Markov Chains and Algorithmic Applications: WEEK 4

1 Ergodic theorem: proof

Let us first restate the theorem.
Theorem 1.1 (Ergodic theorem). Let ($X_{n}, n \geq 0$) be an ergodic (i.e., irreducible, aperiodic and positiverecurrent) Markov chain with state space S and transition matrix P. Then it admits a unique limiting and stationary distribution π, i.e., $\forall \pi^{(0)}, \lim _{n \rightarrow \infty} \pi^{(n)}=\pi$ and $\pi=\pi P$.

1.1 Tools for the proof

Total variation distance between two distributions.

Definition 1.2. Let μ and ν be two distributions on the same state space S (i.e. $0 \leq \mu_{i}, \nu_{i} \leq 1$, $\sum_{i \in S} \mu_{i}=\sum_{i \in S} \nu_{i}=1$). The total variation between μ and ν is defined as

$$
\|\mu-\nu\|_{\mathrm{TV}}=\sup _{A \subset S}|\mu(A)-\nu(A)|
$$

where $\mu(A)=\sum_{i \in S} \mu_{i}$ and $\nu(A)=\sum_{i \in S} \nu_{i}$.
Properties. (see exercises for the proof)

- $0 \leq\|\mu-\nu\|_{\mathrm{TV}} \leq 1$. Moreover, $\|\mu-\nu\|_{\mathrm{TV}}=0$ iff $\mu=\nu$, and $\|\mu-\nu\|_{\mathrm{TV}}=1$ iff μ and ν have disjoint support (i.e., $\exists A \subset S$ such that $\mu(A)=1$ and $\nu(A)=0$).
- $\|\mu-\nu\|_{\mathrm{TV}}=\frac{1}{2} \sum_{i \in S}\left|\mu_{i}-\nu_{i}\right|$.
- triangle inequality: $\|\mu-\pi\|_{\mathrm{TV}} \leq\|\mu-\nu\|_{\mathrm{TV}}+\|\nu-\pi\|_{\mathrm{TV}}$

Coupling between two distributions.

Definition 1.3. Let μ, ν be two distributions on S. A coupling between μ and ν is a pair of random variables (X, Y) with a joint distribution on $S \times S$ such that $\mathbb{P}(X=i)=\mu_{i}$ and $\mathbb{P}(Y=i)=\nu_{i}$, for $i \in S$.
Note that there exist multiple possible couplings for a given pair μ, ν.
Example 1.4. Consider $S=\{0,1\}$ and $\mu_{0}=\mu_{1}=\nu_{0}=\nu_{1}=\frac{1}{2}$:
a) choose X, Y independent with $\mathbb{P}(X=i, Y=j)=\frac{1}{4}, \forall i, j \in S$ (statistical coupling)
b) choose $X=Y$ with $\mathbb{P}(X=Y=0)=\mathbb{P}(X=Y=1)=\frac{1}{2}$ (grand coupling)

Proposition 1.5. For every coupling (X, Y) of μ, ν, we have $\|\mu-\nu\|_{\mathrm{TV}} \leq \mathbb{P}(X \neq Y)$
Proof. Let A be any subset of S :

$$
\mu(A)=\mathbb{P}(X \in A)=\mathbb{P}(X \in A, Y \in A)+\mathbb{P}\left(X \in A, Y \in A^{c}\right)
$$

and

$$
\nu(A)=\mathbb{P}(Y \in A)=\mathbb{P}(X \in A, Y \in A)+\mathbb{P}\left(X \in A^{c}, Y \in A\right)
$$

SO

$$
\mu(A)-\nu(A)=\mathbb{P}\left(X \in A, Y \in A^{c}\right)-\mathbb{P}\left(X \in A^{c}, Y \in A\right) \leq \mathbb{P}\left(X \in A, Y \in A^{c}\right) \leq \mathbb{P}(X \neq Y)
$$

and

$$
\nu(A)-\mu(A)=\mathbb{P}\left(X \in A^{c}, Y \in A\right)-\mathbb{P}\left(X \in A, Y \in A^{c}\right) \leq \mathbb{P}\left(X \in A^{c}, Y \in A\right) \leq \mathbb{P}(X \neq Y)
$$

which in turn implies that

$$
\|\mu-\nu\|_{\mathrm{TV}}=\sup _{A \subset S}|\mu(A)-\nu(A)| \leq \mathbb{P}(X \neq Y)
$$

Coupling between two Markov chains.

Let $\left(X_{n}, n \geq 0\right),\left(Y_{n}, n \geq 0\right)$ be two Markov chains on the same state S and with the same transition matrix P, but with initial distributions μ and ν respectively. As seen before, the distributions of these two Markov chains at time n are given by:

$$
\mathbb{P}\left(X_{n}=i\right)=\left(\mu P^{n}\right)_{i} \quad \text { and } \quad \mathbb{P}\left(Y_{n}=i\right)=\left(\nu P^{n}\right)_{i} \quad \text { for } i \in S
$$

In order to couple X and Y, we need to specify their joint distribution. One possibility is the following. Let $\left(Z_{n}=\left(X_{n}, Y_{n}\right), n \geq 0\right)$ be the process defined on the state space $S \times S$ as:

- $\mathbb{P}\left(Z_{0}=(i, k)\right)=\mu_{i} \nu_{k}, \forall i, k \in S$
- Let X, Y evolve independently according to P (following the rules for their own chain) as long as $X_{n} \neq Y_{n}$ (statistical coupling).
- As soon as $X_{n}=Y_{n}$, the process coalesces, i.e., $X_{m}=Y_{m}, \forall m \geq n$, and they evolve together according to P (grand coupling).

You should think of two people starting from two different random positions and walking randomly in town; when they meet by chance, they continue walking randomly, but together.
Definition 1.6. The coupling time of the chains X and Y is defined as $\tau_{c}=\inf \left\{n \geq 1: X_{n}=Y_{n}\right\}$.
Lemma 1.7. For any $n \geq 0$, it holds that:

$$
\|\underbrace{\mu P^{n}}_{\begin{array}{c}
\text { distribution of } \mathrm{X} \\
\text { at time } \mathrm{n}
\end{array}}-\underbrace{\nu P^{n}}_{\begin{array}{c}
\text { distribution of } \mathrm{Y} \\
\text { at time } \mathrm{n}
\end{array}}\|_{\mathrm{TV}} \leq \mathbb{P}\left(\tau_{c}>n\right)
$$

Proof. The proof is a simple consequence of Proposition 1.5: for a given $n \geq 0, \mu P^{n}, \nu P^{n}$ are distributions on S, and $\left(X_{n}, Y_{n}\right)$ is a coupling of these two distributions, so

$$
\left\|\mu P^{n}-\nu P^{n}\right\|_{\mathrm{TV}} \leq \mathbb{P}\left(X_{n} \neq Y_{n}\right)=\mathbb{P}\left(\tau_{c}>n\right)
$$

1.2 Proof of the ergodic theorem

Because the chain $\left(X_{n}, n \geq 0\right)$ is assumed to be irreducible and positive-recurrent, we know from the first theorem of last week that the chain admits a unique stationary distribution π. What remains therefore to be proven is that for any initial distribution $\pi^{(0)}$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}=i\right)=\lim _{n \rightarrow \infty} \pi_{i}^{(n)}=\pi_{i}, \quad \forall i \in S
$$

We will actually prove something slightly stronger below, namely that for any $\pi^{(0)}$,

$$
\lim _{n \rightarrow \infty}\left\|\pi^{(n)}-\pi\right\|_{\mathrm{TV}}=0
$$

(this is equivalent to the above statement if S is finite and stronger if S is infinite). Let X (resp. Y) be the Markov chain with transition matrix P and initial distribution $\pi^{(0)}$ (resp. π). We moreover assume that X and Y are coupled as described in the previous section. Then for all $i \in S$, we have:

$$
\mathbb{P}\left(X_{n}=i\right)=\left(\pi^{(0)} P^{n}\right)_{i}=\pi_{i}^{(n)} \quad \text { and } \quad \mathbb{P}\left(Y_{n}=i\right)=\left(\pi P^{n}\right)_{i}=\pi_{i}
$$

and Lemma 1.7 asserts that

$$
\left\|\pi^{(n)}-\pi\right\|_{\mathrm{TV}}=\left\|\pi^{(0)} P^{n}-\pi P^{n}\right\|_{\mathrm{TV}} \leq \mathbb{P}\left(X_{n} \neq Y_{n}\right)=\mathbb{P}\left(\tau_{c}>n\right)
$$

What remains therefore to be shown is that $\lim _{n \rightarrow \infty} \mathbb{P}\left(\tau_{c}>n\right)=0$.
Remark. Before we move on, let us observe the following: it is in general not true that at some time n, the distribution $\pi^{(n)}$ of the chain X_{n} becomes exactly equal to π : this happens only for exceptional chains. The above coupling argument just proves that the total variation distance between $\pi^{(n)}$ and π converges to 0 as n gets large.
Now, because

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\tau_{c}>n\right)=\mathbb{P}\left(\tau_{c}>n, \forall n \geq 1\right)=\mathbb{P}\left(\tau_{c}=+\infty\right)=1-\mathbb{P}\left(\tau_{c}<+\infty\right)
$$

we obtain that the limit is equal to $0 \operatorname{iff} \mathbb{P}\left(\tau_{c}<+\infty\right)=1$.
Consider the chain $\left(Z_{n}=\left(X_{n}, Y_{n}\right), n \geq 0\right)$ before coalescence. First, observe that it is a Markov chain on the state space $S \times S$ with transition probabilities

$$
\mathbb{P}\left(Z_{n+1}=(j, l) \mid Z_{n}=(i, k)\right)=p_{i j} p_{k l}=(P \otimes P)_{i k, j l}
$$

where $P \otimes P$ denotes the tensor product of P with itself. It is here just a notation for the transition matrix of the chain Z with state space $S \times S$.

Second, observe that the chain Z is itself irreducible and aperiodic. Indeed, it holds for an irreducible and aperiodic chain (like X and Y),

$$
\forall i, j \in S, \quad \exists N(i, j) \quad \text { such that } \quad \forall n \geq N(i, j), \quad p_{i j}(n)>0
$$

Thus, for the chain Z, we have:

$$
\begin{aligned}
& \forall(i, k),(j, l) \in S \times S, \quad \exists N(i k, j l)=\max (N(i, j), N(k, l)) \quad \text { such that } \\
& \forall n \geq N(i k, j l), \quad \mathbb{P}\left(Z_{n}=(j l) \mid Z_{0}=(i k)\right)=p_{i j}(n) p_{k l}(n)>0
\end{aligned}
$$

So the chain Z is irreducible and aperiodic.
Third, Z admits a stationary distribution. Indeed, consider the distribution $\Pi=\pi \otimes \pi$, i.e. $\Pi_{i k}=\pi_{i} \pi_{k}$. We have:

$$
\begin{aligned}
((\pi \otimes \pi)(P \otimes P))_{j l} & =\sum_{i k \in S}(\pi \otimes \pi)_{i k}(P \otimes P)_{i k, j l} \\
& =\sum_{i, k \in S} \pi_{i} \pi_{k} P_{i j} P_{k l}=\sum_{i \in S} \pi_{i} P_{i j} \sum_{i \in S} \pi_{k} P_{k l}=\pi_{j} \pi_{l}=(\pi \otimes \pi)_{j l}
\end{aligned}
$$

So far, we have shown that the Markov chain Z, which is a coupling of our original Markov chain X and the Markov chain Y starting with the stationary distribution π as initial distribution, is irreducible, aperiodic and admits a stationary distribution. So by the first theorem of last week, Z is positive-recurrent. This will allow us to prove that $\mathbb{P}\left(\tau_{c}<+\infty\right)=1$.

For $(i k) \in S \times S$, define the first time Z reach state $(i k)$:

$$
T_{(i k)}=\inf \left\{n \geq 1: Z_{n}=(i k)\right\}
$$

Since Z is positive-recurrent, we have:

$$
\mathbb{P}\left(T_{(i k)}<+\infty \mid Z_{0}=(i k)\right)=1
$$

Considering then $n \geq 1$ such that $p_{i k, j l}(n)>0$ (such an n is guaranteed to exist because Z is irreducible), we deduce that

$$
\begin{aligned}
0 & =\mathbb{P}\left(T_{(i k)}=+\infty \mid Z_{0}=(i k)\right) \\
& \geq \mathbb{P}\left(T_{(i k)}=+\infty, Z_{n}=(j l) \mid Z_{0}=(i k)\right) \\
& =\mathbb{P}\left(T_{(i k)}=+\infty \mid Z_{n}=(j l), Z_{0}=(i k)\right) \cdot p_{i k, j l}(n)
\end{aligned}
$$

Using $p_{i k, j l}(n)>0$, as well as the Markov property and the time homogeneity, we obtain

$$
\mathbb{P}\left(T_{(i k)}=+\infty \mid Z_{0}=(j l)\right)=0
$$

or equivalently:

$$
\mathbb{P}\left(T_{(i k)}<+\infty \mid Z_{0}=(j l)\right)=1
$$

Compared to the positive-recurrent property, this says that Z will reach state $(i k)$ in finite time with probability 1 not only starting from state $(i k)$, but from any other state ($j l$) also.
Consider now any $i=k \in S$, and $j, l \in S$. We have

$$
\mathbb{P}\left(T_{(i i)}<+\infty \mid Z_{0}=(j l)\right)=1
$$

Observing that $\tau_{c} \leq T_{(i i)}$ for any i (as for a given $i \in S, T_{(i i)}$ is a just possible coupling time), we finally obtain that for any $j, l \in S$,

$$
\mathbb{P}\left(\tau_{c}<+\infty \mid Z_{0}=(j l)\right)=1
$$

which completes the proof.

Note: A last formal step would be needed here to deduce that for any initial distribution of Z on $S \times S$, we have $\mathbb{P}\left(\tau_{c}<+\infty\right)=1$. We indeed only showed here that $\mathbb{P}\left(\tau_{c}<+\infty\right)=1$ starting from any initial state $(j l)$. In case of a finite S, these two statements are clearly equivalent. In the infinite setting, this requires a proof.

