Markov Chains and Algorithmic Applications: WEEK 4

1 Ergodic theorem: proof

Let us first restate the theorem.

Theorem 1.1 (Ergodic theorem). Let (X,,, n > 0) be an ergodic (i.e., irreducible, aperiodic and positive-
recurrent) Markov chain with state space S and transition matrix P. Then it admits a unique limiting
and stationary distribution =, i.e., V29, lim,, oo 7™ = 7 and 7 = 7 P.

1.1 Tools for the proof

Total variation distance between two distributions.

Definition 1.2. Let pu and v be two distributions on the same state space S (i.e. 0 < p;,v; < 1,
Y ies i = Y ;eg¥i = 1). The total variation between p and v is defined as

[l = vllrv = sup [u(A) - v(A)]
AcCS

where p(A) =3 . cgmi and v(A) =3, g v
Properties. (see exercises for the proof)
e 0 < ||u—vl|lrv < 1. Moreover, ||u—v|rv =0 iff g = v, and ||ug — v||rv = 1 iff p and v have
disjoint support (i.e., 3A C S such that u(A) =1 and v(A) = 0).
o [lu—vllry =3 Xics mi —vil-
e triangle inequality: ||u — 7||rv < ||u —v||rv + ||V — 7||rv
Coupling between two distributions.

Definition 1.3. Let u, v be two distributions on S. A coupling between y and v is a pair of random
variables (X,Y") with a joint distribution on S x S such that P(X =) = p; and P(Y = i) = v, for i € S.

Note that there exist multiple possible couplings for a given pair p, v.
Example 1.4. Consider S ={0,1} and po = p1 =vg =v1 = %:
a) choose X,V independent with P(X =i,Y = j) = 1, Vi,j € S (statistical coupling)

b) choose X =Y with P(X =Y =0) =P(X =Y =1) = 1 (grand coupling)
Proposition 1.5. For every coupling (X,Y) of u, v, we have ||u — v||tv <P(X #Y)

Proof. Let A be any subset of S:
wA)=P(X € A)=P(X €AY € A)+P(X € A,Y € A°)

and
V(A)=P(Y € A)=P(X € A, Y € A) +P(X € A°,Y € A)
SO
WA —v(A) =P(X €AY € A°) —P(X € A Y € A) <P(X € A, Y € A) <P(X #Y)
and

v(A) —p(A) =P(X € A Y € A) —P(X €AY c A°) <P(X € A Y € A) <P(X #Y)
which in turn implies that

|l = vllvy = sup |u(A) —v(A)| <P(X #Y)
ACS



Coupling between two Markov chains.

Let (X, n > 0), (Yn, n > 0) be two Markov chains on the same state S and with the same transition
matrix P, but with initial distributions p and v respectively. As seen before, the distributions of these
two Markov chains at time n are given by:

P(X,=1)=(uP"); and P(Y,=1i)=wP"); foriesS

In order to couple X and Y, we need to specify their joint distribution. One possibility is the following.
Let (Z, = (Xn,Yn),n > 0) be the process defined on the state space S x S as:

o P(Zy = (i,k)) = pivg, Vi, k €S

e Let XY evolve independently according to P (following the rules for their own chain) as long as
X, #Y, (statistical coupling).

e As soon as X,, = Y,,, the process coalesces, i.e., X;, = Y,,, Ym > n, and they evolve together
according to P (grand coupling).

You should think of two people starting from two different random positions and walking randomly in
town; when they meet by chance, they continue walking randomly, but together.

Definition 1.6. The coupling time of the chains X and Y is defined as 7. = inf{n > 1: X,, =Y, }.

Lemma 1.7. For any n > 0, it holds that:

I ppP" - vP" [lrv < P(7e > n)
~— N~
distribution of X  distribution of Y
at time n at time n

Proof. The proof is a simple consequence of Proposition 1.5: for a given n > 0, uP™,vP"™ are distributions
on S, and (X,,Y,) is a coupling of these two distributions, so

||,UPn - VP””TV < ]P)(Xn # Yﬂ) = P(TC > n)

1.2 Proof of the ergodic theorem

Because the chain (X,,, n > 0) is assumed to be irreducible and positive-recurrent, we know from the first
theorem of last week that the chain admits a unique stationary distribution 7. What remains therefore
to be proven is that for any initial distribution (%),

lim P(X, =) = lim 7™ =m, Vies
n—oo n—oo
We will actually prove something slightly stronger below, namely that for any (%),
lim ||7™ —7||py =0
n—oo

(this is equivalent to the above statement if S is finite and stronger if S is infinite). Let X (resp. Y) be
the Markov chain with transition matrix P and initial distribution 7(®) (resp. 7). We moreover assume
that X and Y are coupled as described in the previous section. Then for all i € S, we have:

P(X, =i) = (@x@P"); =x™ and P(Y, =i) = (xP"), = m
and Lemma 1.7 asserts that

7™ = allzv = |7 P" = 7 P"||rv < B(Xy £ Y,) = B(re > )



What remains therefore to be shown is that lim, . P(7. > n) = 0.

Remark. Before we move on, let us observe the following: it is in general not true that at some time
n, the distribution 7™ of the chain X,, becomes exactly equal to 7: this happens only for exceptional
chains. The above coupling argument just proves that the total variation distance between 7(™ and 7
converges to 0 as n gets large.

Now, because

lim P(7. > n) =P(r. >n, ¥n > 1) =P(1. = +00) =1 — P(7. < +00)

n—oo
we obtain that the limit is equal to 0 iff P(7. < +00) = 1.

Consider the chain (Z,, = (X,,,Yn), n > 0) before coalescence. First, observe that it is a Markov chain
on the state space S x S with transition probabilities

P(Zn11 = (3, )| Zn = (i,k)) = pij pri = (P ® P)ig j1

where P ® P denotes the tensor product of P with itself. It is here just a notation for the transition
matrix of the chain Z with state space S x S.

Second, observe that the chain Z is itself irreducible and aperiodic. Indeed, it holds for an irreducible
and aperiodic chain (like X and V),

Vi,j €S, 3N(i,j) suchthat VYn>N(i,j), pij(n)>0
Thus, for the chain Z, we have:

V(i k), (5,1) € S xS, 3IN(ik,jl) = max(N (3, ), N(k,1)) such that
Vn > N(ik, jl), P(Zn = (j1)|Zo = (ik)) = pi;(n) pri(n) > 0
So the chain Z is irreducible and aperiodic.

Third, Z admits a stationary distribution. Indeed, consider the distribution Il = 7 ® 7, i.e. Il = m;mg.
We have:

(r@m)(P®P)j=> (T@m)in(P® P

ikes
= E m T Py Py = E ™ Py E TPy =mjm = (@)
ikes ics €S

So far, we have shown that the Markov chain Z, which is a coupling of our original Markov chain X and the
Markov chain Y starting with the stationary distribution 7 as initial distribution, is irreducible, aperiodic
and admits a stationary distribution. So by the first theorem of last week, Z is positive-recurrent. This
will allow us to prove that P(7. < +o0) = 1.

For (ik) € S x S, define the first time Z reach state (ik):

Tigy = inf{n > 1: Z, = (ik)}
Since Z is positive-recurrent, we have:

P(T(ix) < +00|Zo = (ik)) =1

Considering then n > 1 such that p;x_j;(n) > 0 (such an n is guaranteed to exist because Z is irreducible),
we deduce that

0= ]P(T(zk) = +OO|Z0 = (Zk))
P(Tix) = +o0, Z, = (jl)| Zo = (ik))
= P(T(iry = +00|Z,, = (jl), Zo = (ik)) - pirji(n)

Y



Using pik,ji(n) > 0, as well as the Markov property and the time homogeneity, we obtain
P(Tiiry = +00|Zo = (j1)) =0

or equivalently:
P(T(iry < +o00|Zo = (jl)) =1

Compared to the positive-recurrent property, this says that Z will reach state (ik) in finite time with
probability 1 not only starting from state (ik), but from any other state (jI) also.

Consider now any i = k € S, and 5,1 € S. We have
P(T(s1y < +00|Zo = (jl)) = 1

Observing that 7. < T(;;) for any i (as for a given i € S, T(;;) is a just possible coupling time), we finally
obtain that for any j,1 € S,
P(r. < +o0|Zp = (j1)) =1

which completes the proof. |

Note: A last formal step would be needed here to deduce that for any initial distribution of Z on S x .S,
we have P(7. < +00) = 1. We indeed only showed here that P(7, < +00) = 1 starting from any initial
state (j1). In case of a finite S, these two statements are clearly equivalent. In the infinite setting, this
requires a proof.



