
Markov Chains and Algorithmic Applications: WEEK 6

1 Rate of convergence: proofs

1.1 Reminder

Let (Xn, n ≥ 0) be a Markov chain with state space S and transition matrix P , and consider the following
assumptions:

• X is ergodic (irreducible, aperiodic and positive-recurrent), so there exists a stationary distribution
π and it is a limiting distribution as well.

• The state space S is finite, |S| = N .

• Detailed balance holds (πipij = πjpji ∀i, j ∈ S).

Statement 1.1. Under these assumptions, we have seen that there exist numbers λ0 ≥ λ1 ≥ . . . ≥ λN−1
and vectors φ(0), φ(1), . . . , φ(N−1) ∈ RN such that

Pφ(k) = λkφ
(k), k = 0, . . . , N − 1

and φ
(k)
j =

u
(k)
j√
πj

, where u(0), . . . , u(N−1) is an orthonormal basis of RN (u(k) are the eigenvectors of the

symmetric matrix Q, where qij =
√
πi pij

1√
πj

). Note that the φ(k) do not usually form an orthonormal

basis of RN .

Facts

1. φ
(0)
j = 1 ∀j ∈ S, λ0 = 1 and |λk| ≤ 1 ∀k ∈ {0, . . . , N − 1}

2. λ1 < +1 and λN−1 > −1

Definition 1.2. Let us define λ∗ = max
k∈{1,...,N−1}

|λk| = max{λ1,−λN−1}. The spectral gap is defined as

γ = 1− λ∗.
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Figure 1: Spectral gap

Theorem 1.3. Under all the assumptions made above, we have

‖Pni − π‖TV =
1

2

∑
j∈S
|pij(n)− πj | ≤

1

2
√
πi
λn∗ ≤

1

2
√
πi
e−γn, ∀i ∈ S, n ≥ 1

1



1.2 Proof of Fact 1

Let us first prove that φ
(0)
j = 1 ∀j ∈ S and λ0 = 1.

Consider φ
(0)
j = 1 ∀j ∈ S; we will prove that (Pφ(0))i = φ

(0)
i (so λ0 = 1):

(Pφ(0))i =
∑
j∈S

pij φ
(0)
j︸︷︷︸
=1

=
∑
j∈S

pij = 1 = φ
(0)
i

Also, we know that φ
(0)
i =

u
(0)
i√
πi

, so u
(0)
i =

√
πi φ

(0)
i =

√
πi. The norm of u(0) is therefore equal to 1:

‖u(0)‖2 =
∑
i∈S

(u
(0)
i )2 =

∑
i∈S

πi = 1

Let us then prove that |λk| ≤ 1 ∀k ∈ {0, . . . , N − 1}.

Let φ(k) be the eigenvector corresponding to λk. We define i to be such that |φ(k)i | ≥ |φ
(k)
j | ∀j ∈ S

(|φ(0)i | > 0 because an eigenvector cannot be all-zero). We will use Pφ(k) = λkφ
(k) in the following:

|λkφ(k)i | =
∣∣∣(Pφ(k))i∣∣∣ =

∣∣∣∣∣∣
∑
j∈S

pijφ
(k)
j

∣∣∣∣∣∣ ≤
∑
j∈S

pij |φ(k)j |︸ ︷︷ ︸
≤|φ(k)

i |,∀j∈S

≤ |φ(k)i |
∑
j∈S

pij︸ ︷︷ ︸
=1

So we have |λk||φ(k)i | ≤ |φ
(k)
i |, which implies that |λk| ≤ 1, as |φ(k)i | > 0. �

1.3 Proof of Fact 2

We want to prove that λ1 < +1 and λN−1 > −1, which together imply that λ∗ < 1.
By the assumptions made, we know that the chain is irreducible, aperiodic and finite, so ∃n0 > 1 such
that pij(n) > 0, ∀i, j ∈ S, ∀n ≥ n0.

λ1 < +1 :

Assume φ is such that Pφ = φ: we will prove that φ can only be a multiple of φ(0), which implies that
the eigenvalue λ = 1 has a unique eigenvector associated to it, so λ1 < 1. Take i such that |φi| ≥ |φj |,
∀j ∈ S, and let n ≥ n0.

φi = (Pφ)i = (Pnφ)i
(∗)
=
∑
j∈S

pij(n)φj

so

|φi| =

∣∣∣∣∣∣
∑
j∈S

pij(n)φj

∣∣∣∣∣∣ ≤
∑
j∈S

pij(n) |φj |︸︷︷︸
≤|φi|

≤ |φi|
∑
j∈S

pij(n)︸ ︷︷ ︸
1

= |φi|

So we have |φi| ≤
∑
j∈S pij(n)|φj | ≤ |φi|. To have equality, we clearly need to have |φi| = |φj |, ∀j ∈ S

(because pij(n) > 0 for all i, j and
∑
j∈S pij(n) = 1 for all i ∈ S). Because (∗) is satisfied, we also have

φi =
∑
j∈S pij(n)φj , which in turn implies that φj = φi for all j ∈ S. So the vector φ is constant. �
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λN−1 > −1 :

Assume there exists φ 6= 0 such that Pφ = −φ: we will prove that this is impossible, showing therefore
that no eigenvalue can take the value −1. Take i such that |φi| ≥ |φj |, ∀j ∈ S and let n odd be such that
n ≥ n0.

Now, as Pnφ = Pφ = −φ, we have −φi
(∗)
=
∑
j∈S pij(n)φj and |φi| ≤

∑
j∈S pij(n) |φj | ≤ |φi|. So, as

above, we need to have |φj | = |φi|, for all j ∈ S and then, thanks to (∗), φj = −φi, for all j ∈ S. This
implies that φi = −φi = 0, and leads to φj = 0 for all j ∈ S, which is impossible. �

1.4 Proof of the theorem

We will first use the Cauchy-Schwarz inequality which states that∣∣∣∣∣∣
∑
j∈S

ajbj

∣∣∣∣∣∣ ≤
∑
j∈S

a2j

1/2∑
j∈S

b2j

1/2

so as to obtain

‖Pni − π‖TV =
1

2

∑
j∈S

∣∣∣∣pij(n)− πj√
πj

∣∣∣∣︸ ︷︷ ︸
aj

√
πj︸︷︷︸
bj

≤ 1

2

∑
j∈S

(
pij(n)
√
πj
−√πj

)2
1/2∑

j∈S
πj

1/2

︸ ︷︷ ︸
1

=
1

2

∑
j∈S

(
pij(n)
√
πj
−√πj

)2
1/2

Lemma 1.4.

pij(n)
√
πj
−√πj =

√
πj

N−1∑
k=1

λnkφ
(k)
i φ

(k)
j

Proof. Remember that u(0), . . . , u(N−1) is an orthonormal basis of RN , so we can write for any v ∈ RN

v =
∑N−1
k=0 (vTu(k))u(k) i.e. vj =

∑N−1
k=0 (vTu(k))u

(k)
j . For a fixed i ∈ S, take vj =

pij(n)√
πj

. We obtain

(vTu(k)) =
∑
j∈S

pij(n)
√
πj

u
(k)
j =

∑
j∈S

pij(n)φ
(k)
j = (Pnφ(k))i = λnkφ

(k)
i

which in turn implies

vj =
pij(n)
√
πj

=

N−1∑
k=0

λnkφ
(k)
i u

(k)
j =

N−1∑
k=0

λnkφ
(k)
i φ

(k)
j

√
πj = λn0φ

(0)
i φ

(0)
j︸ ︷︷ ︸

1

√
πj +

√
πj

N−1∑
k=1

λnkφ
(k)
i φ

(k)
j
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Let us continue with the proof of the theorem using this lemma.

‖Pni − π‖TV ≤ 1

2

∑
j∈S

(
pij(n)
√
πj
−√πj

)2
1/2

=
1

2

∑
j∈S

(
√
πj

N−1∑
k=1

λnkφ
(k)
i φ

(k)
j

)2
1/2

=
1

2

∑
j∈S

πj

N−1∑
k,l=1

λnkφ
(k)
i φ

(k)
j λnl φ

(l)
i φ

(l)
j

1/2

=
1

2

N−1∑
k,l=1

λnkφ
(k)
i λnl φ

(l)
i

∑
j∈S

πjφ
(k)
j φ

(l)
j

1/2

=
1

2

(
N−1∑
k=1

λ2nk (φ
(k)
i )2

)1/2

where we have used the fact that
∑
j∈S πjφ

(k)
j φ

(l)
j =

∑
j∈S u

(k)
j u

(l)
j = (u(k))Tu(l) = δkl. Remembering

now that |λk| ≤ λ∗ for every 1 ≤ k ≤ N − 1, we obtain

‖Pni − π‖TV ≤
1

2
λn∗

(
N−1∑
k=1

(φ
(k)
i )2

)1/2

In order to compute the term in parentheses, remember again that vj =
∑N−1
k=0 (vTu(k))u

(k)
j for every

v ∈ RN , so by choosing v = ei, i.e., vj = δij =

{
1 if i = j
0 otherwise

, we obtain:

vTu(k) = u
(k)
i and δij =

N−1∑
k=0

u
(k)
i u

(k)
j

For i = j, we get δii = 1 =
∑N−1
k=0 (u

(k)
i )2 =

∑N−1
k=0 πi (φ

(k)
i )2, so

N−1∑
k=1

(φ
(k)
i )2 =

N−1∑
k=0

(φ
(k)
i )2 − (φ

(0)
i )2︸ ︷︷ ︸
1

=
1

πi
− 1 ≤ 1

πi

which finally leads to the inequality

‖Pni − π‖TV ≤
λn∗

2
√
πi

and therefore completes the proof. �

1.5 Lazy random walks

Adding self-loops to a Markov chain makes it a priori “lazy”. Surprisingly perhaps, this might in some
cases speed up the convergence to equilibrium!

Adding self-loops of weight α ∈ (0, 1) to every state has the following impact on the transition matrix:

assuming P is the transition matrix of the initial Markov chain, the new transition matrix P̃ becomes

P̃ = α I + (1− α)P

As a consequence:

• The eigenvalues also change from λk to λ̃k = α+ (1− α)λk, which sometimes reduces the value of
λ∗ = max1≤k≤N−1 |λk|. The spectral gap being equal to γ = 1 − λ∗, we obtain that by reducing
λ∗, we might increase the spectral gap as well as the convergence rate to equilibrium.
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• Note that λ0 stays the same: λ̃0 = α+ (1− α)λ0 = 1, as well as the stationary distribution π:

πP̃ = π (αI + (1− α)P ) = απ + (1− α) πP︸︷︷︸
=π

= π

Example 1.5. Random walk on the circle with N = 3:

P =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 add α−−−−→ P̃ =

 α 1−α
2

1−α
2

1−α
2 α 1−α

2
1−α
2

1−α
2 α



α

0 1

2

(1 – α)/2

α

α

(1 – α)/2

(1
 –

 α
)/2

(1 – α)/2
(1

 –
 α

)/2

(1 – α)/2

Example 1.6 (PageRank). The basic principle behind Google’s search engine algorithm is as follows.
One can represent the web as a graph with the hyperlinks being the edges and the webpages being the
vertices. We define the transition probabilities of a random walk on this graph as

pij =

{
1
di
∀j such that there is an outgoing edge from i→ j,

0 otherwise
(1)

where di is the outgoing degree of webpage i.

The principle is that the most popular pages are the webpages visited the most often. If π is the stationary
distribution of the above random walk, then πi is a good indicator of the popularity of page i.

To rank pages we therefore need to solve π = πP . In practice however, due to the size of the state space,
solving this linear system takes too long in real time. Also the detailled balance condition is typically not
satisfied here since the graph is directed (this can be seen explicitly when there is are pairs (i, j) with a
directed link and no link in the reverse direction).

What PageRank does is to compute instead π(0)Pn for some initial distribution π(0) and a small value
of n, which is meant to give a good approximation of the stationary distribution π. The quality of the
approximation is of course directly linked to the rate of convergence to equilibrium. Adding self-loops of
weight α to the graph seems to help also in this case: the practical value chosen for α is around 15%.
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