Homework 9 (due Friday, November 29)

Exercise 1. a) Preliminary question. Consider the random walk on \mathbb{Z} with transition probabilities $\psi_{i, i \pm 1}=1 / 2$. Does this chain admit a stationary distribution? Is it positive-recurrent?

In this problem, we use the Metropolis-Hastings rule to bias the simple random walk so that the stationary distribution of the new walk ($X_{n}, n \geq 0$) equals

$$
\pi_{i}=\frac{e^{-a i^{2}}}{\sum_{i=-\infty}^{+\infty} e^{-a i^{2}}}
$$

where $a>0$ is a parameter. Moves $i \rightarrow j=i \pm 1$ are proposed with probability $\psi_{i j}$ and accepted with probability $a_{i j}=\min \left(1, \frac{\pi_{j} \psi_{j i}}{\pi_{i} \psi_{i j}}\right)$.
b) Give the transition probabilities $p_{i j}=\mathbb{P}\left(X_{1}=j \mid X_{0}=i\right)$ of the final chain for all i and j.
c) Show that for this chain:

$$
\lim _{n \rightarrow+\infty} \mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)=\pi_{j}, \quad \forall i \in \mathbb{Z}
$$

For the next question, we consider two coupled walks $\left(X_{n}, n \geq 0\right)$ and $\left(Y_{n}, n \geq 0\right)$ on \mathbb{Z}. The walks are coupled in the following way:

- At each time step $n \geq 0$, we draw a common uniform random variable $\xi_{n} \in\{+1,-1\}$ and for each walk we propose the moves $X_{n} \rightarrow X_{n}+\xi_{n}$ and $Y_{n} \rightarrow Y_{n}+\xi_{n}$.
- Each move is accepted or rejected according to the Metropolis-Hastings rule of question b).

We define the coalescence time (a random variable)

$$
T=\inf \left\{n: X_{n}=Y_{n} \text { given that } X_{0}=z, Y_{0}=z+d\right\}
$$

where z and d are strictly positive integers.
d) What is the smallest possible coalescence time ? Compute the probability that the coalescence time takes this smallest possible value.

