Theory and Methods for Reinforcement Learning

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 8: Policy Gradient Methods Il

Laboratory for Information and Inference Systems (LIONS)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

EE-618 (Spring 2020)

. strrune @ SDSC ¢
lions@epf| Ty




License Information for Reinforcement Learning Slides

> This work is released under a Creative Commons License with the following terms:
> Attribution

> The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees must give the original authors credit.

> Non-Commercial

> The licensor permits others to copy, distribute, display, and perform the work. In return,
licensees may not use the work for commercial purposes — unless they get the licensor’s
permission.

> Share Alike

> The licensor permits others to distribute derivative works only under a license identical
to the one that governs the licensor’'s work.

> Full Text of the License
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> This lecture

1. Trust Region Policy Optimization
2. Proximal Policy Optimization

» Next lecture
1. Actor-Critic Methods for Deep RL
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Recommended Reading

» Schulman, John and Levine, Sergey and Abbeel, Pieter and Jordan, Michael and
Moritz, Philipp. Trust region policy optimization., International Conference on
Machine Learning, 2015.

» Schulman, John and Wolski, Filip and Dhariwal, Prafulla and Radford, Alec and
Klimov, Oleg. Proximal policy optimization algorithms, arXiv preprint, 2017.
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Policy Gradient Method

e Policy gradient methods (PGM):

> Parametrize a stochastic policy using parameter vector 6
> Define a performance measure J(0) = Es,vr, (s0)

> Maximize J over 0 using Stochastic Gradient Descent:

9t+1 =0+ aﬁ(@t)

o Goal of this lecture: Present two state-of-the-art practical algorithms based on PGM.
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Trust Region Policy Optimization

e Trust Region Policy Optimization (TRPO) [3]:
> Introduces a surrogate objective performance measure.

> Designs a theoretical update scheme which iteratively updates a policy in a way
that guarantees monotone improvement, i.e., ensures J(my1) > J (7).

> Approximates this theoretical scheme using optimization tools.
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TRPO: Preliminaries

Lemma

Given any two policies 7, 7,
o0
J(®) = J(r) +Bx [ Y 7an(Si, Ar)
t=0

where ar(s,a) = gx(s,a) — vx(s) is the advantage function.

Proof:
First note that ax(s,a) = Eg wp(s/|s,a)[7(8) +Yvr(s) — vr(s)]. Therefore,

Br | D v'ax(Se A0 | =Bx | D A" (r(S0) +70r(Ses1) = ve(S0)
t=0

t=0

oo
=Ex |—vn(s0) + Y _7'7(51)
t=0

~Baolve(s0)] + Bz | Y 'r(S)
t=0
= —J(m) + J(7)
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TRPO: Preliminaries

Equation (1) can be rewritten with a sum over states instead of time steps:

J@ =J(m) + Y Y P(Se=s7) Y #(als)r ax(a,s)
t=0 s

where px(s) = Z

frequency.

=J

=J

oo
t=0"

a

(M + )Y AP(St=sl7) Y (als)ar(a,s)
=0

s t a

(M) + Y pa(s) Y wlals)ax(a,s)

tP(S; = s|7) is the unnormalized discounted visitation

ICLHEEN  Theory and Methods for Reinforcement Learning | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 28

@)

E

P



TRPO: Preliminaries

J@) = J(m) + Y pa(s) Y #lals)an(a,s) (3)

e Equation (3) gives an alternative way of optimizing the performance J, by
maximizing the right hand side for any fixed policy 7.

e However, the complex dependency of pz on 7 makes it difficult to optimize directly.
Instead, let’s introduced the following surrogate to J:

Le(®) = J(m)+ Y p(s) Y #l(als)ax(a,s) “@

i.e. px is simply replaced by pr.

e It is easy to check that for any differentiable parametrized policy 7y and 7g_, ,,

Lag,, (%0,10) = I(0,10) 6)

VoLng,, 0],y = VoI (To)loz,, (6)

= a sufficiently small step mg_,, — 7 that improves L, ' will also improve J!
o
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Monotonic Improvement Guarantee for General Stochastic Policies

e Question: How big of a step to take?

Theorem

For any two stochastic policies m, 7, we have
J(®) = Lx(%) — CDRT*(m, ) (7)

where D24 (m, %) = maxs Dgr, (w(.|s)[|7(.|s)), C = ﬁ and

€ = maXs,q |Ax(s,a)l.

Proof: on the board, or see [2, 3].

e Thanks to (5), we see that this upper bound becomes tight for 7 = 7.
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Monotonic Improvement Guarantee for General Stochastic Policies

J(7) 2 Lx (%) = CDRL* (7, %)

J(mo,,,) = Lﬂ'eold (T0,014)

e For any fixed policy 7, maximizing the RHS of (7) necessary leads to a new policy
with better performance than with =, i.e.,

% = argmax L (%) — CDR{" (7, 70) = J(7*) > J(m)

s
e To see this, let M;(w) = Lz, (7) — CDR* (m;, ). Then

J(mwiy1) 2 Mi(miq1) by (7)
J(m;) = M;(m;) by (5), therefore,
J(mip1) = J(ms) = Mi(mipa) — Mi(ms).

Thus, by maximizing M; at each iteration, we guarantee that the true objective J is
non-decreasing.
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Monotonic Improvement Guarantee for General Stochastic Policies

Algorithm 1 Policy iteration algorithm guaranteeing non-decreasing expected return

1: Initialize g

2: for i=0,1,2,... until convergence do

3. Compute all advantage values Ax, (s, a).
4

Solve
Tit1 = argmax L, () — CDR{ (73, ), (8)
7
_ _4dey
where C' = =2
5. end for

e Algorithm 1 is guaranteed to generate a monotonically improving sequence of
policies J(mp) < J(m1) < J(m2) < ...
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Issues with Algorithm 1

e The theoretical constant turns out to be much too large in practice, leading to very
small updates, and is difficult to choose manually.

e Computation of L, requires knowledge of the advantage function A.

e We must efficiently solve the optimization problem (8) for updating the policy.
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Replace Penalization by a Hard Trust Region Constraint

e Replace the penalization by a hard constraint on the KL divergence between the old
and the new policy, i.e., a trust region constraint:

max Lz, , ()
™

9

mazx

subject to DR (mo1q, ™) < 0,

The upper bound § on the maximum KL divergence turns out to be much less
problem dependent, and easier to tune.

e But: The number of constraint is equal to |S| !!
e Replace D}29" by the average KL divergence over all states:

max Lr_,, ()
U

, (10)
subject to D2 (w14, ) < 6
where D77, (71, m2) = Bs~p, [Drr(m1(]s), m2(.]5))]
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Recasting Problem (10)

e Expand L ,, () in problem (10):

max Y proiy(s) Y wlals)ar,,(a,s)

subject to Digfld (Tota, ™) <0

(11)

e We now make the following rewritings:
1
g Zs Proal -] = 75 Bsmpn,,, [

> an,,y — Gryy (Only changes the objective by a constant)

- Ea w(als)ar,, (s, a) =Ea~g [’;((lej)) Aoy (S, a)} Vs € S (important sampling)

e Problem (10) is then exactly equivalent to:

(als)

mc‘?”ozd (s, a)}

subject to Eswp.,rold [DKL(Wold('IS)vﬂ-('ls))] <94

m:X ESNP%M ,aNToLd [

(12)
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Sampled-Based Estimation of The Objective and Constraint |

e Approximate expectations by sample averages, and the Q values by empirical
average:

. 7(a;|s;
max Lr,,, () := E ils:) Qnold(si,ai)
™

7rold(az‘s
13
N (13)
subject to E [Dr L (mo1a(-]s:), m(-]s:))] < 6
i=1
e Single path scheme: Standard Monte-Carlo estimation
trajectories
( ) all state-action
\/ pairs used in
p objective
[e]
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Sampled-Based Estimation of The Objective and Constraint Il

e Vine scheme: Evaluate the Q values independently for state-action pairs (s, a)

encountered during various trajectories.

sampling ene,
3
.,

trajectories,** .
o RO

/\ two rollouts
using CRN
/[

/ 'l.....-l“’ “

N4 2 s

rollout set

e Advantage:
> Provides samples with much lower variance

e Drawbacks:
> Requires more calls to the simulator
> Requires to generate multiple trajectories from prescribed states
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Natural Policy Gradient |

mo(als)
max Eg~ Jan~ —Q
$ om0 o | T Cale) O

(s,a)

old

(14)
subject t0 Borp,,  [Dicr (70,1, (Is), mo(1s))] < 5

e NPG approximates problem (14) by using a linear approximation to the objective
and a quadratic approximation to the constraint around parameters 6,4, i.e.,

max g - (0 —601a)
1 _
subject to 5(aold - 0T Ag,,,(0o1a — 0) <6,

where g ~ Vei’"%zd (9)’9:9 » and

(A )ij = a, Prold
Oo1d )t 891893 KL

(70,45 70)

0=0514

(0014 (150)s o (+50))

2 b
ae 06; “F s
= =Vold

i=

is the average Fisher Information Matrix (FIM).
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Natural Policy Gradient Il

maxg - (0 —0o14)

R . (15)
subject to i(eold —0)" Ag,,,(Oo1a — 0) <9,
e Problem (15) is a quadratic equation and can be solved analytically:
0*
e Limitations of NPG:
> Finding the inverse of Ay ,, is expensive
» Given the search direction Ae_l g, the step size % may not be optimal.
old g Ae()ldg
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Practical Algorithm: TRPO

maxg - (0 —0o14)

1 (16)
. T %
subject to i(eold — 9) A@am(eold — 9) <9,

e In order to solve problem (16), we repeat the following steps until convergence:

1. Compute a search direction s ~ A;lldg using conjugate gradient algorithm.

2. Perform a line search in this direction, starting from proposed step /%.
9o1d

3. Update the policy parameters 0 < 0 + (s, where, s, 3 are the resulting direction
and step-size computed at steps 1,2 respectively.
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TRPO Algorithm

TRPO [1]

Algorithm parameter: Initial policy parameters 6y, KL divergence constraint
parameter §

fork =0,1,2,... do
Collect set of trajectories on policy g,
Estimate @ values using single path or vine sampling scheme
Use CG algorithm to obtain s; ~ A

Estimate proposed step Ay ~ T_i_lsk.
sp Aek Sk

Perform backtracking line search with exponential decay, starting from Aj, to
obtain step-size (i
Update the policy parameters:

Or+1 < O + Brsk

end for
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Drawbacks of TRPO

o Relatively complicated

e Not compatible with architecture involving noise (such as dropout) or parameter
sharing

e Less sample efficient than methods trained using first-order optimizers such as Adam

e Question: Following similar ideas, can we design a simpler algorithm at least as
performant as TRPO?
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Proximal Policy Optimization (PPO) with Adaptive KL Penalty [4]

e Going back to penalized problem:

=P,
max Ly, (1) — O * (mo), o)

PPO with Adaptive KL Penalty [1]

Algorithm parameter: Initial policy parameters 6, initial KL penalty (o, target
K L-divergence 9.

for k =0,1,2,... do
Collect set of trajectories on policy g,
Estimate @ values using single path or vine sampling scheme
Compute policy upate

_prg
Ok+1 = argmax Lr, (m9) — BuDy * (7o, , mo)
0

using Adam.
_pr

if D, " (7, 7o, ,,) > 1.56 then
Br+1 <: 2Bk

P ) 5

else if D,/ * (7o, To541) < 15 then
Br+1 %’“

end if

end for
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Proximal Policy Optimization (PPO) [4]

e PPO replaces the TRPO objective of equation (12)
w(als)
7rolti(als)

with the following clipped version (e usually set to 0.2):

Lrga(m) = ESNPwold’aNﬂold |: aryq(a, 5):| = LOPI(W)

CLIP( y _ . m(als)

L () = EBs~pr,,,a~mora {mm (maﬂold(a, s),

. m(als)
clip m,l—e,l—&-e ar,q(a,s)

o

LoLIP A>0 A0

1—¢1
: 4’—!—’ r
0 1 1+4e ' rour
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PPO Objective Function

e First policy update on the Hopper-vl problem:

0.12 — EdKLd
0.10 ' —— L =ErAl
0.08 —— Edclip(r, 1—€,1+ A
0.06 —— LCP = E[min(rAy clip(r, 1 — €, 1 + €)A)]
0.04
0.02
0.00
-0.02

0 1
Linear interpolation factor

o PPO penalizes large deviation from the current policy directly inside the objective
function
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PPO Algorithm

PPO with Clipped Objective [1]

Algorithm parameter: Initial policy parameters 6, clipping threshold e.

fork =0,1,2,... do
Collect set of trajectories on policy my,
Estimate @ values using single path or vine sampling scheme
Compute policy upate

CLIP(TK'@)

Or+1 = argmax L/
0 Ok

using Adam.
end for
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Computing the Fisher-Vector Product

e Applying conjugate gradient algorithm in step 1 requires to perform matrix-vector
multiplication with the FIM. We show here how to make this computation efficiently.
e Suppose that the parametrized policy maps from the state s to distribution
parameter vector g (s), which parametrizes the distribution w(als).

Let Ag,,,(s) = %DKL(W(;O”(WS),WQ(WS)) be the FIM of the policy at
o 0=0514

state s. Then, Ay s) can be written as

old(
Ag,,(s)=J"MJ

where J := %Q(S) is the Jacobian of pg(s), and

_ dlog g (-]s) dlog g (-]s) T _ . _— .
M=E [( ool ) (Tme) o= 9014 is the FIM of the distribution
wo(+|s) in terms of the parameter py (as opposed to the parameter 0), which has a
simple form for most parametrized distributions of interest.

The Fisher-vector product can now be written as a function y — J7 MTy.
Multiplication by JT and J can be performed by most automatic differentiation and
neural network packages (multiplication by J7 is the well-known backprop operation),
and the multiplication by M can be derived for the distribution of interest.
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