
Markov Chains and Algorithmic Applications: WEEK 4

1 Ergodic theorem: proof

Let us first restate the theorem.

Theorem 1.1 (Ergodic theorem). Let (Xn, n ≥ 0) be an ergodic (i.e., irreducible, aperiodic and positive-
recurrent) Markov chain with state space S and transition matrix P . Then it admits a unique limiting
and stationary distribution π, i.e., ∀π(0), limn→∞ π(n) = π and π = πP .

1.1 Tools for the proof

Total variation distance between two distributions.

Definition 1.2. Let µ and ν be two distributions on the same state space S (i.e. 0 ≤ µi, νi ≤ 1,∑
i∈S µi =

∑
i∈S νi = 1). The total variation between µ and ν is defined as

||µ− ν||TV = sup
A⊂S
|µ(A)− ν(A)|

where µ(A) =
∑

i∈S µi and ν(A) =
∑

i∈S νi.

Properties. (see exercises for the proof)

• 0 ≤ ||µ − ν||TV ≤ 1. Moreover, ||µ − ν||TV = 0 iff µ = ν, and ||µ − ν||TV = 1 iff µ and ν have
disjoint support (i.e., ∃A ⊂ S such that µ(A) = 1 and ν(A) = 0).

• ||µ− ν||TV = 1
2

∑
i∈S |µi − νi|.

• triangle inequality: ||µ− π||TV ≤ ||µ− ν||TV + ||ν − π||TV

Coupling between two distributions.

Definition 1.3. Let µ, ν be two distributions on S. A coupling between µ and ν is a pair of random
variables (X,Y ) with a joint distribution on S×S such that P(X = i) = µi and P(Y = i) = νi, for i ∈ S.

Note that there exist multiple possible couplings for a given pair µ, ν.

Example 1.4. Consider S = {0, 1} and µ0 = µ1 = ν0 = ν1 = 1
2 :

a) choose X,Y independent with P(X = i, Y = j) = 1
4 , ∀i, j ∈ S (statistical coupling)

b) choose X = Y with P(X = Y = 0) = P(X = Y = 1) = 1
2 (grand coupling)

Proposition 1.5. For every coupling (X,Y ) of µ, ν, we have ||µ− ν||TV ≤ P(X 6= Y )

Proof. Let A be any subset of S:

µ(A) = P(X ∈ A) = P(X ∈ A, Y ∈ A) + P(X ∈ A, Y ∈ Ac)

and
ν(A) = P(Y ∈ A) = P(X ∈ A, Y ∈ A) + P(X ∈ Ac, Y ∈ A)

so
µ(A)− ν(A) = P(X ∈ A, Y ∈ Ac)− P(X ∈ Ac, Y ∈ A) ≤ P(X ∈ A, Y ∈ Ac) ≤ P(X 6= Y )

and

ν(A)− µ(A) = P(X ∈ Ac, Y ∈ A)− P(X ∈ A, Y ∈ Ac) ≤ P(X ∈ Ac, Y ∈ A) ≤ P(X 6= Y )

which in turn implies that

||µ− ν||TV = sup
A⊂S
|µ(A)− ν(A)| ≤ P(X 6= Y )
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Coupling between two Markov chains.

Let (Xn, n ≥ 0), (Yn, n ≥ 0) be two Markov chains on the same state S and with the same transition
matrix P , but with initial distributions µ and ν respectively. As seen before, the distributions of these
two Markov chains at time n are given by:

P(Xn = i) = (µPn)i and P(Yn = i) = (νPn)i for i ∈ S

In order to couple X and Y , we need to specify their joint distribution. One possibility is the following.
Let (Zn = (Xn, Yn), n ≥ 0) be the process defined on the state space S × S as:

• P(Z0 = (i, k)) = µiνk, ∀i, k ∈ S

• Let X,Y evolve independently according to P (following the rules for their own chain) as long as
Xn 6= Yn (statistical coupling).

• As soon as Xn = Yn, the process coalesces, i.e., Xm = Ym, ∀m ≥ n, and they evolve together
according to P (grand coupling).

You should think of two people starting from two different random positions and walking randomly in
town; when they meet by chance, they continue walking randomly, but together.

Definition 1.6. The coupling time of the chains X and Y is defined as τc = inf{n ≥ 1: Xn = Yn}.

Lemma 1.7. For any n ≥ 0, it holds that:

|| µPn︸︷︷︸
distribution of X

at time n

− νPn︸︷︷︸
distribution of Y

at time n

||TV ≤ P(τc > n)

Proof. The proof is a simple consequence of Proposition 1.5: for a given n ≥ 0, µPn, νPn are distributions
on S, and (Xn, Yn) is a coupling of these two distributions, so

||µPn − νPn||TV ≤ P(Xn 6= Yn) = P(τc > n)

1.2 Proof of the ergodic theorem

Because the chain (Xn, n ≥ 0) is assumed to be irreducible and positive-recurrent, we know from the first
theorem of last week that the chain admits a unique stationary distribution π. What remains therefore
to be proven is that for any initial distribution π(0),

lim
n→∞

P(Xn = i) = lim
n→∞

π
(n)
i = πi, ∀i ∈ S

We will actually prove something slightly stronger below, namely that for any π(0),

lim
n→∞

||π(n) − π||TV = 0

(this is equivalent to the above statement if S is finite and stronger if S is infinite). Let X (resp. Y ) be
the Markov chain with transition matrix P and initial distribution π(0) (resp. π). We moreover assume
that X and Y are coupled as described in the previous section. Then for all i ∈ S, we have:

P(Xn = i) = (π(0)Pn)i = π
(n)
i and P(Yn = i) = (πPn)i = πi

and Lemma 1.7 asserts that

||π(n) − π||TV = ||π(0)Pn − πPn||TV ≤ P(Xn 6= Yn) = P(τc > n)
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What remains therefore to be shown is that limn→∞ P(τc > n) = 0.

Remark. Before we move on, let us observe the following: it is in general not true that at some time
n, the distribution π(n) of the chain Xn becomes exactly equal to π: this happens only for exceptional
chains. The above coupling argument just proves that the total variation distance between π(n) and π
converges to 0 as n gets large.

Now, because

lim
n→∞

P(τc > n) = P(τc > n, ∀n ≥ 1) = P(τc = +∞) = 1− P(τc < +∞)

we obtain that the limit is equal to 0 iff P(τc < +∞) = 1.

Consider the chain (Zn = (Xn, Yn), n ≥ 0) before coalescence. First, observe that it is a Markov chain
on the state space S × S with transition probabilities

P(Zn+1 = (j, l)|Zn = (i, k)) = pij pkl = (P ⊗ P )ik,jl

where P ⊗ P denotes the tensor product of P with itself. It is here just a notation for the transition
matrix of the chain Z with state space S × S.

Second, observe that the chain Z is itself irreducible and aperiodic. Indeed, it holds for an irreducible
and aperiodic chain (like X and Y ),

∀i, j ∈ S, ∃N(i, j) such that ∀n ≥ N(i, j), pij(n) > 0

Thus, for the chain Z, we have:

∀(i, k), (j, l) ∈ S × S, ∃N(ik, jl) = max(N(i, j), N(k, l)) such that

∀n ≥ N(ik, jl), P(Zn = (jl)|Z0 = (ik)) = pij(n) pkl(n) > 0

So the chain Z is irreducible and aperiodic.

Third, Z admits a stationary distribution. Indeed, consider the distribution Π = π ⊗ π, i.e. Πik = πiπk.
We have:

((π ⊗ π)(P ⊗ P ))jl =
∑
ik∈S

(π ⊗ π)ik(P ⊗ P )ik,jl

=
∑
i,k∈S

πiπkPijPkl =
∑
i∈S

πiPij

∑
i∈S

πkPkl = πjπl = (π ⊗ π)jl

So far, we have shown that the Markov chain Z, which is a coupling of our original Markov chainX and the
Markov chain Y starting with the stationary distribution π as initial distribution, is irreducible, aperiodic
and admits a stationary distribution. So by the first theorem of last week, Z is positive-recurrent. This
will allow us to prove that P(τc < +∞) = 1.

For (ik) ∈ S × S, define the first time Z reach state (ik):

T(ik) = inf{n ≥ 1 : Zn = (ik)}

Since Z is positive-recurrent, we have:

P(T(ik) < +∞|Z0 = (ik)) = 1

Considering then n ≥ 1 such that pik,jl(n) > 0 (such an n is guaranteed to exist because Z is irreducible),
we deduce that

0 = P(T(ik) = +∞|Z0 = (ik))

≥ P(T(ik) = +∞, Zn = (jl)|Z0 = (ik))

= P(T(ik) = +∞|Zn = (jl), Z0 = (ik)) · pik,jl(n)
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Using pik,jl(n) > 0, as well as the Markov property and the time homogeneity, we obtain

P(T(ik) = +∞|Z0 = (jl)) = 0

or equivalently:
P(T(ik) < +∞|Z0 = (jl)) = 1

Compared to the positive-recurrent property, this says that Z will reach state (ik) in finite time with
probability 1 not only starting from state (ik), but from any other state (jl) also.

Consider now any i = k ∈ S, and j, l ∈ S. We have

P(T(ii) < +∞|Z0 = (jl)) = 1

Observing that τc ≤ T(ii) for any i (as for a given i ∈ S, T(ii) is a just possible coupling time), we finally
obtain that for any j, l ∈ S,

P(τc < +∞|Z0 = (jl)) = 1

which completes the proof. �

Note: A last formal step would be needed here to deduce that for any initial distribution of Z on S × S,
we have P(τc < +∞) = 1. We indeed only showed here that P(τc < +∞) = 1 starting from any initial
state (jl). In case of a finite S, these two statements are clearly equivalent. In the infinite setting, this
requires a proof.

4


