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I This class:
1. n-step TD Prediction
2. n-step TD Control
3. Eligibility Traces

I Next class:
1. Value-based Methods for Deep RL
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Recommended reading

I Chapters 7 & 12 in S. Sutton, and G. Barto, Reinforcement Learning: An
Introduction, MIT Press, 2018.
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n-step bootstrapping

• Neither Monte-Carlo (MC) methods nor 1-step temporal-difference (TD) methods
are always the best.

• n-step TD methods span a spectrum with MC methods at one end (∞-step) and
one-step TD methods at the other (1-step).

• The best method is often an intermediate between the two extremes.

• n-step TD prediction and control.
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n-step TD prediction
• Lets the TD target look n steps into the future.

Figure: Backup Diagram for n-step TD methods, the two extreme ends are respectively 1-step TD
and Monte-Carlo.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 48



n-step return

Definition (n-step return)
Let T be the termination time step in a given episode, γ ∈ [0, 1].

G
(1)
t = Rt+1 + γV (St+1) (one-step return)

G
(2)
t = Rt+1 + γRt+2 + γ2V (St+2) (two-step return)

G
(n)
t = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnV (St+n) (n-step return)

G
(∞)
t = Rt+1 + γRt+2 + · · ·+ γT−t−1RT (complete return)

Note that G(n)
t = G

(∞)
t if t+ n ≥ T .

• The n-step return computes discounted rewards for n steps, and uses the discounted
V (St+n) as a proxy for the remaining terms.

• No real algorithm can use the n-step return until after it has seen Rt+n, as this
would mean looking into the future.
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n-step TD update

• Incremental update rule for the state-value prediction:

V (St) ← V (St) + α [target− V (St)] ,

while the value of all the other states remains unchanged: V (s)← V (s), ∀s , St.

• Different targets can be used:

◦ For one-step TD or TD(0): target = G
(1)
t

◦ For two-step TD: target = G
(2)
t

◦ For n-step TD: target = G
(n)
t

◦ For MC: target = G
(∞)
t
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n-step TD Prediction Algorithm
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Error reduction property of n-step returns

Theorem (Error reduction property)
For all n ≥ 1,

max
s∈S

∣∣∣E[G(n)
t

∣∣∣St = s

]
− vπ(s)

∣∣∣ ≤ γn max
s∈S
|V (s)− vπ(s)| .

• Because of the error reduction property, one can show formally that all n-step TD
methods converge to the correct predictions under appropriate technical conditions.

• The error reduction property means that the worst error of the expected n-step
return is guaranteed to be less than or equal to γn times the worst error under V .
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Example: Random walk

• Recall the 5-state Random walk example from Lecture 4.

• The outcome for ending up on the left is −1 and there are 19 states.
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Figure: Performance of n-step TD methods as a function of α, for various values of n, on a
19-state random walk task.
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n-step TD control

• On-policy learning via n-step SARSA

• Off-policy learning with Importance Sampling

• Off-policy learning with n-step Tree Backup
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Recall: SARSA Algorithm

Sarsa (on-policy TD control) for estimating Q ≈ q∗

Algorithm Parameters: step size α ∈ (0, 1], small ε > 0
Initialize: Q(s, a), for all s ∈ S+ and a ∈ A(s), arbitrarily except that
Q(terminal, ·) = 0
Loop for each episode:

Initialize state S
Choose A from S using policy based on Q (e.g., ε-greedy)
Loop for each step of episode:

Take action A, observe reward R and next state S′

Choose A′ from S′ using the policy based on Q (e.g., ε-greedy)
Q(S,A)← Q(S,A) + α[R+ γQ(S′, A′)−Q(S,A)]
S ← S′; A← A′

until S is terminal
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n-step SARSA

• We require the target policy π to be ε-greedy with respect to Q.

• Redefine the n-step return in terms of estimated action-values:

G
(n)
t = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnQ(St+n, At+n),

with G(n)
t = G

(∞)
t if t+ n ≥ T .

• n-step SARSA update rule:

Q(St, At) ← Q(St, At) + α

[
G

(n)
t −Q(St, At)

]
, 0 ≤ t < T,

while the values of all other states remain unchanged: Q(s, a)← Q(s, a), for all
s , St, a , At.
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n-step SARSA Algorithm
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n-step expected SARSA

• Redefine the n-step return as

G
(n)
t = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γn

∑
a

π(a | St+n)Q(St+n, a),

with G(n)
t = G

(∞)
t , if t+ n ≥ T .

• n-step expected SARSA update rule:

Q(St, At) ← Q(St, At) + α

[
G

(n)
t −Q(St, At)

]
,

while the values of all other states remain unchanged: Q(s, a)← Q(s, a), for all
s , St, a , At.
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Backup Diagrams for n-step Methods

Figure: The backup diagrams for the spectrum of n-step methods for state-action values. They
range from the one-step update of Sarsa(0) to the up-until-termination update of the MC method.
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Example: Gridworld

• All action-state values and rewards are initialized to 0.

• Only the reward for G is set to 1.

• One-step SARSA focus on the last value.

• n-step SARSA “strengthens” last n actions.

Figure: One-step SARSA strengthens the last action leading to the destination. n-step SARSA
increases the action value for the last n actions. For a single episode, we could clearly see that
multiple step approach learns more than its single step counterpart.
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n-step off-policy learning

• Off-policy learning: Learn the value function for a policy π, while following another
behaviour policy b.

◦ π is the greedy policy w.r.t. current action-value function estimate.
◦ b is a more exploratory policy (e.g., ε-greedy).

Definition (Importance sampling ratio)

ρ
(n−1)
t :=

min(t+n−1,T−1)∏
k=t

π(Ak|Sk)
b(Ak|Sk)

• Off-policy n-step TD:

V (St) ← V (St) + αρ
(n−1)
t

[
G

(n)
t − V (St)

]
, 0 ≤ t < T.
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n-step off-policy control

• Off-policy n-step SARSA:

Q(St, At) ← Q(St, At) + αρ
(n−1)
t+1

[
G

(n)
t −Q(St, At)

]
.

• Note that the importance sampling ratio here starts and ends one step later than for
n-step TD (for state value prediction).

• This is because we are selecting a state-action pair instead of only a state.
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Off-policy n-step SARSA Algorithm
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n-step tree-backup algorithm: motivation

Motivation
Is off-policy learning possible without importance sampling?

Q-learning and Expected Sarsa do this for the one-step case, but is there a
corresponding multi-step algorithm?

Answer: Yes! Use n-step tree backup.
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n-step tree-backup algorithm

SARSA vs Tree-backup
Consider the backup diagram on the right. The estimated
value for the top node can be updated in at least two ways:

I So far (SARSA): (discounted) rewards along the way +
estimate for bottom nodes.

I Tree-backup: (discounted) rewards along the way +
estimate for bottom nodes and dangling action nodes
along the way.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 23/ 48



Tree-backup return
• One-step return:

G
(1)
t = Rt+1 + γ

∑
a

π(a | St+1)Q(St+1, a).

• Two-step return:

G
(2)
t = Rt+1 + γ

∑
a,At+1

π(a | St+1)Q(St+1, a)

+ γπ(At+1 | St+1)

{
Rt+2 + γ

∑
a

π(a | St+2)Q(St+2, a)

}
= Rt+1 + γ

∑
a,At+1

π(a | St+1)Q(St+1, a) + γπ(At+1 | St+1)G(1)
t+1.

• n-step return:

G
(n)
t = Rt+1 + γ

∑
a,At+1

π(a | St+1)Q(St+1, a) + γπ(At+1 | St+1)G(n−1)
t+1 .
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n-step tree-backup algorithm
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Eligibility traces: motivation

• n-step methods need to wait n− 1 steps after the beginning of an episode before
starting updates, and keeps running after the end of the episode.

• n-step methods do not make the best use use of a state as soon as it becomes
available.

Motivation
How can we efficiently combine information from all time-steps?

Answer: Use eligibility traces.
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Eligibility traces

• Eligibility traces unify and generalize TD and MC methods.
◦ n-step TD methods also unify TD and MC.
◦ But eligibility traces offer in addition:
(i) an elegant algorithmic mechanism
(ii) significant computational advantages.

• Eligibility traces produce a family of methods spanning a spectrum that has MC
methods at one end (λ = 1) and one-step TD methods at the other (λ = 0).

◦ In between λ = 0 and λ = 1 are intermediate methods that often perform
better than either extreme method.

• Eligibility traces also provide a way of implementing Monte Carlo methods online
and on continuing problems without episodes.
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Averaging n-step returns

• We can average n-step returns over different n.

• e.g., average the 2-step and 4-step returns

1
2
G(2) +

1
2
G(4)

• Combines information from two different time-steps.

• How can we efficiently combine information from all
time-steps?
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λ-return

• The λ-return Gλt combines all n-step
returns G(n)

t :

Gλt = (1− λ)
∞∑
n=1

λn−1G
(n)
t

• Recall that
∑∞

n=0 λ
n = 1

1−λ for all
λ ∈ [0, 1].

• If T is the termination time step:

Gλt = (1−λ)
T−t−1∑
n=1

λn−1G
(n)
t +λT−t−1Gt

• Forward-view of TD(λ)

V (St) ← V (St) + α
[
Gλt − V (St)

]
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λ-return weighting function

Figure: Weighting given in the λ-return to each of the n-step returns.

Gλt = (1− λ)
∞∑
n=1

λn−1G
(n)
t
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Forward-view TD(λ)

Figure: We decide how to update each state by looking forward to future rewards and states.

• Recall the forward view of TD(λ)

V (St) ← V (St) + α
[
Gλt − V (St)

]
◦ Updates the value function towards the λ-return
◦ The forward view looks into the future to compute Gλt
◦ Like MC, it can only be computed from complete episodes
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Example: Random Walk

• The offline λ-return algorithm makes no changes to the weight vector during the
episode. Then, at the end of the episode, a whole sequence of offline updates are
made.

Figure: Performance of the offline λ-return algorithm in the 19-state random walk task.
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Backward view of TD(λ)

• The forward view provides theory.

• The backward view provides a computationally efficient method through eligibility
traces.

• Updates are performed online, at every step and from incomplete sequences.
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Eligibility traces

• Credit assignment problem: did the bell or the light cause the shock?

• Frequency heuristic: assign credit to the most frequent states

• Recency heuristic: assign credit to most recent states

• Eligibility traces combine both heuristics

E0(s) = 0
Et(s) = γλEt−1(s) + 1{St=s}
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Backward-view TD(λ)

Figure: Each update depends on the current TD error combined with the current eligibility traces
of past events.

• Keep an eligibility trace Et(s) for every state s.

• Compute the TD-error δt

δt = Rt+1 + γV (St+1)− V (St)

• Update the value V (s) of every state s

V (s)← V (s) + αδtEt(s)
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TD(λ) and TD(0)

• When λ = 0, only the current state is updated

Et(s) = 1{St=s}

V (s) ← V (s) + αδtEt(s)

• This is exactly equivalent to the TD(0) update

V (s) ← V (s) + αδt if s = St
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TD(λ) and MC

• When λ = 1, the credit is deferred until the end of the episode.

• Consider episodic environments with offline updates.

• Over the course of an episode, the total update for TD(1) is the same as the total
update for MC

Theorem
The sum of offline updates is identical for forward-view and backward-view TD(λ)

T∑
t=1

αδtEt(s) =
T∑
t=1

α
[
Gλt − V (St)

]
1{St=s}.
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TD(1) and MC

• Consider an episode where s is visited only once at time-step k

• The eligibility trace of TD(1) discounts the time since the visit

Et(s) = γEt−1(s) + 1{St=s}

=
{

0 if t < k

γt−k if t ≥ k
.

• The TD(1) updates accumulate the error online

T−1∑
t=1

αδtEt(s) = α

T−1∑
t=k

δtγ
t−k = α [Gk − V (Sk)] .

• By the end of the episode, they accumulate the total error

δk + γδk+1 + γ2δk+2 + · · ·+ γT−1−kδT−1.
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Telescoping in TD(1)

• When λ = 1, the sum of TD errors telescopes into the MC error,

δk + γδk+1 + γ2δk+2 + · · ·+ γT−1−kδT−1

= Rk+1 + γV (Sk+1)− V (Sk)

+ γRk+2 + γ2V (Sk+2)− γV (Sk+1)

+ γ2Rk+3 + γ3V (Sk+3)− γ2V (Sk+2)
+ . . .

+ γT−1−kRT + γT−kV (ST )− γT−1−kV (ST−1)
= Rk+1 +���

�
γV (Sk+1)− V (Sk)

+ γRk+2 +���
��

γ2V (Sk+2)−���
�

γV (Sk+1)

+ γ2Rk+3 +���
��

γ3V (Sk+3)−���
��

γ2V (Sk+2)
+ . . .

+ γT−1−kRT +���
���: 0

γT−kV (ST )−((((
(((γT−1−kV (ST−1)

= Rk+1 + γRk+2 + γ2Rk+3 + · · ·+ γT−1−kRT − V (Sk)
= Gk − V (Sk)
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TD(λ) and TD(1)

• TD(1) is roughly equivalent to every-visit Monte-Carlo.

• Error is accumulated online, step-by-step

• If the value function is only updated offline at end of episode,
then the total update is exactly the same as MC.

Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 40/ 48



Telescoping in TD(λ)

• For general λ, TD errors also telescope to the λ-error, Gλt − V (St)

Gλt − V (St) = − V (St) + (1− λ)λ0 [Rt+1 + γV (St+1)]

+ (1− λ)λ1
[
Rt+1 + γRt+2 + γ2V (St+2)

]
+ (1− λ)λ2

[
Rt+1 + γRt+2 + γ2Rt+3 + γ3V (St+3)

]
+ . . .

= − V (St) + (γλ)0 [Rt+1 + γV (St+1)− γλV (St+1)]

+ (γλ)1 [Rt+2 + γV (St+2)− γλV (St+2)]

+ (γλ)2 [Rt+3 + γV (St+3)− γλV (St+3)]
+ . . .

= (γλ)0 [Rt+1 + γV (St+1)− V (St)]

+ (γλ)1 [Rt+2 + γV (St+2)− V (St+1)]

+ (γλ)2 [Rt+3 + γV (St+3)− V (St+2)]
+ . . .

= δt + γλδt+1 + (γλ)2δt+2 + . . .
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Forward- and backward-TD(λ)

• Consider an episode where s is visited only once at time-step k

• The eligibility trace of TD(λ) discounts the time since the visit

Et(s) = γλEt−1(s) + 1{St=s}

=
{

0 if t < k

(γλ)t−k if t ≥ k

• Backward-TD(λ) updates accumulate the error online

T∑
t=1

αδtEt(s) = α

T∑
t=k

δt(γλ)t−k = α
[
Gλk − V (Sk)

]
• By the end of the episode, they accumulate the total error for the λ-return.
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Offline equivalence of forward- and backward-TD

• Offline updates:

◦ updates are accumulated within an episode
◦ but applied in batch at the end of the episode
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Recall: n-step SARSA

Definition (n-step return)
Let T be the termination time step in a given episode.

G
(1)
t = Rt+1 + γQ(St+1, At+1) (one-step return)

G
(2)
t = Rt+1 + γRt+2 + γ2Q(St+2, At+2) (two-step return)

G
(n)
t = Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnQ(St+n, At+n) (n-step return)

G
(∞)
t = Rt+1 + γRt+2 + · · ·+ γT−t−1RT (complete return)

Note that G(n)
t = G

(∞)
t , if t+ n ≥ T .

• n-step SARSA update:

Q(St, At) ← Q(St, At) + α

[
G

(n)
t −Q(St, At)

]
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Forward view Sarsa(λ)

• The return Gλt combines the n-step
returns G(n)

t for all n.

Gλt = (1− λ)
∞∑
n=1

λn−1G
(n)
t

• Recall that
∑∞

n=0 λ
n = 1

1−λ for all
λ ∈ [0, 1].

• Forward view Sarsa(λ)

Q(St, At) ← Q(St, At)+α
[
Gλt −Q(St, At)

]
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Backward view Sarsa(λ)

• Just like TD(λ), we use eligibility traces in an online algorithm.

• Sarsa(λ) has one eligibility trace for each state-action pairL

E0(s, a) = 0
Et(s, a) = γλEt−1(s, a) + 1{St=s,At=a}

• Compute the TD-error δt for every state-action pair (s, a)

δt = Rt+1 + γQ(St+1, At+1)−Q(St, At)

• Update Q(s, a) for all (s, a)

Q(s, a)← Q(s, a) + αδtEt(s, a)
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Sarsa(λ) Algorithm

Sarsa(λ)
Algorithm Parameters: step size α ∈ (0, 1], small ε > 0
Initialize: Q(s, a) arbitrarily, for all s ∈ S and a ∈ A(s)
Loop for each episode:

E(s, a) = 0, for all s ∈ S and a ∈ A(s)
Initialize S,A
Loop for each step of episode:

Take action A, observe reward R and next state S′

Choose A′ from S′ using the policy based on Q (e.g., ε-greedy)
δ ← R+ γQ(S′, A′)−Q(S,A)
E(S,A)← E(S,A) + 1
For all s ∈ S, a ∈ A(s):

Q(s, a)← Q(s, a) + αδE(s, a)
E(S,A)← λγE(S,A)

S ← S′; A← A′

until S is terminal
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