Markov Chains and Algorithmic Applications: WEEK 2

1 Recurrence and transience

Definition 1.1.

- A state $i \in S$ is recurrent if $f_{i i}=\mathbb{P}\left(\exists n \geq 1\right.$ such that $\left.X_{n}=i \mid X_{0}=i\right)=1$
(i.e., the probability that the chain returns to state i in finite time is equal to 1).
- A state $i \in S$ is transient if $f_{i i}<1$.

So a state is recurrent if and only if it is not transient.
Note in particular that it is not necessary that $f_{i i}=0$ for state i to be transient.

Examples.

Figure 1: Here states A, B and C are transient and D is recurrent.

Figure 2: For $0<p, q<1$ and $p+q=1$, are the states transient or recurrent ?
Facts.

- In a given equivalence class, either all states are recurrent, or all states are transient.
- In a finite chain, an equivalence class is recurrent iff there is no arrow leading out of it. (So a finite irreducible chain is always recurrent.)
- In a infinite chain, things are more complicated. (The chain might "escape to infinity".)

In order to deal with infinite chains, we need to establish a relation between the following two sequences of numbers:

- $p_{i i}^{(n)}=\mathbb{P}\left(X_{n}=i \mid X_{0}=i\right)\left(\right.$ with the convention $\left.p_{i i}^{(0)}=1\right)$
- $f_{i i}^{(n)}=\mathbb{P}\left(X_{n}=i, X_{n-1} \neq i, \ldots, X_{1} \neq i \mid X_{0}=i\right)$ (with the convention $f_{i i}^{(0)}=0$)

In words, $f_{i i}^{(n)}$ is the probability that, having left state i at time 0 , the chain returns to state i at time n for the first time.

Lemma 1.2. $\forall n \geq 1$, we have:

$$
p_{i i}^{(n)}=\sum_{m=1}^{n} f_{i i}^{(m)} p_{i i}^{(n-m)}
$$

Proof. Let

$$
\begin{aligned}
A_{n} & =\left\{X_{n}=i\right\}: p_{i i}^{(n)}=\mathbb{P}\left(A_{n} \mid X_{0}=i\right) \\
B_{n} & =\left\{X_{n}=i, X_{n-1} \neq i, \ldots, X_{1} \neq i\right\}: f_{i i}^{(n)}=\mathbb{P}\left(B_{n} \mid X_{0}=i\right)
\end{aligned}
$$

If the event A_{n} takes place, then it must be that one of the event B_{1}, \ldots, B_{n} also happen (because in the worst case, X will return to state i at time n). Therefore:

$$
\begin{aligned}
p_{i i}^{(n)} & =\mathbb{P}\left(A_{n} \mid X_{0}=i\right)=\mathbb{P}\left(A_{n} \bigcap\left(\bigcup_{m=1}^{n} B_{m}\right) \mid X_{0}=i\right) \\
& =\sum_{m=1}^{n} \mathbb{P}\left(A_{n} \cap B_{m} \mid X_{0}=i\right)=\sum_{m=1}^{n} \mathbb{P}\left(A_{n} \mid B_{m}, X_{0}=i\right) \mathbb{P}\left(B_{m} \mid X_{0}=i\right) \\
& =\sum_{m=1}^{n} \underbrace{\mathbb{P}\left(X_{n}=i \mid X_{m}=i, X_{m-1} \neq i, \ldots, X_{1} \neq i, X_{0}=i\right)}_{=p_{i i}^{(n-m)}} \underbrace{\mathbb{P}\left(X_{n}=i, X_{n-1} \neq i, \ldots, X_{1} \neq i \mid X_{0}=i\right)}_{=f_{i i}^{(m)}}
\end{aligned}
$$

where we have used the Markov property in the last equality leading to the term $p_{i i}^{(n-m)}$.
Proposition 1.3. A state $i \in S$ is recurrent iff $\sum_{n \geq 1} p_{i i}^{(n)}=+\infty$.
(So a state $i \in S$ is transient iff $\sum_{n \geq 1} p_{i i}^{(n)}<+\infty$)
Proof. First note

$$
f_{i i}=\mathbb{P}\left(\exists n \geq 1 \text { s.t. } X_{n}=i \mid X_{0}=i\right)=\mathbb{P}\left(\bigcup_{n \geq 1} B_{n} \mid X_{0}=i\right)=\sum_{n \geq 1} \mathbb{P}\left(B_{n} \mid X_{0}=i\right)=\sum_{n \geq 1} f_{i i}^{(n)}
$$

So what we need to prove is that $\sum_{n \geq 1} f_{i i}^{(n)}=1$ iff $\sum_{n \geq 1} p_{i i}^{(n)}=+\infty$.
Observe that there is a convolution relation between $p_{i i}^{(n)}$'s and $f_{i i}^{(n)}$'s. We will therefore use generating functions to get a simpler relation. Define for $s \in[0,1]$:

$$
P_{i i}(s)=\sum_{n \geq 0} s^{n} p_{i i}^{(n)} \quad \text { and } \quad F_{i i}(s)=\sum_{n \geq 0} s^{n} f_{i i}^{(n)}
$$

We will need now the following fact, also known as Abel's theorem:
Fact (Abel's Theorem). Let $\left(a_{n}, n \geq 0\right)$ be a sequence of numbers s.t. $0 \leq a_{n} \leq 1, \forall n \geq 0$. Then, $A(s)=\sum_{n \geq 0} s^{n} a_{n}$ converges $\forall s,|s|<1$ and

$$
\text { either } \lim _{s \rightarrow 1} A(s)=\sum_{n \geq 0} a_{n} \in \mathbb{R}_{+} \quad \text { or } \lim _{s \rightarrow 1} A(s)=\sum_{n \geq 0} a_{n}=+\infty
$$

So for $|s|<1$, we have:

$$
\begin{aligned}
P_{i i}(s) & =1+\sum_{n \geq 1} s^{n} p_{i i}^{(n)}=1+\sum_{n \geq 1} s^{n}\left(\sum_{m=1}^{n} f_{i i}^{(m)} p_{i i}^{(n-m)}\right) \\
& =1+\sum_{n \geq 1} \sum_{m=1}^{n} s^{m} s^{n-m} f_{i i}^{(m)} p_{i i}^{(n-m)}=1+\sum_{m \geq 1} \sum_{n \geq m} s^{m} f_{i i}^{(m)} s^{n-m} p_{i i}^{(n-m)} \\
& =1+\sum_{m \geq 1} s^{m} f_{i i}^{(m)} \sum_{k \geq 0} s^{k} p_{i i}^{(k)}=1+F_{i i}(s) P_{i i}(s)
\end{aligned}
$$

remembering that $f_{i i}^{(0)}=0$, by convention.

Hence, $P_{i i}(s)=\frac{1}{1-F_{i i}(s}$ for all $|s|<1$ and by Abel's theorem:

$$
\sum_{n \geq 0} p_{i i}^{(n)}=\lim _{s \rightarrow 1} P_{i i}(s)=+\infty \quad \text { iff } \quad f_{i i}=\sum_{n \geq 0} f_{i i}^{(n)}=\lim _{s \rightarrow 1} F_{i i}(s)=1
$$

Remark.

$$
\sum_{n \geq 1} p_{i i}^{(n)}=\sum_{n \geq 1} \mathbb{P}\left(X_{n}=i \mid X_{0}=i\right)=\text { expected number of visits of state } \mathrm{i} \mid X_{0}=i
$$

So this expected number of visits of state i is infinite iff i is recurrent.

Example 1.4. - One-dimensional simple (a-)symmetric random walk: by Homework 1, Exercise 1:

$$
p_{00}^{(2 n)} \approx \frac{(4 p q)^{n}}{\sqrt{\pi n}} \quad \text { for } n \text { large }
$$

The chain is recurrent iff state 0 is recurrent iff

$$
\sum_{n \geq 1} p_{00}^{(n)}=+\infty \quad \text { iff } \quad \sum_{n \geq 1} p_{00}^{(2 n)}=+\infty \quad \text { iff } \quad \sum_{n \geq 1} \frac{(4 p q)^{n}}{\sqrt{\pi n}}=\infty
$$

iff $p=q=1 / 2$ (else $4 p q<1$ and the series converges).

- Two-dimensional simple symmetric random walk (see Homework 1, Exercise 2):

$$
p_{00}^{(2 n)} \approx \frac{1}{\pi n} \quad \text { for } n \text { large }
$$

so $\sum_{n \geq 1} p_{00}^{(2 n)}=+\infty$ and the chain is reccurent.

- Three-dimensional simple symmetric random walk: see Homework 2, Exercise 2.

2 Positive and null-recurrence

Let $T_{i}=\inf \left\{n \geq 1: X_{n}=i\right\}$ be the first recurrence time to state i. So $f_{i i}^{(n)}=\mathbb{P}\left(T_{i}=n \mid X_{0}=i\right)$ and

$$
f_{i i}=\sum_{n \geq 1} f_{i i}^{(n)}=\sum_{n \geq 1} \mathbb{P}\left(T_{i}=n \mid X_{0}=i\right)=\mathbb{P}\left(T_{i}<+\infty \mid X_{0}=i\right)\left\{\begin{array}{l}
=1 \text { iff } \mathrm{i} \text { is recurrent } \\
<1 \text { iff } \mathrm{i} \text { is transient }
\end{array}\right.
$$

Definition 2.1. The mean recurrence time to state i is defined as $\mu_{i}=\mathbb{E}\left(T_{i} \mid X_{0}=i\right)$

- if i is transient, then $\mathbb{P}\left(T_{i}=+\infty \mid X_{0}=i\right)>0$, so $\mu_{i}=+\infty$.
- if i is recurrent, then $\mu_{i}=\sum_{n \geq 1} n \mathbb{P}\left(T_{i}=n \mid X_{0}=i\right) \geq 0 \in[1,+\infty]$.

In this case, we say that

- i is positive-recurrent if $\mu_{i}<+\infty$.
- i is null-recurrent if $\mu_{i}=+\infty$.

Remarks.

- What does is mean to be recurrent? By time-homogeneity, this implies that the chain will visit state i an infinite number of times with probability 1.
- In the case of a positive-recurrent state, the average time duration between two visits is finite.
- In the case of a null-recurrent state, this average time duration between two visits is infinite, but the probability to return in finite time is 1 , as counter-intuitive as it may be!

Facts.

- In a given equivalence class, either all states are transient, or all state are positive-recurrent, or all states are null-recurrent.
- A finite irreducible chain is always positive-recurrent.

Example.

- $p \neq q \Longrightarrow$ transient chain $\Longrightarrow \mathbb{P}\left(T_{0}=+\infty \mid X_{0}=0\right)>0$ and $\mu_{0}=+\infty$
- $p=q=\frac{1}{2} \Longrightarrow$ recurrent chain $\Longrightarrow \mathbb{P}\left(T_{0}=+\infty \mid X_{0}=0\right)=0$, but $\mu_{0}=+\infty$ also (without proof); the chain is null-recurrent in this second case.

