
Markov Chains and Algorithmic Applications: WEEKS 11&12

1 Exact Simulation

In the previous lectures, we saw several procedures to generate samples from a distribution π on S.
Moreover, the Metropolis-Hastings procedure allows us to do so with only partial knowledge of π, but
this approach is merely approximate, as we do not know how long to run the algorithm to reach the
stationary distribution π. In other words, the best we can do is upper-bound the mixing-time Tε so as
to sample from a distribution that is arbitrarily close to π.

Today, we will see another procedure named coupling from the past (introduced by James Propp and
David Wilson in 1996) which allows us to sample exactly from π. In order to study this method, we need
a tool called random mapping representation of a Markov chain.

1.1 Random Mapping Representation

So far we used to define a (time-homogeneous) Markov chain by a matrix of transition probabilities
P = [pi→j ] where pi→j = P(Xn+1 = j|Xn = i). Alternatively one can represent a Markov chain as

Xn+1 = Φ(Xn, Un+1)

where Φ(·, ·) is a cleverly chosen function and (Un, n ≥ 1) is a sequence of i.i.d. random variables

Proposition 1.1. Every Markov chain has a random mapping representation.

Proof. We assume the Un’s are uniform random variables in [0, 1] (we denote this as Un ∼ U [0, 1]) and
construct Φ(·, ·) such that pi→j = P (Xn+1 = j|Xn = i) = P (Φ(i, Un+1) = j) for any arbitrary set of
transition probabilities pi→j .

Define

Fi→k ,
k∑
j=1

pi→j , ∀i, k ∈ S

(where S is the state space) and set

Φ(i, u) ,
∑
j∈S

j · 1 {Fi→j−1 < u ≤ Fi→j} .

We hence have

P(Φ(i, Un+1) = j) = P(Fi→j−1 < Un+1 ≤ Fi→j) = Fi→j − Fi→j−1 = pi→j .

Remark: In general, there may exist many different random mapping representations for a particular
chain. In the above proof we just constructed one of these representations.

1.2 Forward Coupling

Suppose we take two copies of a Markov chain Xn and Yn having stationary distribution π. Their random
mapping representations are

Xn+1 = Φ(Xn, Un+1)

Yn+1 = Φ(Yn, Un+1).
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Figure 1: Markov chain of Example 1.2
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Figure 2: Two copies of the chain considered in Example 1.2.

In general, the Un’s used in the chains Xn and Yn are two independent samples. However, if we use the
same samples Un+1 for updating Xn → Xn+1 and Yn → Yn+1, we will impose grand coupling between
those chains.

Now suppose we start |S| copies of the chain
(
X

(i)
n , i ∈ S

)
, each starting at a different state (i.e. X

(i)
0 = i),

and update them using the same samples of Un (i.e. we establish pairwise grand coupling). This situation
is called forward coupling.

One may think that once all chains coalesce at some time T ∗ > 0, the initial state has been “forgotten”,

so that the stationary distribution has been reached (i.e. ∀i, j ∈ S, P
(
X

(i)
T∗ = j

)
= P (XT∗ = j) = πj).

Unfortunately, this is not the case as we will see in the following examples:

Example 1.2. Consider the Markov chain of Figure 1. A random mapping representation of this chain
(using Un ∼ U [0, 1]) is

Φ(0, u) =

{
0 if u ≤ 1

2 ,

1 if u > 1
2 ,

Φ(1, u) = 0.

It is easy to check that coalescence always happens at state 0. Indeed, the only way to get Φ(0, u) = Φ(1, u)
is to have 0 ≤ u ≤ 1

2 implying Φ(0, u) = Φ(1, u) = 0. For example, consider the situation depicted in
Figure 2. That is to say, (π0 (Tc) = 1, π1 (Tc) = 0) where Tc is the coalescence time. However, the
stationary distribution is

(
π0 = 2

3 , π1 = 1
3

)
. Therefore, the chains are not in the stationary distribution

when they coalesce. They are also not in the stationary distribution after the coalescence time.

The choice of the random mapping representation can even lead to situations where we do not have
coalescence at all.

Example 1.3. Consider the Markov chain of Figure 3. One possible candidate for its random mapping
representation (still assuming Un ∼ U [0, 1]) is

Φ(i, u) =

{
i if u ≤ 1

3 ,

1− i if u > 1
3
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Figure 3: Markov chain of Example 1.3

1 2 3 4 5

1

(U
1
≤

1 3
)

(U
2
>

1 3
)

(U
3
>

1 3
)

(U
4
≤

1 3
)

(U
5
>

1 3
)

n

(a) Coalescence does not happen.
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(b) Coalescence happens fast.

Figure 4: The choice of random mapping representation can change the coalescence time.

Using this mapping, the two chains will never coalesce (see Figure 4a for example).

However, if we pick another random mapping representation

Φ(0, u) =

{
0 if u ≤ 1

3 ,

1 if u > 1
3 ,

Φ(1, u) =

{
0 if u ≤ 2

3 ,

1 if u > 2
3 ,

with the same realization of the Un’s, coalescence will take place in a few steps (see Figure 4b).

1.3 Coupling From The Past

Surprisingly perhaps, a slight modification of the idea of forward coupling leads to a criterion to check
whether the chain is in the stationary distribution. The idea is called coupling from the past and is
formalized as follows (the algorithm is known as the Propp-Wilson algorithm):

1. Generate once and for all (U−n, n ≥ 1).

2. Set T0 = −1.

3. Start the experiment at all states i ∈ S at time T0 and update X
(i,T0)
n+1 = Φ

(
X

(i,T0)
n , Un+1

)
for

n = T0, T0 + 1, . . . ,−1 (X
(i,T0)
n denotes the state of the chain at time n knowing that XT0

= i).

4. Check coalescence at time n = 0: If X
(i,T0)
0 is independent of i (i.e. ∀i, j ∈ S, X

(i,T0)
0 = X

(j,T0)
0 ),

X
(i,T0)
0 is the output and the algorithm terminates. If not, set T0 ← T0 − 1 and return to step 2.

We will see that the distribution of X
(i,T0)
0 is exactly the stationary distribution of the Markov chain.

Let us define the event

AT1,T2 =
{
X

(i,T1)
T2

= XT2 ,∀i ∈ S
}

= {all chains started at time T1 have coalesced at time ≤ T2} .
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Theorem 1.4. Let Xn be a Markov chain having stationary distribution π. If ∃L > 0 such that
P (A0,L) > 01, then

1. With probability 1, the Propp-Wilson algorithm outputs a value X0 in finite time.

2. X0 ∼ π.

Proof. We first need to check that the algorithm terminates in finite time with probability 1. To this
end, we will show:

P

⋃
k≥1

A
−(k−1)L
−kL

 = 1.

Because of Markovity, the events A
−(k−1)L
−kL are i.i.d. Hence,

P

⋃
k≥1

A
−(k−1)L
−kL

 = 1− P

⋂
k≥1

A
−(k−1)L
−kL


= 1−

∏
k≥1

P
(
A
−(k−1)L
−kL

)
= 1− lim

n→∞

(
1− P

(
AL0
))n

= 1,

since P
(
AL0
)
> 0 by assumption.

It remains to show thatX
(i,T0)
0 ∼ π (when the algorithm stops). Let T0 = − inf

{
n > 0, X

(i,−n)
0 = X0 ∀i ∈ S

}
and assume X0 ∼ µ. We will show that µ = π:

We have X
(i,T0)
0 ∼ µ, so X

(i,T0)
1 ∼ µP , and by time-homogeneity X

(i,T0)
1 ∼ X(i,T0−1)

0 . Moreover, since T0

is the minimum coalescence time, we have

X
(i,T0−1)
0 = X

(j,T0)
0 = X0, ∀i, j ∈ S

Hence µ = µP and therefore µ = π.

1.3.1 Propp-Wilson Algorithm in Practice

In the Propp-Wilson algorithm depicted above, T0 is replaced by T0 − 1 at each iteration, so finding
the coalescence time is a linear-time operation which is too slow in practice. By replacing T0 with 2T0

instead, finding the coalescence time becomes a logarithmic-time operation.

Moreover, at first glance, the Propp-Wilson algorithm seems to be useless when the state space is huge:
we need to keep track of |S| copies of the chain in order to generate one sample distributed according to
π. For example, the Ising model would require running 2N chains simultaneously, which is not practically
feasible. However, if we have

1. A partial ordering in the state space,

2. A random mapping representation that preserves this ordering:

i � j =⇒ Φ(i, u) � Φ(j, u) ∀i, j ∈ S,

3. Two extremal states
¯
i and ī such that

¯
i � j � ī, ∀j ∈ S,

1If the chain is ergodic, then it is more than reasonable to assume that there exists a mapping Φ satisfying this assumption.
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then we only need to keep track of the two chains X(
¯
i,T0) and X (̄i,T0). Indeed, under this assumption,

all intermediary chains remain “sandwiched” between the two extreme chains as time goes by, so that
at the time these two coalesce, all the others must have coalesced also. This is called monotone coupling
from the past.

Example 1.5. Consider the classical random walk on S = {0, 1, . . . , N}, with transition probabilities

p00 = p01 = pN,N = pN,N−1 =
1

2
and pi,i±1 =

1

2
for i = 1, . . . , N − 1

and consider the following random mapping representation (with Un i.i.d.∼ U [0, 1]):
if u ≤ 1

2 : Φ(0, u) = 0, Φ(i, u) = i− 1 for i = 1, . . . , N

if u > 1
2 : Φ(N, u) = N, Φ(i, u) = i+ 1 for i = 0, . . . , N − 1

(Note that with such a mapping, the chain only possibly coalesces in states 0 or N). It is the case that
this random mapping representation is monotone. So in this case, it sufficient to run the Propp-Wilson
algorithm from initial states 0 and N only. Of course, there are more interesting examples one might be
interested in! In the next paragraph we take up the Glauber dynamics for the Ising model.

1.4 Application to the Ising model

For the Ising model we can define an ordering on the state space which is preserved during the Glauber
dynamics (in a random mapping representation of this dynamics). We discuss here this interesting
application.

Recall the state space is the set of spin assignments (σ1, . . . , σN ) = σ with σv ∈ {−1,+1}. The partial
order is

σ � σ′ ⇔ σv ≤ σ′v
for all v = 1, . . . , N . In particular σmin = (−1, . . . ,−1) is the ”smaller” of all assignments and σmax =
(+1, . . . ,+1) is the ”larger” of all assignments.

We want the random mapping representation of the MCMC chain to preserve this ordering. This means

σ � σ′ ⇒ Φ(σ, U) � Φ(σ′, U).

for some appropriate random variable U . We say that such a mapping is monotone and that it leads to
a monotone CFTP.

Then in the monotone CFTP algorithm of Propp and Wilson all trajectories are sandwiched between
the trajectory emanating from σmin and σmax. Therefore to check coalescence it is enough to check for
coalescence for these two trajectories (instead of the 2N trajectories corresponding to all spin assignments).

Claim: The Glauber dynamics (or Gibbs sampler) for the Ising ferromagnetic model is monotone.

We check the claim. Recall the probability distribution (of Gibbs) is

π(σ) =
1

Z
exp(β

N∑
v,w=1

Jvwσvσw +

N∑
v=1

hvσv)

and the Gibbs sampler reduces to:

• Initialize at σ

• Select vertex v ∈ {1, . . . , N} uniformly at random.
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• Update σ → σ′ where σ′w = σw for w 6= v and σ′v = ±1 with probability

1

2
(1± tanh{

∑
w

βJvwσw + βhv}).

A random mapping representation of the update is σ′ = Φ(σ, U) where U = (v, u) where v is uniform
random in {1, . . . , N}, u is a uniform r.v over the real interval [0, 1], and

Φ(σ, U) =


σ′w = σw, w 6= v,

σ′v = +1, for 0 ≤ u ≤ 1
2 (1 + tanh{

∑
w βJvwσw + βhv}).

σ′v = −1, for 1
2 (1 + tanh{

∑
w βJvwσw + βhv}) < u ≤ 1.

This is in fact how you could implement a numerical simulation of this dynamics.

To check monotonicity we have to show that σ � τ ⇒ σ′ � τ ′. Select v and u. Certainly for w 6= v we
have σw ≤ τw ⇒ σ′w ≤ τ ′w since σw = σ′w and τw = τ ′w.

For w = v we proceed as follows. Note that the generated v is the same for the two states σ and τ . So
if 0 ≤ u < 1

2 (1 + tanh{
∑
w βJvwσw + βhv}) for Jvw > 0 (ferromagnetic model) then it is also true that

u ≤ 1
2 (1 + tanh{

∑
w βJvwτw +βhv}). Therefore we get σ′v = +1 and τ ′v = +1, i.e. σ′v ≤ τ ′v = +1. Finally

for 1
2 (1 + tanh{

∑
w βJvwσw + βhv}) < u ≤ 1 then σ′v = −1 so it is anyway true that σ′v ≤ τ ′v whatever

is the update τ ′.

This ends the check of the claim.
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