Markov Chains and Algorithmic Applications

Homework 10 (due Friday, December 6)

Exercise 1. [Gibbs sampling]

Let $S = \{1, \ldots, N\}$ and $d \ge 1$. We would like to sample from a distribution π on S^d defined as

$$\pi(x) = \frac{g(x)}{Z}, \quad x \in S^d,$$

where g is some positive function on S^d and $Z = \sum_{x \in S^d} g(x)$ is the normalization constant, which we would like to avoid computing.

A possible way to handle this problem is the following.

- 1. Start from a state $x \in S^d$;
- 2. Choose an index $u \in \{1, \ldots, d\}$ uniformly at random;
- 3. Update the value of x_u to x'_u , which is sampled from the following conditional distribution:

$$\pi(x'_{u}|x_{1},\ldots,x_{u-1},x_{u+1},\ldots,x_{d}) = \frac{\pi(x_{1},\ldots,x_{u-1},x'_{u},x_{u+1},\ldots,x_{d})}{\sum_{u_{u}\in S}\pi(x_{1},\ldots,x_{u-1},y_{u},x_{u+1},\ldots,x_{d})}$$

4. Repeat from 2.

What is the advantage of such a method? The above conditional probability can actually be rewritten as

$$\pi(x'_{u}|x_{1},\ldots,x_{u-1},x_{u+1},\ldots,x_{d}) = \frac{g(x_{1},\ldots,x_{u-1},x'_{u},x_{u+1},\ldots,x_{d})}{\sum_{y_{u}\in S}g(x_{1},\ldots,x_{u-1},y_{u},x_{u+1},\ldots,x_{d})}$$

which only requires to compute one sum and not a multidimensional one, as required for computing the normalization constant Z.

Your task now is to formalize slightly the above algorithm by expressing it as a Markov chain $(X_n, n \ge 0)$ on S^d and

a) writing down its transition probabilities $p(x, y), x, y \in S^d$;

b) showing that the detailed balance equation is satisfied, i.e. that $\pi(x) p(x, y) = \pi(y) p(y, x)$, for all $x, y \in S^d$.

Can therefore this algorithm be viewed as a Metropolis-Hastings algorithm?

% please turn the page

Exercise 2. On the state space $S = \{0, 1, 2\}$ and given $\beta > 0$, consider the following distribution:

$$\pi = \frac{1}{Z} \left(1, e^{-2\beta}, e^{-\beta} \right)$$

where the normalization constant $Z = 1 + e^{-2\beta} + e^{-\beta}$ is easy to compute in this case. For any given $\beta > 0$, we would like to sample from π , in order to obtain (by taking β large) an estimate of the global minimum of the function $f : S \to \mathbb{Z}$ defined as f(0) = 0, f(1) = 2 and f(2) = 1. Of course, in this situation, both finding the global minimum of f and sampling from the distribution π are trivial tasks, but the idea here is to get an idea of the performance (i.e. rate of convergence) of the Metropolis-Hastings algorithm in a simple case.

Consider the base chain on S with transition probabilities

$$\psi_{01} = \psi_{21} = 1$$
 and $\psi_{10} = \psi_{12} = \frac{1}{2}$.

- a) Compute the transition probabilities p_{ij} of the corresponding Metropolis chain.
- b) Check that the detailed balance equation is satisfied.
- c) Compute the eigenvalues $\lambda_0 \geq \lambda_1 \geq \lambda_2$ of *P*. (*Hint:* You already know that $\lambda_0 = 1$.)
- d) Express the spectral gap γ as a function of β . How does it behave as β gets large?