Homework 2 (due Friday, October 4)

Exercise 1. Consider the time-homogeneous Markov chain with state space $S=\mathbb{Z}$ and transition probabilities

$$
p_{i j}=\left\{\begin{array}{lll}
0.5 & \text { if } & i<0 \text { and }(j=i-2 \text { or } j=i+2) \\
0.5 & \text { if } & i \geq 0 \text { and }(j=i-1 \text { or } j=i+1) \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Find the equivalence classes of the chain.
b) Determine which of these classes are transient, which ones are positive-recurrent, and which ones are null-recurrent.

Exercise 2. Let ($X_{n}, n \geq 0$) be an homogeneous Markov chain with transition probabilities

$$
p_{i j}^{(n)}=\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)
$$

We define the probability of first passage as the probability that the chain passes from i to j in n steps without passing by j before the $n^{\text {th }}$ step.

$$
f_{i j}^{(n)}=\mathbb{P}\left(X_{n}=j, X_{n-1} \neq j, \ldots, X_{1} \neq j \mid X_{0}=i\right)
$$

We also define the probability of last exit as the probability that the chain passes from i to j in n steps without revisiting i during these n steps.

$$
l_{i j}^{(n)}=\mathbb{P}\left(X_{n}=j, X_{n-1} \neq i, \ldots, X_{1} \neq i \mid X_{0}=i\right)
$$

Let

$$
\begin{array}{ll}
P_{i j}(s)=\sum_{n=0}^{\infty} p_{i j}^{(n)} s^{n}, & p_{i j}(0)=\delta_{i j} \\
F_{i j}(s)=\sum_{n=0}^{\infty} f_{i j}^{(n)} s^{n}, & f_{i j}(0)=0 \\
L_{i j}(s)=\sum_{n=0}^{\infty} l_{i j}^{(n)} s^{n}, & l_{i j}(0)=0
\end{array}
$$

be the associated generating functions. Note that $L_{i i}(s)=F_{i i}(s)$. Recall that we proved in class that $P_{i i}(s)=1+P_{i i}(s) F_{i i}(s)$.
a) Prove that for $i \neq j$:

$$
\begin{aligned}
P_{i j}(s) & =F_{i j}(s) P_{j j}(s) \\
P_{i j}(s) & =P_{i i}(s) L_{i j}(s)
\end{aligned}
$$

b) Deduce the following statements:

1. If j is recurrent then $\sum_{n \geq 0} p_{i j}^{(n)}=+\infty$ for all i such that $f_{i j}>0$, where $f_{i j}=\sum_{n \geq 0} f_{i j}^{(n)}$.
2. If j is transient then $\sum_{n \geq 0} p_{i j}^{(n)}<+\infty$ for all i.
3. If j is recurrent and i is transient then $\sum_{n \geq 0} l_{i j}^{(n)}=+\infty$ as long as $f_{i j}>0$.
c) Prove that if the Markov chain satisfies $P_{i i}(s)=P_{j j}(s)$ for all $i \neq j$ and all $|s|<1$, then the probability distribution of last exit and first passage are equal.

Exercise 3. Consider the symmetric random walk in 3 dimensions on \mathbb{Z}^{3} defined during the first lecture:

$$
S_{0}=(0,0,0), \quad S_{n}=\xi_{1}+\ldots+\xi_{n}, \quad n \geq 1
$$

where $\left(\xi_{n}, n \geq 1\right)$ are i.i.d. with

$$
\mathbb{P}\left(\xi_{n}=e_{i}\right)=\mathbb{P}\left(\xi_{n}=-e_{i}\right)=1 / 6
$$

and $e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)$.
a) Argue that

$$
\mathbb{P}\left(S_{2 n}=(0,0,0) \mid S_{0}=(0,0,0)\right)=\frac{1}{6^{2 n}} \sum_{i+j+k=n} \frac{(2 n)!}{(i!j!k!)^{2}}
$$

where i, j, k are ≥ 0.
b) We want to evaluate the asymptotic behaviour of this sum as $n \rightarrow \infty$ (we in fact want to derive a good upper bound). Derive the following inequality:

$$
\mathbb{P}\left(S_{2 n}=(0,0,0) \mid S_{0}=(0,0,0)\right) \leq\left(\frac{1}{2}\right)^{2 n}\binom{2 n}{n} M \sum_{i+j+k=n} \frac{1}{3^{n}} \frac{n!}{i!j!k!}
$$

where $M=\max \left\{\frac{n!}{3^{n} i!j!k!}, i+j+k=n, i, j, k \geq 0\right\}$.
c) Next, assuming that the maximum is attained at $i, j, k \approx n / 3$, deduce that

$$
\mathbb{P}\left(S_{2 n}=(0,0,0) \mid S_{0}=(0,0,0)\right) \leq \frac{c}{n^{3 / 2}}
$$

for some constant c.
d) Is the random walk in 3 dimensions recurrent or transient?

