Homework 8 (due Friday, November 22)

Exercise 1. [Barker's algorithm]
Let $\pi=\left(\pi_{i}, i \in S\right)$ be a distribution on a finite state space S such that $\pi_{i}>0$ for all $i \in S$ and let us consider the base chain with transition probabilities $\psi_{i j}$, which is assumed to be irreducible, aperiodic and such that $\psi_{i j}>0$ if and only if $\psi_{j i}>0$. Define the following acceptance probabilities:

$$
a_{i j}=\frac{\pi_{j} \psi_{j i}}{\pi_{i} \psi_{i j}+\pi_{j} \psi_{j i}}
$$

as well as a new chain with transition probabilities $p_{i j}=\psi_{i j} a_{i j}$ if $j \neq i$. Show that this new chain is ergodic and that it satisfies the detailed balance equation:

$$
\pi_{i} p_{i j}=\pi_{j} p_{j i}, \quad \forall i, j \in S
$$

Exercise 2. [Metropolized independent sampling in a particular case]
Let $0<\theta<1$ and let us consider the following distribution π on $S=\{1, \ldots, N\}$:

$$
\pi_{i}=\frac{1}{Z} \theta^{i-1}, \quad i=1, \ldots, N
$$

where Z is the normalization constant, whose computation is left to the reader.
a) Consider the base chain $\psi_{i j}=\frac{1}{N}$ for all $i, j \in S$ and derive the transition probabilities $p_{i j}$ obtained with the Metropolis-Hastings algorithm.
b) Using the result of the course, derive an upper bound on $\left\|P_{i}^{n}-\pi\right\|_{\mathrm{TV}}$. Compare the bounds obtained for $i=1$ and $i=N$ (for large values of N).
c) Deduce an upper bound on the (order of magnitude of the) mixing time

$$
T_{\varepsilon}=\inf \left\{n \geq 1: \max _{i \in S}\left\|P_{i}^{n}-\pi\right\|_{\mathrm{TV}} \leq \varepsilon\right\}
$$

Exercise 3. [Coupling]
The first goal of this exercise is to show that for any two distributions μ and ν on a common state space S, there always exist two (coupled) random variables X and Y with values in S such that

$$
\mathbb{P}(X=i)=\mu_{i}, \forall i \in S \quad \mathbb{P}(Y=j)=\nu_{j}, \forall j \in S \quad \text { and } \quad\|\mu-\nu\|_{\mathrm{TV}}=\mathbb{P}(X \neq Y)
$$

Remember that in general, if X and Y satisfy the first two conditions, then we only have an inequality in the third statement. We need therefore to find a proper joint distribution for X and Y such that equality holds.
a) Define first $\xi_{i}=\min \left(\mu_{i}, \nu_{i}\right)$ for $i \in S$. Note that ξ itself is not a distribution, as $\sum_{i \in S} \xi_{i} \leq 1$ in general. Show that setting $\mathbb{P}(X=Y=i)=\xi_{i}$ for all $i \in S$ implies indeed that

$$
\|\mu-\nu\|_{\mathrm{TV}}=\mathbb{P}(X \neq Y)
$$

b) We need now to define $\mathbb{P}(X=i, Y=j)$ for $i \neq j$ so that $\mathbb{P}(X=i)=\mu_{i}, \forall i \in S$ and $\mathbb{P}(Y=j)=\nu_{j}, \forall j \in S$. Show that the following proposal works (it is not the unique one):

$$
\mathbb{P}(X=i, Y=j)=\frac{\left(\mu_{i}-\xi_{i}\right)\left(\nu_{j}-\xi_{j}\right)}{1-\sum_{k \in S} \xi_{k}}
$$

[In particular, observe that there are lots of zeros in this joint distribution: if $\mu_{i} \leq \nu_{i}$ for a given $i \in S$, then $\mathbb{P}(X=i, Y=j)=0$ for all $j \in S \backslash i$; likewise, if $\nu_{j} \leq \mu_{j}$ for a given $j \in S$, then $\mathbb{P}(X=i, Y=j)=0$ for all $i \in S \backslash j . X$ and Y are therefore tightly coupled!]
$N B$: And what if $\sum_{k \in S} \xi_{k}=1$?
c) Use this to show that for an ergodic Markov chain with transition matrix P and stationary distribution π, the total variation distance $d(n)=\max _{i \in S}\left\|P_{i}^{n}-\pi\right\|_{T V}$ is a non-increasing function of n.

Hint: A new coupling is required here.

