
Random Walks: WEEK 6

1 Reflection principle

First, let us recall a few things about the symmetric random walk on Z. We denote by (Sn, n ≥ 0) the
simple symmetric random walk on Z.
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We know that this chain is irreducible and recurrent, that is:

f00 = P(T0 < +∞|S0 = 0) = 1

More than that, we know that it is null-recurrent, meaning:

E(T0|S0 = 0) = +∞

How could we compute f00(2n) = P(T0 = 2n|S0 = 0)?

Due to the fact that we can translate the random walk along Z without actually changing anything, we
will use the following notation:

pj−i(n) = pij(n) = P(Sn = j|S0 = i)

The reflection principle is the proof technique that we are going to use to prove the following statement.

Theorem 1.1. Let T0 = inf{n ≥ 1 : Sn = 0}. Then P(T0 > 2n|S0 = 0) = p0(2n).

The left-hand side of the equality is the probability of never coming back to 0 before 2n steps. The
right-hand side is the probability of being at 0 at time 2n. From this theorem, we can then compute
f00(2n) (left as an exercise).

Proof. First of all, let us shift the starting index by using the symmetry of the random walk.

P(T0 > 2n|S0 = 0) = P(T0 > 2n, S1 = +1|S0 = 0) + P(T0 > 2n, S1 = −1|S0 = 0)

= P(T0 > 2n|S1 = +1, S0 = 0)P(S1 = +1|S0 = 0) +

P(T0 > 2n|S1 = −1, S0 = 0)P(S1 = −1|S0 = 0)

=
1

2
P(T0 > 2n|S1 = +1) +

1

2
P(T0 > 2n|S1 = −1)

By symmetry, P(T0 > 2n|S1 = +1) = P(T0 > 2n|S1 = −1) and we get:

P(T0 > 2n|S0 = 0) = P(T0 > 2n|S1 = 1)

Let us now distinguish paths depending on the point they are at time 2n. Note that it has to be positive
and even.

P(T0 > 2n|S1 = 1) = P(S2 6= 0, . . . , S2n 6= 0|S1 = 1)

=
∑
k≥1

{
P(S2 6= 0, . . . , S2n−1 6= 0, S2n = 2k|S1 = 1)

}
=

∑
k≥1

{
P(S2n = 2k|S1 = 1)− P(S2n = 2k,∃2 ≤ m ≤ 2n− 1 : Sm = 0|S1 = 1)

}
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The first term in the sum is simply the probability to be at 2k after 2n − 1 steps starting from 1. The
second term is the probability to be at 2k after 2n− 1 steps starting from 1, but after hitting the 0-axis
at some point. For any such path, we can draw a ”mirror” path, as shown in the following graph, that
will end up to be at −2k after 2n− 1 steps.

The mirror path coincides with the original path until it hits zero. Then, it is a mirrored version of the
original path.

Since any path that starts from 1 and ends up in −2k has to cross the 0-axis, this shows that the number
of paths described in the second term of the sum is exactly the number of paths that start from 1 and
end in −2k after 2n− 1 steps.

From this, we can further simplify the sum:

P(T0 > 2n|S1 = 1) =
∑
k≥1

{
P(S2n = 2k|S1 = 1)− P(S2n = −2k|S1 = 1)

}
=

∑
k≥1

{
p2k−1(2n− 1)− p2k+1(2n− 1)

}

This is a telescopic sum whose terms are null after some index, because p2k+1(2n − 1) = 0 for k ≥ n.
Therefore, the only remaining term is p1(2n− 1) and we get:

P(T0 > 2n|S1 = 1) = p1(2n− 1)

Finally, by the same argument of symmetry as in the beginning, we can conclude:

P(T0 > 2n|S0 = 0) = p0(2n)

2 Consequences

2.1 Null-recurrence of the symmetric random walk on Z

We now have a third proof of the fact that the simple symmetric random walk on Z is null-recurrent, i.e.

E(T0|S0 = 0) = +∞
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Proof. By using the lemma from last time:

E(T0|S0 = 0) =
∑
n≥1

P(T0 ≥ n|S0 = 0) ≥
∑
n≥1

P(T0 > 2n|S0 = 0)

Now we just apply the theorem:

E(T0|S0 = 0) ≥
∑
n≥1

p0(2n)

Recall that p0(2n) ∼ 1√
πn

. Since
∑
n≥1

1√
πn

diverges to +∞, then
∑
n≥1 p0(2n) also diverges to +∞ and

E(T0|S0 = 0) = +∞.

2.2 The arcsine law

When we average everything, a symmetric random walk on Z will spend half its time above the 0-axis
and half its time below. But what will actually typically happen is that the random walk will either
spend most of its time above the 0-axis or most of its time below. We express this with the following
theorem.

Definition 2.1. We define L2n = sup{0 ≤ m ≤ 2n : Sm = 0} the time of last visit to 0 before 2n.

Theorem 2.2. For n and k large (typically, k = xn, 0 < x < 1):

P(L2n = 2k|S0 = 0) ∼ 1

π
√
k(n− k)

It means that a typical trajectory will cross 0 either at beginning or at the end.

Proof.

P(L2n = 2k|S0 = 0) = P(Sm 6= 0 for m ∈ {2k + 1, . . . , 2n}, S2k = 0|S0 = 0)

= P(Sm 6= 0 for m ∈ {2k + 1, . . . , 2n}|S2k = 0)P(S2k = 0|S0 = 0)

= P(Sm 6= 0 for m ∈ 1, . . . , 2(n− k)|S0 = 0) p0(2k)

= p0(2(n− k)) p0(2k) (by the theorem)

∼ 1√
π(n− k)

1√
πk

∼ 1

π
√
k(n− k)

�

2.3 Law of the iterated logarithm

We will not prove it, but we can also get the following result:

P
(

lim sup
n→∞

Sn√
2n log logn

= +1

)
= P

(
lim sup
n→∞

Sn√
2n log log n

= −1

)
= 1

This provides an envelope that the random walk will almost surely keep hitting.
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3 Reversible chains

The ergodic theorem provides us with a nice convergence result, that is lim
n→∞

pij(n) = π∗j for any i, j ∈ S.

But for the purpose of any practical application, we would like to know more about the rate at which
this convergence occurs. We will start by talking about reversible chains and detailed balanced.

Definition 3.1. An ergodic Markov chain (Xn, n ≥ 0) is said to be reversible if its stationary distribution
π∗ satisfies the following detailed balance equation:

π∗i pij = π∗j pji ∀i, j ∈ S

Remarks.

• We can still talk about reversibility if the chain is only irreducible and positive-recurrent.

• If one assumes a that the chain is in stationary distribution from the start then the backwards
chain Xn, Xn−1, . . . has the same transition probabilities as the original chain, hence the name
“reversible”.

• If π∗ satisfies the detailed balance equation, then π∗ = π∗P .

• The reciprocal statement is wrong, as we will see in some counter-examples.

• We do not have general conditions that ensure that the detailed balance equation is satisfied.

Example 3.2 (Ehrenfest urns process). Consider 2 urns with N numbered balls. At each step, we pick
uniformly at random a number between 1 and N , take the ball with this number and put it in the other
urn. The state is the number of balls in the right urn. The transition probabilities are the following:

pi,i+1 =
N − i
N

pi,i−1 =
i

N

If we try to solve the detailed balance equation we get:

π∗i+1 =
pi,i+1

pi+1,i
π∗i =

N − i
i+ 1

π∗i

⇒ π∗i+1 =
(N − i)(N − i− 1) . . . N

(i+ 1)i(i− 1) . . . 2
π∗0 =

N !

(N − i− 1)!(i+ 1)!
π∗0

⇒ πi+1∗ =

(
N

i+ 1

)
π∗0

which leads to the conclusion that π∗0 = 1
2N

(see Homework 4),This process is therefore reversible.

Example 3.3. All irreducible birth-death processes (as also studied in Homework 4) satisfy the detailed
balance equation.

Example 3.4. If for any i, j ∈ S, we have pij > 0 and pji = 0, then the chain is not reversible.

Example 3.5 (Random walk on the circle). We know that the stationary distribution for the cyclic
random walk on a circle with transition probabilities p and q (p+q = 1) is simply the uniform distribution,
π∗i = 1

N . To be verified, the detailed balance equation requires π∗i p = π∗i+1q ⇔ p = q = 1
2 , which is not

the case in general.

4


