Homework 4 (due Friday, October 18)

Exercise 1. (Buffon's needle) We throw a needle of length 2ℓ "randomly" on a floor on which are already drawn parallel vertical lines, separated by equal distance $2 t$ - see Fig. 1a. This needle is called Buffon's needle. Now, consider two Buffon's needles with $\ell=t$. We know for a fact that the probability with which a single needle crosses one of the vertical lines is equal to $\frac{2}{\pi}$. Generally, we do not know anything about the relation of these two needles to each other. However, by adding some assumptions, one can create a coupling between the two needles. For each of the following couplings, compute the probability with which "both" needles cross a vertical line.

Coupling \#1: The needles are independently thrown on the floor - Fig. 1b.
Coupling \#2: The needles are welded at their ends to form a straight needle with length $4 \ell=4 t-$ Fig. 1c.

Coupling \#3: The needles are welded perpendicularly at their midpoints, yielding a cross - Fig. 1d.

Figure 1: The same cup of coffee. Two times.

Exercise 2. A complete graph K_{m} with m vertices is a graph with one edge between all pairs of vertices. We consider the homogeneous random walk ($X_{n}, n \geq 0$) on K_{m} defined by the transition probability $\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)=1 /(m-1)$ for all vertices $j \neq i$. We also denote by $\mu_{i}^{(n)}=$ $\mathbb{P}\left(X_{n}=i\right), i \in K_{m}$ the probability distribution of a random walk at time n with initial condition $X_{0}=i_{0}$ and by $\nu_{j}^{(n)}=\mathbb{P}\left(Y_{n}=j\right), j \in K_{m}$ the probability distribution of another independent random walk with initial condition $Y_{0}=j_{0}$. The two initial vertices are fixed once for all and distinct, $i_{0} \neq j_{0}$.

We now define the following homogeneous Markov process ($\left.\left(X_{n}, Y_{n}\right), n \geq 0\right)$ with state space $K_{m} \times K_{m}$ and transition probabilities

$$
\mathbb{P}\left(X_{n+1}=i^{\prime}, Y_{n+1}=j^{\prime} \mid X_{n}=i, Y_{n}=j\right)= \begin{cases}\frac{1}{(m-1)^{2}} & \text { if } i \neq j \text { and } i^{\prime} \neq i, j^{\prime} \neq j, \\ \frac{1}{m-1} & \text { if } j=i \text { and } j^{\prime}=i^{\prime} \neq i, \\ 0 & \text { in all other cases }\end{cases}
$$

It is understood that this Markov process is conditioned on the initial condition $\left(X_{0}, Y_{0}\right)=\left(i_{0}, j_{0}\right)$.
a) Show that $\left(X_{n}, Y_{n}\right)$ is a coupling of the two probability distributions $\mu^{(n)}$ and $\nu^{(n)}$.

Hint: Recall the definition of coupling; you have to compute the marginals of $\mathbb{P}\left(X_{n}=i, Y_{n}=j\right)$.
b) Consider the coalescence time $T=\inf \left\{n \geq 1 \mid X_{n}=Y_{n}\right\}$ (a random variable). First show that for all $n \geq 1$:

$$
\mathbb{P}(T>n)=\left(1-\frac{m-2}{(m-1)^{2}}\right)^{n}
$$

and deduce from there that for all $n \geq 1$:

$$
\mathbb{P}(T=n)=\frac{m-2}{(m-1)^{2}}\left(1-\frac{m-2}{(m-1)^{2}}\right)^{n-1}
$$

Hint: rewrite the events $\{T>n\}$ and $\{T=n\}$ in terms of the X 's and Y 's.
c) Consider the total variation distance $\left\|\mu^{(n)}-\nu^{(n)}\right\|_{\mathrm{TV}}$. Use the formula in point 1 of exercise 2 to show that

$$
\left\|\mu^{(n)}-\nu^{(n)}\right\|_{\mathrm{TV}} \leq e^{-n(m-2) /(m-1)^{2}}
$$

Hint: $1-x \leq e^{-x}$ for all $x \geq 0$.
d) We remark that $\pi_{i}=1 / m, i \in K_{m}$ is a stationary distribution for the random walk on the complete graph. Justify this remark. Use this remark and the previous bound to deduce

$$
\left\|\mu^{(n)}-\pi\right\|_{\mathrm{TV}} \leq e^{-n(m-2) /(m-1)^{2}}
$$

e) What happens in the (very) particular case $m=2$?

Exercise 3. a) Let μ and ν be two distributions on a state space S (i.e., $\mu_{i}, \nu_{i} \geq 0$ for every $i \in S$ and $\sum_{i \in S} \mu_{i}=\sum_{i \in S} \nu_{i}=1$). Show that the following three definitions of the total variation distance between μ and ν are equivalent:

1. $\|\mu-\nu\|_{\mathrm{TV}}=\frac{1}{2} \sum_{i \in S}\left|\mu_{i}-\nu_{i}\right|$.
2. $\|\mu-\nu\|_{\mathrm{TV}}=\max _{A \subset S}|\mu(A)-\nu(A)|$, where $\mu(A)=\sum_{i \in A} \mu_{i}$ and $\nu(A)=\sum_{i \in A} \nu_{i}$.
3. $\|\mu-\nu\|_{\mathrm{TV}}=\frac{1}{2} \max _{\phi: S \rightarrow[-1,+1]}|\mu(\phi)-\nu(\phi)|$, where $\mu(\phi)=\sum_{i \in S} \mu_{i} \phi_{i}$ and $\nu(\phi)=\sum_{i \in S} \nu_{i} \phi_{i}$.

Hint: The easiest way is to show that $1 \leq 2 \leq 3 \leq 1$.
b) Show that $\|\mu-\nu\|_{\mathrm{TV}}$ is indeed a distance (i.e., that it is non-negative, that it is zero if and only if $\mu=\nu$, that it is symmetric and that the triangle inequality is satisfied).

