Homework 1 (due Friday, September 27)

Exercise 1. Let $\left(S_{n}, n \in \mathbb{N}\right)$ be the simple asymmetric random walk on \mathbb{Z}, defined as

$$
S_{0}=0, \quad S_{n}=\xi_{1}+\ldots+\xi_{n}, \quad n \geq 1,
$$

where the random variables $\left(\xi_{n}, n \geq 1\right)$ are i.i.d. with $\left.\mathbb{P}\left(\xi_{n}=+1\right)=p \in\right] 0,1\left[\right.$ and $\mathbb{P}\left(\xi_{n}=-1\right)=$ $q=1-p$. Using Stirling's formula (valid for large values of n):

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}
$$

show that

$$
p_{0,0}^{(2 n)}=\mathbb{P}\left(S_{2 n}=0 \mid S_{0}=0\right) \sim \frac{(4 p q)^{n}}{\sqrt{\pi n}}
$$

NB: The notation $a_{n} \sim b_{n}$ means precisely

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1
$$

Exercise 2. Let $\left(\overrightarrow{S_{n}}, n \in \mathbb{N}\right)$ be the simple symmetric random walk in two dimensions, that is,

$$
\overrightarrow{S_{0}}=(0,0), \quad \overrightarrow{S_{n}}=\overrightarrow{\xi_{1}}+\ldots+\overrightarrow{\xi_{n}}, \quad n \geq 1
$$

where $\left(\overrightarrow{\xi_{n}}, n \geq 1\right)$ are i.i.d random variables such that

$$
\mathbb{P}\left(\overrightarrow{\xi_{n}}=(+1,0)\right)=\mathbb{P}\left(\overrightarrow{\xi_{n}}=(-1,0)\right)=\mathbb{P}\left(\overrightarrow{\xi_{n}}=(0,+1)\right)=\mathbb{P}\left(\overrightarrow{\xi_{n}}=(0,-1)\right)=\frac{1}{4}
$$

Let us write $\overrightarrow{S_{n}}=\left(X_{n}, Y_{n}\right)$.
a) Compute the transition matrices of the random walks $\left(X_{n}, n \in \mathbb{N}\right)$ and $\left(Y_{n}, n \in \mathbb{N}\right)$.
b) Are these two random walks independent?

Define now $U_{n}=X_{n}+Y_{n}$ and $V_{n}=X_{n}-Y_{n}, n \in \mathbb{N}$. Again the same questions:
c) Again, compute the transition matrices of the random walks $\left(U_{n}, n \in \mathbb{N}\right)$ and $\left(V_{n}, n \in \mathbb{N}\right)$.
d) Are these two random walks independent?
e) Deduce from this the value of $\mathbb{P}\left(\overrightarrow{S_{2 n}}=(0,0) \mid \overrightarrow{S_{0}}=(0,0)\right)$. How does it behave for large n ?

Exercise 3. Prove that the intercommunicating states of a Markov chain have the same period.
Hint 1: Consider two intercommunicating states, i and j. Then, find a lower bound for $p_{i i}^{(m+n+r)}$ as a function of $p_{i j}^{(m)}, p_{j i}^{(n)}$, and $p_{j j}^{(r)}$.
Hint 2: Show that $p_{j j}^{(r)}$ can be non-zero only if $d(i) \mid r$. Then, find an argument to conclude that $d(i)=d(j)$.

