
Neural Networks and Biological Modeling

Professeur Wulfram Gerstner
Laboratory of Computational Neuroscience

Correction Question Set 5

Exercise 1

1.1 Each neuron connects to eight other neurons (there are no self-connections). That makes 72
connections in total. The weights follow wij = pµi p

µ
j where pµ is the prototype. That is, weights

between “black” neurons are +1, weights between “white” neurons are also +1, and weights between
neurons receiving two opposite colors are −1. See figure 1.

Given the symmetry of the problem, let us assume that the central bit has been flipped. The
dynamics of the activity Scenter(t) for this bit follows

Scenter(t+ 1) = sgn

 ∑
j 6=center

wijSj(t)

 .

Therefore, all other “black neurons” will contribute by 1 × 1 = 1 while all other “white neurons”
will bring (−1) × (−1) = 1 as well. The resulting activity is 8 which has positive sign. In one
iteration, the central bit is corrected. See figure 1(c) for an example where two more bits are
flipped.

Similarly, the flipped bit is the only one to bring a “bad” unit signal (-1 if the neuron is black, 1
otherwise) to the activity of other neurons, but this isn’t enough to make the sign of the resulting
activities change. Therefore, other bits do not fall in the dark side (or bright side): the memory is
fully recovered.

1.2 Using the same reasoning, having more and more bits flipped iteratively, you can convince
yourself that less than half of the bits can be flipped to recover the pattern, i.e. 4.

(a) arbitrary neuron
indexing

(b) Weigths wij . Note: we have no recurrent
connections

(c) Weights w5j , a pattern S(t) with
3 errors and the resulting input poten-
tial h5 = 4

Figure 1: Pattern, weights wij and an example of error correction: The

input potential h to neuron i = 5, h5 =
∑9

j w5j · Sj , is strong enough to

correct neuron 5.



Exercise 2

We recall the definitions for the weights wij and the overlap mµ(t). S(t) denotes the current
activity pattern of the network:

wij = c

M∑
µ=1

pµi p
µ
j with c =

1

N
(1)

mµ(t) =
1

N

N∑
i=1

pµi Si(t) (2)

The network dynamics are given by the state equation:

Si(t+ 1) = g(hi(t)) = g

 N∑
j=1

wijSj(t)

 (3)

We express Si(t+ 1) using equations 1 and 2:

Si(t+ 1) = g(hi(t))

hi(t) =

N∑
j=1

wijSj(t)

=

N∑
j=1

c

M∑
µ=1

pµi p
µ
j Sj(t)

= c

M∑
µ=1

pµi

N∑
j=1

pµj Sj(t)

= cN

M∑
µ=1

pµim
µ(t)

=
∑
µ6=3

pµim
µ(t) + p3im

3(t) (split the sum)

= p3im
3(t) (there’s no overlap with other patterns)

Si(t+ 1) = g
(
p3im

3(t)
)

= p3i g
(
m3(t)

)
For the last equivalence we used p3i ∈ {−1,+1} and that we can pull out a sign from an odd
function: g(p3i × ·) = p3i × g(·)

We can now use that expression Si(t+ 1) to compute m3(t+ 1):

m3(t+ 1) =
1

N

N∑
i=1

p3iSi(t+ 1)

=
1

N

N∑
i=1

p3i p
3
i g
(
m3(t)

)
=

1

N
Ng

(
m3(t)

)
Therefore, we end up with

m3(t+ 1) = g(m3(t)) (4)



We can now discuss according to the nature of g:

• if g = sgn then the dynamics stops after the first step: a positive overlap m > 0 will
immediately increase to +1. A negative overlap will decrease to −1 (that’s the ”negative”
pattern: every neuron has the opposite state of the pattern).

• for a monotonically increasing g, the situation is more complicated (see figure 2): for g(m) =
tanh(m) we ”see” that |tanh(m)| ≤ |m| on the interval [−1, 1]. That means, starting with
any overlap m, the dynamics will reduce the overlap and finally end up at m = 0 = tanh(0).

• For completeness, we introduce an extra parameter β in g(m) = tanh(βm) and show its
effect in figure 2. For β → ∞ we are back the sign function. For a discussion of this
”inverse temperature” parameter β we refer to the book ”Neuronal Dynamics”, Chapter
17.2.3, available online: http://neuronaldynamics.epfl.ch/online/Ch17.S2.html.

Figure 2: g(m) = tanh(βm). For β = 1 (red curve) the overlap will

decrease: m(t+ 1) ≤ tanh(m(t))

http://neuronaldynamics.epfl.ch/online/Ch17.S2.html


Exercise 3: Probability of error in the Hopfield model

3.1

Si(t = 1) = sign(
∑
j

ωijSj(t = 0))

We insert the definition of wij (eq. 1) and use Sj(t = 0) = p1j :

= sign(
∑
j

(
1

N

∑
µ

pµj p
µ
i

)
p1j )

Multiply with 1 = p1i p
1
i . Then pull out a factor p1i = ±1 from the sign function

= p1i sign(
∑
j

(
1

N

∑
µ

pµj p
µ
i

)
p1jp

1
i )

= p1i sign(
∑
j

1

N
(p1j )

2(p1i )
2 +

∑
j

∑
µ 6=1

1

N
pµj p

µ
i p

1
jp

1
i )

= p1i sign(1 +
∑
j

∑
µ6=1

1

N
pµj p

µ
i p

1
jp

1
i )

3.2 We are given the dynamics Si(t = 1) = p1i sign(1 +
∑P
µ6=1

∑N
j

1
N p1i p

µ
i p

1
j p

µ
j ). We see that

Si(t = 1) 6= Si(t = 0) is true when
P∑
µ 6=1

N∑
j

1

N
p1i p

µ
i p

1
j p

µ
j ) ≤ −1.

3.3 We interpret the double sum as a sequence of random steps 1
N p1i p

µ
i p

1
j p

µ
j . Then we formulate

a probability density that quantifies how that random walk will move away from zero. We can do
so with the help of the central limit theorem (CLT). The steps to apply it are: 1) define the random
variable X and formulate its mean µ and variance σ2. 2) define the sum Zn = X1 +X2 + ...+Xn.
3) for large n and by the CLT, the sum Zn is approximately normal with N (nµ, nσ2). We now
apply these steps:
We define a random variable X = p1i p

µ
i p

1
j p

µ
j . It has a probability mass function Pr(X = −1) =

Pr(X = +1) = 0.5. The mean is X̄ = 0. The variance is V ar[X] = 1 as we can see from the
definition: V ar[X] = E[(X − X̄)2] = E[X2] = E[1] = 1.
We now sum the random variable X:

Z ′n =

P∑
µ6=1

N∑
j

X

In that double sum we are actually summing n = N(P − 1) realizations of X. For large n, we can
apply the central limit theorem to approximate the distribution of Z ′n:
Z ′n ∼ N ( N(P − 1)× 0, N(P − 1)× 1)

We used the symbol Z ′ because we have left out the scaling factor 1/N in the sum. We introduce
it now, knowing that Var(aX) = a2VarX.

Zn ∼ N (0,
1

N2
N(P − 1)) = N (0,

P − 1

N
)

We now have our final expression:

∑
µ 6=1

∑
j

1

N
pµi p

1
i p
µ
j p

1
j ∼ N (0, σ2) with σ2 =

P − 1

N



3.4 We use the two previous results to find the probability of a neuron to flip: We make a
probabilistic statement about the condition from question 3.2 using the Gaussian PDF found in
3.3. Then, we transform the equation to get an equivalent expression in terms of the error function
erf :

Perror = Prob


 1

N

∑
µ6=1

∑
j

pµi p
1
i p
µ
j p

1
j

 ≤ −1

 .

Perror =
1√

2πσ2

∫ −1
−∞

e−
x2

2σ2 dx

=
1√

2πσ2

∫ ∞
1

e−
x2

2σ2 dx

=
1

2
− 1√

2πσ2

∫ 1

0

e−
x2

2σ2 dx

=
1

2

[
1−

√
2

πσ2

∫ 1

0

e−
x2

2σ2 dx

]

=
1

2

1− 2√
π

∫ √
N

2(P−1)

0

e−x
′2
dx′


=

1

2

[
1− erf

(√
N

2(P − 1)

)]
,

where the two first equalities come by symmetry and the third one by a change of variable x →√
2σx′.

3.5 We consider the flipping of different pixels as being independent. The expected number of
pixels flips is NPerror. The maximal number of patterns P ∗ is the highest number which satisfies
the equation,

NPerror(N,P
∗) < 1.

This implies erf
(√

N
2(P−1)

)
> 1 − 2/N = 0.9998. Using the hint, erf(2.6) = 0.9998 and the fact

that erf is monotonically increasing, we have
√

N
2(P−1) > 2.6, which gives us P ∗ = 740.

3.6 Si(1) = p1i sign(1 +
∑P
µ6=1 p1i p

µ
i m

µ1).

3.7 Now the random walk has P−1 terms with coefficient 0.1, which is approximated by a random
gaussian variable with standard deviation σ =

√
(0.12 (P − 1)). Following the same steps, we get

to
√

1
2 0.12 (P∗−1) > 2.6 =⇒ P ∗ = 8, much less than before.


