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Homework 10 (due Friday, December 6)

Exercise 1. [Gibbs sampling]
Let S = {1, . . . , N} and d ≥ 1. We would like to sample from a distribution π on Sd defined as

π(x) =
g(x)

Z
, x ∈ Sd,

where g is some positive function on Sd and Z =
∑

x∈Sd g(x) is the normalization constant, which
we would like to avoid computing.

A possible way to handle this problem is the following.

1. Start from a state x ∈ Sd;

2. Choose an index u ∈ {1, . . . , d} uniformly at random;

3. Update the value of xu to x′u, which is sampled from the following conditional distribution:

π(x′u|x1, . . . , xu−1, xu+1, . . . , xd) =
π(x1, . . . , xu−1, x

′
u, xu+1, . . . , xd)∑

yu∈S π(x1, . . . , xu−1, yu, xu+1, . . . , xd)

4. Repeat from 2.

What is the advantage of such a method? The above conditional probability can actually be
rewritten as

π(x′u|x1, . . . , xu−1, xu+1, . . . , xd) =
g(x1, . . . , xu−1, x

′
u, xu+1, . . . , xd)∑

yu∈S g(x1, . . . , xu−1, yu, xu+1, . . . , xd)

which only requires to compute one sum and not a multidimensional one, as required for computing
the normalization constant Z.

Your task now is to formalize slightly the above algorithm by expressing it as a Markov chain
(Xn, n ≥ 0) on Sd and

a) writing down its transition probabilities p(x, y), x, y ∈ Sd;

b) showing that the detailed balance equation is satisfied, i.e. that π(x) p(x, y) = π(y) p(y, x), for
all x, y ∈ Sd.

Can therefore this algorithm be viewed as a Metropolis-Hastings algorithm?
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Exercise 2. On the state space S = {0, 1, 2} and given β > 0, consider the following distribution:

π =
1

Z

(
1, e−2β, e−β

)
where the normalization constant Z = 1 + e−2β + e−β is easy to compute in this case. For any
given β > 0, we would like to sample from π, in order to obtain (by taking β large) an estimate
of the global minimum of the function f : S → Z defined as f(0) = 0, f(1) = 2 and f(2) = 1. Of
course, in this situation, both finding the global minimum of f and sampling from the distribution
π are trivial tasks, but the idea here is to get an idea of the performance (i.e. rate of convergence)
of the Metropolis-Hastings algorithm in a simple case.

Consider the base chain on S with transition probabilities

ψ01 = ψ21 = 1 and ψ10 = ψ12 =
1

2
.

a) Compute the transition probabilities pij of the corresponding Metropolis chain.

b) Check that the detailed balance equation is satisfied.

c) Compute the eigenvalues λ0 ≥ λ1 ≥ λ2 of P . (Hint: You already know that λ0 = 1.)

d) Express the spectral gap γ as a function of β. How does it behave as β gets large?
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