 25/ 48

EPFL

Eligibility traces: motivation

e n-step methods need to wait n — 1 steps after the beginning of an episode before
starting updates, and keeps running after the end of the episode.

e n-step methods do not make the best use use of a state as soon as it becomes
available.

Motivation

How can we efficiently combine information from all time-steps?

Answer: Use eligibility traces.

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 26/ 48

Eligibility traces

o Eligibility traces unify and generalize TD and MC methods.

o n-step TD methods also unify TD and MC.
o But eligibility traces offer in addition:

(i) an elegant algorithmic mechanism

(i) significant computational advantages.

e Eligibility traces produce a family of methods spanning a spectrum that has MC
methods at one end (A = 1) and one-step TD methods at the other (A = 0).

o In between A = 0 and A = 1 are intermediate methods that often perform
better than either extreme method.

e Eligibility traces also provide a way of implementing Monte Carlo methods online
and on continuing problems without episodes.

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 48

Averaging n-step returns

e We can average n-step returns over different n.
® e.g., average the 2-step and 4-step returns
1 1
,G(2) + ,G(4)
2 2
e Combines information from two different time-steps.

e How can we efficiently combine information from all
time-steps?

ICLHEIN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch

| = O*—.‘—O*—O<—O

pin OO —o—(O—0—(—e—0

Slide 28/ 48

E

P

15

A-return

e The A-return Gi‘ combines all n-step

returns ng):
o0
G = (=0 Al
n=1

e Recall that ZZOZO A" = ﬁ for all
A€ [0,1].

e If T is the termination time step:

T—t—1
G} = (1=X) Y ATIGMATTIIG,

n=1

e Forward-view of TD(A)

V(St) « V(S)+a |G —V(Sy)]

| O——0

(1= M)A

ICLHEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 29/ 48

EPFL

A-return weighting function

weight given to
the 3-step return total area = 1
is (1—A)A2

decay by A
Weighting 1-a weight given to

actual, final return
is /\T—t—l

Time —

Figure: Weighting given in the A-return to each of the n-step returns.

(oo}

G = (=0 Al

n=1

IGEIIl Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 30/ 48 EPFL

Forward-view TD())

Figure: We decide how to update each state by looking forward to future rewards and states.

o Recall the forward view of TD(X)
V(St) « V(S)+a |G} —V(Sy)]

o Updates the value function towards the A-return
o The forward view looks into the future to compute Gt’\

o Like MC, it can only be computed from complete episodes

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 31/ 48 EPFL

Example: Random Walk

e The offline A-return algorithm makes no changes to the weight vector during the
episode. Then, at the end of the episode, a whole sequence of offline updates are
made.

Off-line A-return algorithm

0.55

05
RMS error | J
at the end

of the episode (4
over the first
10 episodes 035

03

0.25

Figure: Performance of the offline A-return algorithm in the 19-state random walk task.

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 32/ 48 EPFL

Backward view of TD())

e The forward view provides theory.

e The backward view provides a computationally efficient method through eligibility
traces.

e Updates are performed online, at every step and from incomplete sequences.

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 33/ 48

E

P

=

Eligibility traces

PeBvA

e Credit assignment problem: did the bell or the light cause the shock?
e Frequency heuristic: assign credit to the most frequent states

e Recency heuristic: assign credit to most recent states

e Eligibility traces combine both heuristics

Eo(s)
E¢(s)

0
YAE—1(s) + 1{s5,=s5}

accumulating eligibility trace

[11] |] | times of visits to a state

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 34/ 48

Backward-view TD()\)

Figure: Each update depends on the current TD error combined with the current eligibility traces
of past events.

e Keep an eligibility trace Fy(s) for every state s.
e Compute the TD-error ¢

6t = Riq1 + vV (Se41) — V(St)
e Update the value V(s) of every state s

V(s) « V(s) + adtEi(s)

IGEIIl Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 35/ 48 EPFL

TD()) and TD(0)

e When)\ = 0, only the current state is updated

Ei(s) = lys,=s}
V(s) < V(s)+ adtE:(s)

e This is exactly equivalent to the TD(0) update

V(s) < V(s)+adsif s= 5

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 36/ 48

TD()\) and MC

e When X\ = 1, the credit is deferred until the end of the episode.
e Consider episodic environments with offline updates.

e Over the course of an episode, the total update for TD(1) is the same as the total
update for MC

Theorem

The sum of offline updates is identical for forward-view and backward-view TD(\)

T

T
ZaétEt(s) — Za [G2 — V(8)] 15,20}
t=1

t=1

IGEITl Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 37/ 48 EPFL

TD(1) and MC

e Consider an episode where s is visited only once at time-step k
e The eligibility trace of TD(1) discounts the time since the visit

Et(S)

YEi—1(s) + 1{5,=5}
0 ift<k
yR it >k

e The TD(1) updates accumulate the error online

T—1 T—1
Za&tEt(s) =« Z st TR = aGr —V(SK)].
t=1 t=Fk

e By the end of the episode, they accumulate the total error

8k 4+ VOrp1 + V2 0kqa + -+ TR

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 38/ 48

Telescoping in TD(1)

e When)\ = 1, the sum of TD errors telescopes into the MC error,

lions@epfl

m+ + + + 1

+ + +

Ok +V0ht1 + ¥ 0kp2 + T T RSy
Ri1+ 9V (Sk+1) — V(Sk)

YRiy2 + 7V (Skt2) = YV (Sk41)

Y’ Riy3 + 7V (Sky3) = 72V (Sky2)

,YTflfkRT +’yT7kV(ST) _ ’}/TilikV(ST_l)
Ry1 +yVESe71) — V(Sk)

YRiv2 + 2 VSRT2) — AVASKTT)

V2 Ryops + 12 VASTTS) — 1 VASTT)

0
+ AT Ry AT RST) — AT kST)

Rpy1 +vRiy2 + v Riys + -+ 47 KRy — V(Sy)

= G —V(Sk)

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 39/ 48

EPFL

TD()\) and TD(1)

e TD(1) is roughly equivalent to every-visit Monte-Carlo.
e Error is accumulated online, step-by-step

e If the value function is only updated offline at end of episode,
then the total update is exactly the same as MC.

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 40/ 48

E

P

=

Telescoping in TD())

e For general \, TD errors also telescope to the A-error, G} — V(S)

G =V(S)) = —=V(S)+ (1= NA? [Regr + 1V (Se41)]
+ (1=t [Rt+1 + YRi42 + 72V(St+2)]
+ (1—2)A? [Rt+1 +YRitt2 + v?Reys + VSV(SHS)]
+ ..
= —V(St) + (WN)° [Res1 + 7V (Stt1) — YAV (St41)]
+ (WA [Repe + YV (Stra) — YAV (Si12)]
+ (N2 [Regs + vV (Sit3) — YAV (Sea3)]
+ .
= (WN)° [Reg1 + 7V (St41) — V(St)]
+ () [Rir2 + 9V (St2) — V(Se41)]
+ (A2 [Rets + 7V (St43) — V(Se42)]
+ .

8t +YAG41 + (YA gz + ...

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 41/ 48 EPFL

Forward- and backward-TD()\)

e Consider an episode where s is visited only once at time-step k
o The eligibility trace of TD(X) discounts the time since the visit

Ei(s) = YAEi—1(s) + 1{s,=5}
0 ift <k
Tl (NtR ift >k
e Backward-TD(\) updates accumulate the error online

T T
ZaétEt(s) - az(stm)t*k = a[G} - V(Sy)]
t=1 t=k

e By the end of the episode, they accumulate the total error for the A-return.

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 42/ 48

Offline equivalence of forward- and backward-TD

e Offline updates:

o updates are accumulated within an episode

o but applied in batch at the end of the episode

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 43/ 48

E

P

=

Recall: n-step SARSA

Definition (n-step return)

Let T" be the termination time step in a given episode.

el Rit1 +vQ(St+1, At+1)
G = Rip1 +vRit2 +72Q(St42, Arta)
G = Rep1+7Reqz+ -+ 7" Repn + 7" Q(St4n, Arin)

G Rit1+YRiqz+ - +4T " 'Ry

Note that G\ = G{*) if t 4 n > T.

e n-step SARSA update:

QS A QS A +a |6l — Qs A1)

ICLHEIN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch

(one-step return)
two-step return
p

(n-step return)

(complete return)

Slide 44/ 48 E

P

15

Forward view Sarsa()\)

e The return Gf‘ combines the n-step

returns Gin) for all n.

o—(e

G = (=0 alei
n=1

e Recall that Z:o—o A" = ﬁ for all 1o
= 1

A€ [0,1]. ?

e Forward view Sarsa())

Q(St, Ar) + Q(Si, At)+a [G? —Q(Stht)] S =1 -, DSrBr

ICLHEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 45/ 48 EP

Backward view Sarsa()\)

e Just like TD()), we use eligibility traces in an online algorithm.
e Sarsa(\) has one eligibility trace for each state-action pairl

Eo(s,a) = 0
Ei(s,a) = 'y)\Et,l(s,a)+1{5t:S7At:a}

e Compute the TD-error §; for every state-action pair (s, a)
0t = Ret1 +vQ(St+1, Art1) — Q(St, Ar)
e Update Q(s,a) for all (s, a)

Q(Sv a) — Q(S, CL) + OéétEt(S, a)

ICLHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 46/ 48

Sarsa()\) Algorithm

Sarsa(\)

Algorithm Parameters: step size a € (0, 1], small € > 0
Initialize: Q(s, a) arbitrarily, for all s € S and a € A(s)
Loop for each episode:
E(s,a) =0, for all s € S and a € A(s)
Initialize S, A
Loop for each step of episode:
Take action A, observe reward R and next state S’
Choose A’ from S’ using the policy based on Q (e.g., e-greedy)
d+— R+~Q(S",A") — Q(S, A)
E(S,A) «+ E(S,A)+1
For all s € S,a € A(s):
Q(s,a) < Q(s,a) + adE(s,a)
E(S,A) + ME(S, A)
S+ S A A

until S is terminal

ICLHHEEN Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 47/ 48

References

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 48/ 48

E

P

=

	Lecture 05 – bootstrap
	Prediction
	Control

