

Contents

6. TCP Reno
7. TCP Cubic
8. ECNand RED
9. Other Cool Stuff

6. Congestion Control in the Internet is in TCP

TCP is used to avoid congestion in the Internet

in addition to what was shown about TCP, a TCP source adjusts
its window to the congestion status of the Internet
(slow start, congestion avoidance)

this avoids congestion collapse and ensures some fairness
TCP sources interprets losses as a negative feedback

UDP sources have to implement their own congestion control
Some UDP sources imitate TCP : “TCP friendly”

Some UDP sources (e.g. QUIC) implement the same code as
TCP congestion control

TCP Reno, New Reno, Vegas, etc

The congestion control module of TCP exists in n versions;
Popular versions are
TCP Reno with SACK (historic version, also in QUIC)
TCP Cubic (widespread today in Linux servers)
Data Center TCP (Microsoft and Linux servers)
TCP BBR (trendy)

TCP Reno Congestion Control
Uses ~AIMD and Slow Start

TCP adjusts the window size based on the approximation rate = Y=

W = min (cwnd, offeredWindow)
offeredWindow = window obtained by TCP’s window field
cwnd = controlled by TCP congestion control

Negative feedback = loss, positive feedback = ACK received
increase is = additive (=+1 MSS per RTT),
Multiplicative Decrease (u; = 0.5)
Slow start with increase factor wy = 2 per round trip time (approx.)

When loss is detected by timeout -> slow start
Loss detected by fast retransmit => fast recovery (see next)

TCP Implementations of...

Multiplicative decrease:
ssthresh =0.5 X cwnd
Additive increase:

for every ack received cwnd += MSSXMSS / cwnd
(if we counted in packets, this would be cwnd+=1/cwnd

cwnd 2.5 29

.

this is slightly less than additive increase
other implementations exist: for example: wait until the cwnd
bytes are acked and then increment cwnd by 1 MSS

How TCP approximates...

..multiplicative increase : (Slow Start)
non dupl. ack received during slow start ->

cwnd = cwnd + MSS (in bytes) (1)
if cwnd = ssthresh then go to congestion avoidance

cwnd = lseg 5 678

VU

(1) is equivalent in packets to
cwnd = cwnd + 1 (in packets)

AIMD and Slow Start

N

window size Multiplicative decrease

=re '
du&‘ct:on of target Window by 2

initial
ssthreshi.............

cwnd

slow start

target window of slow start is called ssthresh («slow start threshold»)

there is a slowstart phase initially and after every packet loss detected
by timeout

Fast Recovery

Slow start used when we assume that the network condition is
new or abruptly changing

i.e. at beginning and after loss detected by timeout
In all other packet loss detection events, slow start is not used, but
“fast recovery” is used instead
wo, .
Problem to be solved: the formula “rate = ﬁ” IS not true when

there is a packet loss — sliding window operation may stop
sending

With Fast Recovery

target window is halved

But congestion window is allowed to increase beyond the target
window until the loss is repaired

Fast Recovery Details

When loss is detected by 3 duplicate acks

ssthresh = 0.5 x current-size
ssthresh = max (ssthresh, 2 x MSS)

cwnd = ssthresh + 3 x MSS (exp. increase)
cwnd = min (cwnd, 64K)

For each duplicated ACK received
cwnd = cwnd + MSS (exp. increase)
cwnd = min (cwnd, 64K)

When loss is repaired
cwnd = ssthresh
Goto congestion avoidance

10

Fast Recovery Example

During congestion avoidance:

TcpMaxDupACKs=3 MSS?2

cwnd « cwnd + MSS =100

ssthresh=407, cwnd=807
ssthresh=407, cwnd=907
seq=901:1001
ssthresh=407, cwnd=1007
ssthresh=407, cwnd=407

Ack =901,win=1’000

N
c0 N

cwnd
ssthresh=cwnd =800 1
seq=201:301 2
seq=301:351 3 ~2| Ack = 201,win=1’000
seq=351:401 4
seq=401:501 5 —> Ack= 201,win=1’000
ssthresh=cwnd=813 6 Ack = 201 . win=1"000
seq=501:601 ; Ack = 201,win=1"000
seq=601:701 9 Ack = 201,win=1'000
10
seq=701:801 11 Ack =201,win=1"000
ssthresh=407, cwnd=707 12
seq=201:301 13|~ Ack =201,win=1"000
seq=801:901 14
15
16
-

N
S ©

d
o
d
W

11

At time 1, the sender is in “congestion avoidance” mode. The congestion window increases
with every received non-duplicate ack (as at time 6). The target window (ssthresh) is equal
to the congestion window.

The second packet is lost.

At time 12, its loss is detected by fast retransmit, i.e. reception of 3 duplicate acks. The
sender goes into “fast recovery” mode. The target window is set to half the value of the
congestion window; the congestion window is set to the target window plus 3 packets (one
for each duplicate ack received).

At time 13 the source retransmits the lost packet. At time 14 it transmits a fresh packet.
This is possible because the window is large enough. The window size, which is the
minimum of the congestion window and the advertised window, is equal to 707. Since the
last acked byte is 201, it is possible to send up to 907.

At times 15, 16 and 18, the congestion window is increased by 1 MSS, i.e. 100 bytes, by
application of the congestion avoidance algorithm. At time 15, this allows to send one fresh
packet, which occurs at time 17.

At time 18 the lost packet is acked, the source exits the fast recovery mode and enters
congestion avoidance. The congestion window is set to the target window.

12

How many new

segments of size twnd=cwnd =800 1
seq=201:301 2
100 bytes can the seq=301:351 3 ~> Ack = 201,win=1'000
source send at seq=351:401 4
: 20 ? seq=401:501 5 —> Ack = 201,win=1’000
time : twnd=cwnd=813 6 Ack = 201,win=1’000
seqrallEll 7 Ack = 201,win=1'000
A. 1) & B -,
seq=601:701 9 Ack = 201,win=1’000
B. 2 i
seq=701:801 11 Ack = 201,win=1"000
C. 3 twnd=407, cwnd=707 12
seq=201:301 13 Ack = 201,win=1"000
D 4 seq=801:901 14
twnd=407, cwnd=807 15
E =5 twnd=407, cwnd=907 16 Ack = 901,win=1000
seq=901:1001 17
F O twnd=407, cwnd=1007 18
twnd=407, cwnd=407 19 —>
G. I don’t know 20| I

13

Solution

Answer C

The congestion window is 407, the advertised window is 1000, and
the last ack received is 901.

The source can send bytes 901 to 1308, the segment 901:1001 was

already sent, i.e. the source can send 3 new segments of 100 bytes
each.

14

Assume a TCP flow uses WiFi with high loss ratio. Assume

some packets are lost in spite of WiFi retransmissions.
When a packet is lost on the WiFi link...

D.

The TCP source knows it is a loss due to channel errors and
not congestion, therefore does not reduce the window

The TCP source thinks it is a congestion loss and reduces its
window

It depends if the MAC layer uses retransmissions
| don’t know

15

Solution

Answer B: the TCP source does not know the cause of a loss.

16

Fairness of TCP Reno

For long lived flows, the rates obtained with TCP Reno are as if they

were distributed according to utility fairness, with utility of flow i given
\/E XiTi

by U; (x;) = T—iarctan 7
with x; =rate=W/t;, t,=RTT
For sources that have same RTT, the fairness of TCP is between

maxmin fairness and proportional fairness, closer to proportional
fairness

Reno
1 T — T | mmeTeme =l L s s
‘ AIMD _—
0.8 [o . . 1
] " proportional fairness

07 f ///
0.6 [f // r-
| | rescaled utility
> f | functions;
oa |/ RTT = 100 ms
o2 [{f maxmin approx.is U(x) = 1 — x~°
0.1 'I

o -

TCP Reno and RTT

TCP Reno tends to distribute rate so as to maximize utility of source i
\/E XiTi

given by U;(x;) = —arctan 7

Ti

The utility U depends on the roundtrip time Tt;

Utility of x=100 kb/s as a function of RTT

0.25

The utility U is a 0ol
decreasing function
of T 0.15}

Utility

0.1F

What does this imply ? 0.0

0 20 40 60 80 100
Round trip time © (ms)

S1 and 8, send to destination using one TCP connection each, RTTs

are 60ms and 140ms. Bottleneck is link « router-destination ». Who
gets more ?

A. 51 gets a higher throughput

B. S, gets a higher throughput
C. Both get the same
D. | don’t know

destination

19

Solution

For long lived flows, the rates
obtained with TCP are as if they
were distributed according to

utility fairness, with utility of flow
\/E XiTi

i given by U(x;) = —arctan—

S1 has a smaller RTT than S,

The utility is less when RTT is
large, therefore TCP tries less
hard to give a high rate to sources
with large RTT. S, gets less.

Answer A.

Utility of x=100 kb/s as a function of RTT

0 20 40 60 80 100
Round trip time t (ms)

ACK numbers

time

20

The RTT Bias of TCP Reno

With TCP Reno, two competing sources with different RTTs are not
treated equally

source with large RTT obtains less

A source that uses many hops obtains less rate because of two
combined factors, one is good, the other is bad:

1. this source uses more resources. The mechanic of
proportional fairness leads to this source having less rate — this
is desirable in view of the theory of fairness.

2. this source has a larger RTT. The mechanics of additive
increase leads to this source having less rate — this is an
undesired bias in the design of TCP Reno.

Cause is : additive increase is one packet per RTT (instead of
one packet per constant time interval).

21

TCP Reno
Loss - Throughput Formula

Consider a large TCP connection (many bytes to transmit)

Assume we observe that, in average, a fraction g of packets is lost (or
marked with ECN)

MSS 1.22
RTT \/q

The throughput should be close to 8 =

Formula assumes: transmission time negligible compared to RTT,
losses are rare, time spent in Slow Start and Fast Recovery negligible,
losses occur periodically

22

Guess the ratio between the throughputs 0,
and 0, of S, and S,

None of the above

mmy O oo
N
I
|
O
N

| don’t know

23

Solution: Guess the ratio between the
throughputs 0, and 0, and of S, and S,

1 ACK numbers

6, 6, .
T =1 l.E.

1 T2

Answer C.

24

7. TCP Cubic

TCP Reno serves as the reference for congestion control in the
Internet as it was the first mature implementation of congestion
control.

TCP Reno has a number of shortcomings. Can you cite a few ?

25

Solution

RTT bias — not nice for users in New Zealand

Periodic losses must occur, not nice for application (e.g video
streaming).

TCP controls the window, not the rate. Large bursts typically occur
when packets are released by host following e.g. a window
increase — not nice for queues in the internet, makes non smooth

behaviour.

Self inflicted delay: if network buffers (in routers and switches) are
large, TCP first fills buffers before adapting the rate. The RTT is
increased unnecessarily. Buffers are constantly full, which reduces
their usefulness (bufferbloat) and increases delay for all users.
Interactive, short flows see large latency when buffers are large
and full.

26

Long Fat Networks (LFNs)

In an LFN, additive increase is too slow

1.4 hours 1.4 hours . 1.4 hours

50’000 Slow Increase Fast Decrease SGbps
cwnd = cwnd + cwnd = cwnd *
1 0.5
la ale ala ale | >
< e g e >l

(slide from Presentation: "Congestion Control on High-Speed Networks”, Injong Rhee, Lisong Xu,

Slide 7)
the figure assumes congestion avoidance implements a strict additive increase, losses are detected

by fast retransmit and ignores the “fast recovery” phase. MSS = 12508, RTT = 100 msec
27

TCP Cubic modifies Congestion Control

Why ? increase TCP rate fast on LFNs

How ? TCP Cubic keeps the same slow start, congestion avoidance,

fast recovery phases as TCP Reno, but:

 Multiplicative Decrease is X0.7 (instead of X0.5)

 During congestion avoidance, the increase is not additive but cubic

Say congestion avoidance 120
is entered at time £, = 0 and let
W4 = value of cwnd when loss is

100 1

60 [

detected. 80 |

Let W (t) = W4, + 0.4(t — K)3

with K such that W(0) = 0.7 W00 |
Then the window increases like wf

W (t) until a loss occurs again.

27T

Units are : data = 1MSS; time = 1s
0

M/max

o — —— —

Additive Increase (%Reno)/__,_,,,--‘--"
with RTT =0.1 s//

—— —— ————l e ——— R — — — — — — — —

0 1

Cubic versus Reno

Cubic increases window in concave way until reaches W, 4, then
Increases in a convex way

Cubic’s window function is independent of RTT;
is slower than Reno when RTT is small, larger when RTT is large

120

100

80

60 [

40 r

20T

T /,
? 4

/

W(t) /

/

Additive Increase (~Reno)

120

{100 |

) , Cubic :
/ with RTT=0.1s w0 | Cubic
//// | ’ I -"'//
»'/ l l
s — — _____‘__,_.1.,_———1_—;_______ .___________.__4_____41‘__——4-.—; _______
//{_--"‘- = | 160T1 |
/4f”’ | 1
4l I R S
| {40} Addltl\%'e Increase (=Reno)
| with RTT =1
| |
| 1201 |
| |
I !
il l il t 0 l il
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7

29

The Cubic Window Increase

Cubic makes sure it is at least as fast as additive increase with an
additive increase term 1., (discussed later):

t
Warmp (t) — W(O) + Tcubic RTT

if W (t) < Wynmp(t) then Cubic replaces W (t) by Wy np (t)
= Cubic’s window = AIMD’s window

= When RTT or bandwidth-delay product is small, Cubic does the
same as a modified Reno with additive increase 1.,p;c MSS per RTT
(instead of 1) and multiplicative decrease B,pic = 0.7.

Teupic 1S computed such that this modified Reno has the same loss-

throughput formula as standard Reno = 7.,pic = 3 L=Peubic _ () 529
1+ Bcubic

= Cubic’s throughput = Reno' throughput with equality when RTT
or bandwidth-delay product is small

30

Cubic’s Other Bells and Whistles

T

Cubic’s Loss throughput formula RTT =12.5ms

9 ~ max 1.054 1.22 102
~ RTTO.25qO.75) RTT\/a
in MSS per second. 107

Cubic’s formula is same as Reno
for small RTTs and small BW-delay
products. ot |

102

A TCP Cubic Connection gets more 1* 0 10 0° 2
throughput than TCP Reno when bitrate and RTT are large

Other Cubic details: W,,,,,,cOmputation uses a more complex mechanism called
“fast convergence” - see Latest IETF Cubic RFC / Internet Draft
or http://elixir.free-electrons.com/linux/latest/source/net/ipv4/tcp cubic.c

31

8. ECN and RED: The Bufferbloat Syndrom

Using loss as a congestion indication has major drawback: losses to
application + bufferbloat.

Loss Based
Congestion/' B R
Optimal : ,
ratel o PHmd Control round-trip
perating 0 e
/ Point
A a
e T — RTTpin
bottleneck - |.._. i
link capacity | /!
>

“window size

From : N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V.
Jacobson, “BBR: Congestion-Based Congestion Control,” ACM Queue,
vol. 14, no. 5, pp. 50:20-50:53, Oct. 2016.

32

from [Hock et al, 2017] Mario Hock, Roland Bless, Martina Zitterbart, “Experimental
Evaluation of BBR Congestion Control”, ICNP 2017:

The previous figure illustrates that if the amount of inflight data is just large enough
to fill the available bottleneck link capacity, the bottleneck link is fully utilized and
the queuing delay is still zero or close to zero. This is the optimal operating point (A),
because the bottleneck link is already fully utilized at this point. If the amount of
inflight data is increased any further, the bottleneck buffer gets filled with the excess
data. The delivery rate, however, does not increase anymore. The data is not
delivered any faster since the bottleneck does not serve packets any faster and the
throughput stays the same for the sender: the amount of inflight data is larger, but
the round-trip time increases by the corresponding amount. Excess data in the
buffer is useless for throughput gain and a queuing delay is caused that rises with an
increasing amount of inflight data. Loss-based congestion controls shift the point of
operation to (B) which implies an unnecessary high end-to-end delay, leading to
“bufferbloat” in case the buffer sizes are large.

33

ECN and RED

Explicit Congestion Notification (ECN) aims at avoiding these

problems
/—> Feedback y(t)
\

Rate x;(t) — = | Capacity ¢

/)

What ? signal congestion without dropping packets (= DECbit)

How ? router marks packet instead of dropping
TCP destination echoes the mark back to source

At the source, TCP interprets a marked packet in the same way as if
there would be a loss detected by fast retransmit

34

Explicit Congestion //—)Feedbackya
\\A Capacity ¢

Notification (ECN) TS

TCP IP
payload headerheader 32

? S reduces window by 1/2

35

1. Ssends a packet using TCP

2. Packet is received at congested router buffer; router marks the
Congestion Experienced (CE) bit in IP header

3. Receiver sees CE in received packet and set the ECN Echo (ECE)
flag in the TCP header of packets sent in the reverse direction

5,6 Packets with ECE is received by source.

7. Source applies multiplicative decrease of the congestion window.

Source sets the Congestion Window Reduced (CWR) flag in TCP
header. The receiver continues to set the ECE flag until it receives a
packet with CWR set.

Multiplicative decrease is applied only once per window of data
(typically, multiple packets are received with ECE set inside one
window of data).

36

Put correct labels

assume TCP with ECN is used and there

is no packet loss

2 CA :congestion avoidance

SS : slow start = multiplicative increase
window size

MD : multiplicative decrease
1 ECE récejved

’f Ecg received 1

o0 ® P

”,

1=CA, 2=SS
1=SS,2=MD
1=CA, 2=MD
| don’t know

37

Solution

Answer C

l\ Multiplicatiye decrease

_ _ = reduct;j :
window size ction of target Window py 2
Jo 2

congestion qvoidance

ECE réceiyed

’ ECE receijved

v

-V

38

ECN Flags

2 bits in IP header (direct path) code for 4 possible codepoints:

non ECN Capable (non ECT)

ECN capable and no congestion ECT(0) and ECT(1), randomly
ECN capable and congestion experienced (CE)

N ECT(0)
[9 CE |
— e

ECT(0) ECE=1 N_ B
-6 5 ECT(0) ECE=1

3 bits in TCP header (return path)

ECE (ECN echo) bit =y; =0or1

CWR = ack of ECE=1 received (window reduced)

ECE =1 is set by R until R receives a TCP segment with CWR=1
NS = nonce, used for S to check that ECN is taken seriously.

39

Nonce Sum

| 9 CE
(RFC 3540) L\@;
ECT(0) ECE=1 _ -
Why invented ? -6 5 ECT(0) ECE=I

S uses ECN = routers do not drop packets, use ECN instead
but ECN could be prevented by: R not implementing ECN, NATs that
drop ECN info in header

In such cases, the flow of S is not congestion controlled; this should be
detected ->revert to non ECN

What does it do ?
Nonce Sum bit in TCP header (NS) is used by S to verify that ECN works
for this TCP

Nonce Sum = sum of ECT(0) + ECT(1) (modulo 2) during a congestion-

less period
40

CE

Nonce Sum , v Cmm
(RFC 3540) - T R
ECT(0) ECE=1 _ 1- 4/- 4

How does it work ? -6 5 ECT(0) ECE=I

Source S randomly chooses ECT(0) or ECT(1) in IP header and verifies
that the received NS bit is compatible with the ECT(0)/ECT(1) chosen
by S
Non congested router does nothing; congested router sees ECT(O)
or ECT(1) and marks packet as CE instead of dropping it

R echoes back to S the xor of all ECT bits in NS field of TCP header;

If R does not take ECN seriously, NS does not correspond and S
detects it; S detects that ECN does not work; Malicious R cannot
compute NS correctly because CE packets do not carry ECT bit

If router or NAT drops ECN bits then R cannot compute the correct
NS bit and S detects that ECN does not work

41

From RFC 3540

Sender

—— 1:4 ECT (0)
<—- ACK 4, NS5=1
-— 4:8 ECT (1)
<— ACK 8, NS=0
-— 8:12 ECT(1)

<- ACK 12, NSs=1

—— 12:16 ECT (1)

<- ACK 16, NS=0

Receiver
initial sum

-=> NS =1 + 0(1:4

—_— NS =

—> NS5 =

—> NS5 =

1(:4)

0(:8)

1(:12)

+ 1(4:8)

1(:4)

= 0(:8)

+ 1(8:12) = 1(:12)

+ 1(12:16) = 0(:16)

Figure 1: The calculation of nonce sums at the receiver.

Sender

—— 1:4 ECT(0)
<— ACK 4, NS=1

Recelver
initial sum
1 + 0(1:4)

—> NS

—— 4:8 ECT (1) —-> CE -> NS

<- ACK 8§, ECE NS=1

-— 8:12 ECT(1), CWR -> NS

<- ACK 12, NS=0
-= 12:16 ECT(1)
<— ACK le6, NS5S=1

Figure 2: The calculation

—-> NS

packet (4:8) is marked.
nonce sum when the original nonce information is lost after a

packet is marked.

0(:12)

1(:4)

+ 72(4:8) = 1(:8)

+ 1(8:12) = 0(:12)

+ 1(12:16) = 1(:16)

of nonce sums at the receiver when a
The receiver may calculate the wrong

42

RED (Random Early Detection)

Why ? when to mark a packet with ECN
How ? queue estimates its average queue length
avg <— a x measured + (1 - a) x avg

incoming packet is marked with probability given by RED curve
a uniformization procedure is also applied to prevent bursts of marking events

g (marking probability)

max-p T /

th-min th-max avg (queue size)

Active Queue Management

RED can also be applied even if ECN is not supported

In such a case, a packet is dropped with proba g computed by the
RED curve

packet may be discarded even if there is some space available !

Expected benefit
avoid bufferbloat
avoid irregular drop patterns

This is called Active Queue Management

as opposed to passive queue management = drop a packet
when queue is full = “Tail Drop”

44

In a network where all flows use TCP with ECN and
all routers support ECN, we expect that ...

there is no packet loss
there is no packet loss due to congestion

there is no packet loss due to congestion in routers
none of the above

m O O ® >

| don’t know

45

Solution

Answer C

We expect that routers do not drop packets due to congestion if all
TCP sources use ECN

However there might be congestion losses in bridges, and there
might be non-congestion losses (transmission errors)

46

9. Other Cool Stuff

Data Center TCP
Per Class Queuing
TCP-friendly apps

TCP-BBR

47

Data Centers and TCP

What is a data center ?
a room with lots of racks of PCs and switches

youtube, CFF.ch, switchdrive, etc

What is special about data centers ?
most traffic is TCP
very small latencies (10-100 us)
lots of bandwidth, lots of traffic

internal traffic (distributed computing) and external (user
requests and their responses)

many short flows with low latency required (user queries,
mapReduce communication)

some jumbo flows with huge volume (backup,

synchronizations) may use an entire link
48

What is your preferred combination for TCP
flows inside a data center ?

A. TCP Reno, no ECN no RED
B. TCP Reno and ECN

C. TCP Cubic, no ECN no RED
D. TCP Cubic and ECN

E. Idon’t know

49

Solution

Answers B or D

Without ECN there will be bufferbloat, which means high latency
for short flows

Cubic has better performance than Reno when bandwidth-delay
product is large, which may occur in data centers.

Standard operation of ECN (e.g. with Reno or Cubic) still has
drawbacks for jumbo flows in data center settings:

multiplicative decrease by 50% or 30% is too abrupt =
throughput inefficiency

50

Data Center TCP

Why ? Improve performance for jumbo flows when ECN is used.
Avoid the brutal multiplicative decrease by 50%

How 7

TCP source estimates proba of congestion p

Multiplicative decrease is X Bpercp = (1 - g)

ECN echo is modified so that the proportion of CE marked Acks
=~ the probability of congestion

51

In a data center: two large TCP flows compete for a
bottleneck link; one uses DCTCP, the other uses
Cubic/ECN. Both have same RTT.

Both get roughly the same throughput
DCTCP gets much more throughput
Cubic gets much more throughput

o 0w >

| don’t know

52

Solution

Answer B.

If latency is very small, Cubic with ECN has same performance as
Reno with ECN, i.e. AIMD with multiplicative decrease =X 0.5 and
window increase of 1 packet per RTT during congestion avoidance.

DCTCP is similar, in particular has same window increase, but with

multiplicative decrease =X (1 — g) so the multiplicative decrease

is always less. DCTCP decreases less and increases the same,
therefore it is more aggressive.

In other words, DCTCP competes unfairly with other TCPs; it
cannot be deployed outside data centers (or other controlled
environments). Inside data centers, care must be given to separate
the DCTCP flows (i.e. the internal flows) from other flows. This can

be done with class-based queuing (see later).
53

Class Based Queuing

In general, all flows compete in the Internet using the congestion
control method of TCP. In controlled environments (e.g. a data center,
a smart grid, a TV distribution network, a cellular network) it is
possible to modify the competition and separate flows using per-class
gqueuing
E.g. routers classify packets (using an access list)

each class is guaranteed a rate

classes may exceed the guaranteed rate by borrowing from other
classes if there is spare capacity

This is implemented in routers with dedicated queues for every
class and a scheduler such as Weighted Round Robin (WRR) or
Deficit Round Robin (DRR).

WRR and DRR have one queue per class. Every round, quues are visited in sequence. WRR

serves w; packets of class i in one round. DRR serves g; bits of class i in one round.
54

Example of Class-Based Queuing

class 1
rate = 2.5 Mb/s

S1

L —1/‘3/8 0 Mbls B=

= — =
\ LI}
PC1 1 TCP connection PCZ - CP connection
RTT= 100 msec class 2 RTT = 100 msec

rate = 7.5 Mb/s

Class 1 is guaranteed a rate of 2.5 Mb/s; can exceed this rate by
borrowing capacity available from the total 10 Mb/s if class 2 does not
need it. Class 2 is guaranteed a rate of 7.5 Mb/s; can exceed this rate

by borrowing capacity available from the total 10 Mb/s if class 1 does

not need it 55

Which rates will PC1 and PC2 achieve ?

O 0O ® >

=y Sensor PMU1
1 uDPat1Mb/s

I
|

' 1 TCP connection
PC1
[—= RTT= 100 msec

5 Mb/s each
4 Mb/s each
PC1: 5 Mb/s, PC2: 3 Mb/s
| don’t know

— Sensor PMU2
4 UDPat1M

KMWS

_— -
—1

rate = 2.5 Mb/s

class 1

51

g B

— N
L U
PC2 CP connection
RTT = 100 msec
class 2

rate = 7.5 Mb/s

56

Solution

9 Mb/s available

=

PC1

PC1 and PC2 see this network T

7.5 Mb/s guaranteed
/YXMb/S

<l >

8 Mb/s available

PC2

\

8 Mb/s available
7.5 Mb/s guaranteed 7.5 Mb/s guaranteed

_*@M

b/s

class 2
low prio

<-f\

S1

W

Since PMU1 and PMU2 stream at 1 Mb/s and class 2 may borrow, the
available capacities for class 2 are 9 Mb/s, 8 Mb/s and 8 Mb/s.

max 9 Mb/s Solution b
7.5 Mb/s guaranteed max 8 Mb/s max S ¢q
ok / 7.5 Mb/s guaranteed 7.5 Mb/s guaranteed

800 g

i Mb/s Mb/ S ‘\4» /(yﬁb/s

\ class 2 AN~
bC1 PC2 -
==

low prio
TCP allocates rates x; and x5, so as to maximize U(x;) + U(x,) where U is the utility
function of TCP; the function U is the same for PC1 and PC2 because RTTs are the
same
the constraints are x; < 9 Mb/s, x; + x, <8 Mb/s, x; + x, < 8 Mb/s
Thus TCP solves the problem :
maximize U(x;) + U(x,) subjectto x; + x, < 8 Mb/s
By symmetry, x; = x, = 4 Mb/s

You can also check max-min fair allocation (x; = x, = 4 Mb/s) and proportionally
fair allocation (x; = x, = 4 Mb/s) .
Answer B.

TCP Friendly UDP Applications

Some UDP applications that can adapt their rate have to
implement congestion control; one method is to use the
congestion control module of TCP: e.g. QUIC’s, which is over UDP,
uses Cubic’s congestion control (in its original version).

Another method (e.g. for videoconferencing application) is to
control the rate by computing the rate that TCP Reno would
obtain. E.g.: TFRC (TCP-Friendly Rate Control) protocol

application adapts the sending rate (by modifying the coding
rate for audio and video)

feedback is received in form of count of lost packets

sending rate is set by TFRC to: rate of a TCP flow experiencing
the same loss ratio, using the Reno’ loss throughput formula

59

TCP-BBR

Bottleneck Bandwidth and RTT

What ? Avoid bufferbloat in TCP without ECN

How ? TCP source controls rate (not window), estimates the rate and
RTT by periodically overshooting/undershooting. Losses are

ignored.

55 —— Upload - bbr-server-rtt-48

25 - Upload - cubic-server-rtt-48
Upload - reno-server-rtt-48
54 —— Ping (ms) - bbr-server-rtt-48
- Ping (ms) - cubic-server-rtt-48
Ping (ms) - reno-server-rtt-48
20 : 53
[' .) ' i
) Al ﬂprq‘,‘,\,u! ¥ -," dv A A ﬂd
:IJ”'r "'O"fk\“ljlfla."\" :MH”H M)
5||ut! l,"I', ,IJ‘,'agilll’rll‘, 153 i 525
a A L i 35 0 Uy 33 05 0t T =
A B BR[| R I 1 gy ! >
= r: W |' { N 11] it 1! i G 11 / o
2 15 i i | FEAREE TER SR iR 7
]
; 51 =
I
: [}
2 - N 1] : ¢
|’|] ! g .I i 50
1 1 R
[" ‘ ; i" T I) I \ ”) v
! !
10 -‘_,”,.,» i A
| 4 0) -
If -f "' , { Il"' B 141 &l l U 1|| "M;‘\ |SJ |I 49
A= Al #D H - ' hi 323 P,
I l:{ o Tl FEsgr #3t { Y '14 =) (ALY WS |
i b - :
0 10 20 30 40 50 60 70

Time (s)
Local/remote: nemesis/server - Time: 2016-09-18T21:23:54 450130 - Length/step: 60s/0.20s

http://blog.cerowrt.org/post/bbrs_basic_beagty/

BBR Operation K—Bm?ew
X\ and RTT

Rate s,-(t) — = | Capacity ¢
source views network as a single link s

(the bottleneck link)
estimates RTT by taking the min over the last 10 sec

estimates bottleneck rate (bandwidth) b,.= max of delivery rate over
last 10 RTTs; delivery rate = amount of acked data per At

send data at rate b,- X c(t)

where c(t) = 1.25;0.75,;1;1;1; 1; 1; 1 i.e. c(t) is 1.25 during one
RTT, then 0.75 during one RTT,then 1 during 6 RTTs (“probe
bandwidth” followed by “drain excess” followed by steady state)

data is paced using a spacer at the source

max data in flight is limited to 2 X b,. X RTT,s; and by the offered
window

there is also a special startup phase with exponential increase of rate

61

BBR Operation K)Datagatebr(t)
\\~ . and RTT

Rate s, (t) — => apacity ¢

/’)

BBR TCP takes no feedback from network -- no reaction to loss or ECN

Claims: avoids filling buffers because it estimates the bottleneck
pandwidth

‘Hock et al, 2017] find that it might not work because the estimated
pbottleneck bandwidth ignores how many flows are competing

bufferbloat may still exist
sustained huge loss rates may exist
fairness issues may exist inside BBR and versus other TCPs

OO0

g U0 - 166G
- - ;_-_:'!N.-‘ Dt CUBIC :-.Dr 1 4G - Total CUBIC
E‘ =000y :E [itan, [.:_3- 1265 - BBR é 126 - BBR
= O 100G, — . 15
= ao0n = amo =1 ; I TTTIT E] -
— f e EL B0 g..x ap l [l [
'5' By = AL o i I oA
=3 =1 3 =
- Fonn - 2 (0K E an ?_ A0OM
[=] L= £ 20 L 200M
2 i (=TT [=" ‘
a = 0 w 1mnn 150 OO 1%h W ":- 40 inn %0 200 380
N sn 10 1= = =9 3w bS5 100 150 zon Zmo 3o Time (s) Time {s)
Time (s) Time (s)
ta) 10Ghiv's ib) 1 Ghitfs

(a) 10Ghivs large buffer (b 10 Ghs small balfer 7) o
.] o Fig. 16: BBR vs. CuBic TCP (small buffer)
Fig. 7: Goodput of six BBR flows 62

Conclusion
Congestion control is in TCP or in a TCP-friendly UDP application.

Standard TCP uses the window to control the amount of traffic:
additive increase or cubic (as long as no loss); multiplicative decrease
(following a loss).

Standard TCP uses loss as congestion signal.

Too much buffer is as bad as too little buffer — bufferbloat provokes
large latency for interactive flows.

ECN can be used to avoid bufferbloat — it replaces loss by an explicit
congestion signal; not widely deployed yet in the internet, but is in
Data Center TCP.

Class based queuing is used to separate flows in enterprise networks.
42

