Frontiers in Chemical Synthesis I Stereochemistry

Seminar Program May 1, BCH 3118

	Speaker	Title
May 1, 2012 - Morning		
Session I: (Chairman: Sophie Racine)		
8h30-9h45	Yvan Buslov	Asymmetric Counteranion-Directed Cyclization Reactions
9h45-11h00	Ahlin Joachim Sven Ernst	Catalytic Enantioselective Isocyanide-Based Multicomponent Reactions
11h00-12h15	Ugo Orcel	Enantioselective Radical Reactions
May 1, 2012 - Afternoon		
Session II: (Chairman: Ugo Orcel)		
13h30-14h45	Sophie Racine	Enantioselective Synthesis of Beta-Lactams
14h45-16h00	Ha minh Tu	Catalytic Asymmetric Dearomatization Reactions
16h00-17h15	Michele Boghi	Synergism between Metals in Asymmetric Additions onto Carbonyl Compounds

Asymmetric counteraniondirected cyclization reactions

Ivan Buslov

Frontiers in Chemical Synthesis: Stereochemistry

École Polytechnique Fédérale de Lausanne

1 May 2013

Plan of the Talk:

Concept of ACDC

□ First publications employing ACDC principle

Development of ACDC (cyclization reactions)

Conclusion and perspectives

Questions

Definition of ACDC

"Asymmetric counteraniondirected catalysis (ACDC) refers to the induction of enantioselectivity in a reaction proceeding through a cationic intermediate by means of ion pairing with a chiral, enantiomerically pure anion provided by the catalyst "

Comparison with Chiral Cation PTC

Ambiguous Cases

Brønsted acid catalysis: stabilization by hydrogen bonds

Transition-metal catalysis: difference between ACDC and anionic ligands

Combination of chirality in both the cationic and anionic moities

M. Mahlau, B. List Angew. Chem. Int. Ed. 2013, 52, 518 – 533

Place of ACDC

E.N. Jacobsen, K. Brak Angew. Chem. Int. 2013, 52, 534-561

Advantages of ACDC

For the same reaction chiral secondary amine catalysis gave only moderate selectivity e.r. 70:30

S. Mayer, B. List, *Angew. Chem.* **2006**, 118, 4299 – 4301 S. G. Ouellet, J. B. Tuttle, D. W. C. MacMillan *J. Am. Chem. Soc.*, **2005**, 127, 32-33

Pioneering Work

Induction of Chirality

D.B. Llewellyn, D. Adamson, and B. A. Arndtsen Org.Lett. 2000, 26, 4165-4168

Akiyama's Work

T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, Angew. Chem. 2004, 116, 1592 – 1594

Terada's Work

D. Uraguchi, M. Terada, J. Am. Chem. Soc. 2004, 126, 5356 – 5357

Selected Publications

- Brønsted Acid Catalysis
- Transition-Metal Catalysis
- Chiral Anion PTC
- Anion-binding Thiourias
- Sequential Catalysis

Chiral Brønsted Acids

Chiral Brønsted Acid Catalyzed Cyclizations

J.Itoh, K.Fuchibe, and T. Akiyama Angew. Chem. 2006, 118, 4914 – 4916

Asymmetric Pictet-Spengler Reaction via Sulfenyliminium Ions

- Sulfenyl substituent stabilizes the intermediate iminium ion and favores Pictet–Spengler cyclization over undesired enamine formation
- Sulfenyl group is readily removable after the cyclization

M. J. Wanner, R. N. S. van der Haas, K. R. de Cuba, J. H. van Maarseveen, H. Hiemstra, Angew. Chem. 2007, 119, 7629 – 7631

Synthesis of Tetrahydropyridines and Azadecalinones

M. Rueping, A. P. Antonchick Angew. Chem. Int. Ed. 2008, 47, 5836 - 5838

Mechanism of Tetrahydropyridine Formation

M. Rueping, A. P. Antonchick Angew. Chem. Int. Ed. 2008, 47, 5836 - 5838

Allylic Alkylation Catalyzed by N-triflyl Phosphoramide

Enantioselective Spirocyclization by Imidodiphosphoric Acid

Transition-Metal Catalyzed Cyclizations

G. L. Hamilton, E. J. Kang, M. Mba, F. D. Toste, Science 2007, 317, 496 – 499

Complete Metal-Anion Separation

G. L. Hamilton, E. J. Kang, M. Mba, F. D. Toste, Science 2007, 317, 496 – 499

Synergistic Effect: Combination of Enantiopure BIPHEP-Gold Complexes and Chiral Anions

K. Aikawa, M. Kojima, K. Mikami, Adv. Synth. Catal. 2010, 352, 3131 – 3135

Carbocyclization of 1,6-Enynes by ACDC Strategy

Chiral Anion PTC

V. Rauniyar, A. D. Lackner, G. L. Hamilton, F. D. Toste, Science, 2011, 334, 1681 – 1684

Chiral Anion PTC

Y.-M. Wang, J. Wu, Ch. Hoong, V. Rauniyar, F. D. Toste J. Am. Chem. Soc. 2012, 134, 12928-12931

Anion-Binding Thioureas

The classification of anion-binding catalysis depends on the definition

ACDC

M. S. Taylor, E. N. Jacobsen, J. Am. Chem. Soc. 2004, 126, 10558 - 10559

Enantioselective Catalytic Acyl-Pictet-Spengler Reaction

M. S. Taylor, E. N. Jacobsen, J. Am. Chem. Soc. 2004, 126, 10558 - 10559

Consecutive Intramolecular Hydroamination/Asymmetric Transfer Hydrogenation

Z.-Y. Han, H. Xiao, X.-H. Chen, L.-Z. Gong, J. Am. Chem. Soc. 2009, 131, 9182 – 9183

Perspectives

 ACDC gives better or at least complementary results than more traditional methods

Combination with chiral cations seems to be very promising

Cooperative and sequential catalysis

Plethora of reactions proceeding through cationic intermediates

 Theoretic studies towards better understanding of reaction mechanisms will be essessitial for the progress

Questions

Why the reaction presented on the following slide cannot be regarded as ACDC?

Which types of reactions are going to be done by ACDC in the near future?

Enantioselective Robinson-Type Annulation Reaction

T. Akiyama, T.Katoh, and K. Mori Angew. Chem. Int. Ed. 2009, 48, 4226 –4228

Mechanistic Aspect

Proposed transition state

The phosphoric acid hydrogen atom activates the ketone group by acting as a Brønsted acid and thus promotes the formation of an enol from the ketone unit. Covalent bonding is significant during the selectivity-determining step and the reaction cannot be classified as ACDC case

Catalytic enantioselective isocyanidebased multicomponent reactions

Frontiers in Organic Chemistry Part III: Stereochemistry

- Question 1: Why is the approach for the introduction of chirality in IMCRs challenging?
- Question 2: In their catalytic enantioselective Passerini-type MCR leading to tetrazole derivatives, Zhu *et al.* eventually used the complex [(salen)Al^{III}Me] instead of [(salen)Al^{III}Cl]. Why? Can you think of a side reaction?

Table of Contents

- Introduction
- The Passerini MCR
- Catalytic enantioselective Passerini MCRs
- Catalytic enantioselective Passerini-type MCRs
- The Ugi MCR
- Catalytic enantioselective Ugi-type MCRs
- Conclusion and Outlooks

• <u>Definition</u>: Multicomponent Reactions (MCRs) are processes in which at least three starting compounds react in a single chemical step to afford products incorporating essentially all of the atoms of the reactants.

• MCRs should be distinguished from *domino*, *tandem*, *cascade*, *zipper* and *sequential component reactions*.

R. V. A. Orru *et al., Chem. Soc. Rev.* **2012**, *41*, 3969–4009. D. J. Ramon, M. Yus, *ACIE* **2005**, *44*, 1602–1634. J. Zhu, H. Bienaymé, *Multicomponent Reactions*, Wiley-VCH, Weinheim, 2005.

Introduction

- Classification of MCRs:
- MCRs based on nucleophilic addition to imines
 Strecker, Mannich, Biginelli, Petasis reaction
- Hantzsch MCR
- Isocyanide-based MCRs
 - Passerini, Ugi reaction
- Cycloaddition-based MCRs

Diels–Alder, Knoevenagel and 1,3-dipolar cycloaddition-based MCRs

• Michael addition-based MCRs

- Isocyanide reacts with both electrophiles and nucleophiles
- Readily availability of the isocyanides

Introduction

- Sterically hindered and α,β -unsaturated ketones do not react

M. Passerini, *Gazz. Chim. Ital.* 1922, *52*, 432–435.
R. H. Baker, D. Stanonis, *JACS* 1951, *73*, 699–702.
I. Ugi, R. Meyr, *Chem. Ber.* 1961, *94*, 2229–2233.
I. Ugi, *ACIE* 1962, *1*, 8–21.

Catalytic enantioselective Passerini MCR

"successful" enantioselective First Lewis acid-promoted • **Passerini MCR:** Me Me Ph Ph -Ph Ph⁻ CHO ÔH HÔ NC Ю Ti(OⁱPr)₄ Ĥ Me 0 Me Me THF, RT, 12 h 28%, 42% ee 76% without Lewis acid Ме Ме Me Me Ph Ph. Ph Ph Ph⁻ -Ph Ph Ph [/]PrO[^] [′]PrO[´] `O[/]Pr `OⁱPr Me Me Ar H Me Me A. Dömling et al., OL 2003, 5, 4021–4024. Joachim S. E. Ahlin 1st Mai 2013 15

• Application: consecutive P-3CR/intramolecular Diels-Alder

Catalytic enantioselective Passerini MCR

- Observed *S*-enantioselectivity: *Re*-face is attacked by the isocyanide.
- Structure of the acid influenced the enantioselectivity: carboxylic acid is involved in the C–C bond forming process.

J. Zhu, M.-X. Wang et al., ACIE 2008, 47, 388–391.

Catalytic enantioselective Passerini-type MCR

• First catalytic enantioselective Passerini-type reaction

Catalytic enantioselective Passerini-type ÉCOLE POLYTECHNIQUE **MCR** FÉDÉRALE DE LAUSANNE Concept: Lewis Base activation of Lewis acid • \succ Activation of a weak Lewis acid: a highly reactive and selective silvl cation is generated. Work-up + SiCl₄ $\xrightarrow{\text{Cat.}}$ $\xrightarrow{\text{OSiCl}_3}$ -78°C $\xrightarrow{\text{P}^1}$ Nu OH 0 Nu + ∐ OTBS SnBu₃ Nu = Me ^tBuNC addition protocol er **Challenges: Achiral Background reaction** ullet**One-portion** 90:10 Slow addition of the isocyanide Slow addition over 4 h >99:1 Use of catalytic amounts of a base S. E. Denmark, Y. Fan, JOC 2005, 70, 9667–9676. Joachim S. E. Ahlin 1st Mai 2013 21

Catalytic enantioselective Passerini-type MCR

• Observed *S*-enantioselectivity: *Re*-face is attacked by the isocyanide.

J. Zhu, M.-X. Wang *et al.*, *ACIE* **2008**, *47*, 9454–9457.

Catalytic enantioselective Ugi-type MCR

• Oxazole bear 3 basic nitrogen atoms. Competition with the imine? J. Zhu, M.-X. Wang et al., ACIE 2009, 48, 6717–6721.

Conclusion and Outlooks

- Main features of MCRs:
 - Convergent processes
 - Short one-pot syntheses
 - Formation of several bonds in one operation.
 - Simple experimental procedures / mild reaction conditions
 - Achievement of high molecular brevity, diversity and complexity is possible
 - Starting materials are commercially available or easy prepared.
- Last decade: disclosure of several catalytic enantioselective MCRs

First catalytic enantioselective Biginelli (Zhu, 2005), Petasis (Schaus, 2008), Hantzsch (Gestwicki, 2009), Passerini (Schreiber, 2004) MCRs reported.

A. Dömling, *Chem. Rev.* **2006**, *106*, 17–89. S. S. van Berkel *et al.*, *EJOC* **2012**, 3543–3559.

- Rapid access to new (chiral) compound libraries. => Diversityoriented synthesis (DOS)
- A universal approach for the introduction of chirality in IMCRs is desirable
- Development of new (asymmetric) IMCRs / Development of catalytic enantioselective α -addition of isocyanides to aldehydes
- Development of a catalytic enantioselective Ugi MCR
- Combination with continuous flow chemistry
- Application in polymeric chemistry

A. Dömling, *Chem. Rev.* 2006, 106, 17–89.
S. S. van Berkel *et al.*, *EJOC* 2012, 3543–3559.
M. D. Burke, S. L. Schreiber, *ACIE* 2004, 43, 46–58.

Thank you for your attention!

"Since in this condensation reaction four components react with each other, the number of possible products is quite high. Already the use of ten of each component leads to 10⁴ combinations" (translated from German).

IVAR UGI

I. Ugi, C. Steinbrückner, *Chem. Ber.* **1961**, *94*, 734–742. A. Dömling, *Chem. Rev.* **2006**, *106*, 17–89.

Catalytic enantioselective α -addition of isocyanides to aldehydes

Catalytic enantioselective Ugi-type MCR

• Determination of the absolute configuration:

- An asymmetric multicomponent reaction (AMCR) chiral or achiral reagents in a single vessel which have been added together (or nearly) to form stereoselectively a new chiral compound that contains portions of all the components, forming at least one new stereogenic element
- Challenges: Complexity of the reaction mechanism / background reaction / deactivation of the catalyst / catalyst turnover

Enantioselective Radical Reactions

Literature Talk Ugo Orcel May 2013

Outline

• Introduction to Radical Chemistry

• Chiral Lewis Acids

• Organocatalysis

Importance

- Powerful and versatile reactions
- Mild conditions
- Compatible with many functional groups
- Early Transition State enables prediction of stereochemistry outcome

- Challenging
 - Planar stucture
 - Fast reactivity

Reisman's Maoecrystal TS

Diastereoselective Sm^{II}-mediated reductive cascade cyclization reaction: 2 new rings and 4 stereocenters formed highly selectively

The Players

• Generation of Radicals: N=N M=N M=N $M=N_2$ N_2 M=2

AIBN

NC

non nucleophilic

or h_V

- Stoechiometric H• donors: Bu₃Sn-H, (Me₃Si)₃-H
- SET stoechiometric metals: Sm, Zn, Cu, Ag
- SET catalytic metals: Ru, Ir, Mn, Cu, V

Type and Reactivity of free radicals

Reverseal of Reactivity

Stabilization of Radicals

ED groups both stabilize the radical and increase the energy of the SOMO

Type and Reactivity of free radicals

Electron Withdrawing Group

ED groups both stabilize the radical and lower the energy of the SOMO

Divergent Properties

Nucleophilic radicals react faster with alkenes

 \rightarrow Early TS: SOMO-LUMO interaction

Ionic Nucleophiles react faster with alkynes

\rightarrow Late TS: rehybridization

Effect of Radical Acceptor's substituents

Reactivity of Alkyl Radicals

Reaction Type

- Atom transfer
 - Usually involve transfer of a Hydrogen or Halogen atom
 - Transfer of atom from a chain-transfer agent to a radical species to generate another radical

- Fragmentation
 - Usually: allylsilane and allylstannane
 - addition of radicals to a neutral molecule followed by β -elimination from the resulting radical generating an olefin

- Reductive alkylation
 - addition of radicals to carbon–carbon or carbon–heteroatom multiple bonds followed by trapping with a hydrogen atom source

Chiral Lewis Acid

- The complexing chiral group must be fixed relative to the prochiral center
- The chiral group must shield one face of the radical or alkene
- Reactivity of the complex must exceed reactivity of the free substrate

Common Metals: Mg, Zn, Al, Cu and lanthanides

Common ligands:

Cyclic Substrates

Enantioselective H transfer

Sato, J. Org. Chem. **1995**, 60, 3576 Murakata, Tetrahedron **1999**, 55, 10295.

Quaternary Center Formation - Fragmentation

-no rxn w/ galvinoxyl radical inhibitor

R	LA (equiv.)	Additive	Yield (%)	ee (%)
Me	1.0	none	72	27
Me	1.0	Et ₂ O	84	81
CH ₂ OMe	1.0	none	75	-10
CH ₂ OMe	1.0	Et ₂ O	85	82
CH ₂ OMe	1.0	<i>i</i> -Pr₂O	83	43
CH ₂ OBn	1.0	Et ₂ O	76	91
CH ₂ OBn	0.2	Et ₂ O	73	82
CH ₂ OBn	0.1	Et ₂ O	78	71

Ether additive influendes chiral sphere of catalyst.

Acyclic Substrate

Acyclic systems are tougher to control

Rotamer control in radical transformations is important for selectivity:

Achiral auxiliaries: control rotamers of acyclic substrates via 2-point binding

- Oxazolidinone templates
- s-cis favored due to A1,3 strain

Halogen Transfer Tandem Cyclization

Tandem addition-fragmentation

16

9

t-BuI

Cu(OTf)2

66^d

50:1

-83

Very good asymmetric induction have been achieved

Major limitations:

High catalyst loading

Bulky radicals

Achiral auxiliauries

Tin reagents

- Easy to handle
- Low cost
- Non toxic

N-H Bonding

T. Bach, Angew. Chem. Int. Ed., 2004, 43, 5849

N-H Bonding

Similar conditions

Chiral Bronsted Acid

Entry	RI	Product	Isolated Yield (%)	2a Yield (%)	er of 2 <i>R</i> : <i>S</i>	
1	<i>i</i> -Pr-I	2b	83	7	21 : 79	
2	c-Hex-I	2c	80	10	21:79	
3	t-Bu-l	2d	60	30	1:>99	Quinine, QP
4	1-Ad-I	2e	45	35	1:>99	
5	n-Oct-I	2f	50	25	40:60	

Chiral Bronsted Acid

Entry	RI	Product	Isolated Yield (%)	2a Yield (%)	er of 2 <i>R</i> : <i>S</i>
1	i-Pr-I	2b	82	10	62:38
2	c-Hex-I	2c	82	9	72:28
3	t-Bu-l	2d	62	27	>99 : 1
4	1-Ad-I	2e	47	37	>99:1
5	n-Oct-I	2f	48	30	58:42

Quinidine, QDP

Model

MacMillan SOMO Catalysis - Hypothesis

MacMillan, D.W.C. J. Am. Chem. Soc., 2007, 129, 7004

MacMillan SOMO Catalysis

MacMillan SOMO Catalysis

Scope - intermolecular

Scope - Intramolecular

MacMillan Photoredox Catalysis

Scope

Scope

Conclusion

- Formation of C-H, C-X, and C-C bonds is possible
- Enantioselective radical reactions mediated by chiral Lewis acids still suffer from large catalyst loading and the need for toxic tin reagents
- Organocatalysts have made a significant impact on enantioselective radical chemistry and a good fraction of them can be considered ecofriendly
- Many areas left to explore Introduction of more functional groups Use in total synthesis
Questions

• What brings MacMillan photoredox catalysis to SOMO catalysis ?

• What is the product?

Tandem Atom Transfer Cyclizations

Sets four stereocenters in one step with a single diastereomer observed

Enantioselective Synthesis of 1,2-Azetidinone

Sophie Racine

Laboratory of Catalysis and Organic Synthesis

http://isic.epfl.ch/lcso

Lausanne, May 1st.

Questions

- Using the **Sharma's** methodology what kind of side product can you obtained (using oxalyl chloride)?
- Which methodology is for you most relevant?

Azetidine-2-one = β -Lactams

Azetidinone

Penicillin

R = Bn penicillin G = CH₂OPh penicillin V

Alexander Fleming, 1928 Nobel Prize 1945 (medicine)

ightarrow Penicillin's discovery

Penicillium mold <u>vs</u> *Staphylococcus Aureus*

Mode of Action

Bacteria cell wall

• Peptidoglycans cross-linkage

Silverman, R. B. Medizinische Chemie für Organiker, Biochemiker und pharmazeutische Chemiker; VCH: Weinheim [u.a.], 1995.

β-Lactams Classification

β-Lactams in numbers

- Sales in 2000, \$15 bilions (antifungal and antiviral ± 3 billions)
 - \$9.9 billions cephalosporin
 - \$5 billions penicillin
- 50 marketed cephalosporins
- **33,000 tons/year** (1960s 6,600 tons)
- Up to 400,000 liters batch
- \$10-20/kg (1960s \$300/kg)

TABLE WO-1 Burden of Multidrug-Resistant (MDR) Bacteria in theEuropean Union, Iceland, and Norway, 2007

Human burden	
Infections (6 most frequent MDR bacteria, 4 main types of infection)	~400,000/year
Attributable deaths	~25,000/year
Extra hospital days	~2.5 million/year
Economic burden	
Extra in-hospital costs	~€900 million/year
Productivity losses	~€600 million/year

NOTE: Limitation: these are underestimates. SOURCE: ECDC and EMEA (2009).

First Synthesis of Azetidinone

• 1905 Ketene isolation & identification ⁽¹⁾

• 1907 Azetidinone synthesis ⁽²⁾

H. Staudinger, 1881-1965, ETHZ 1953 Nobel prize ⁽³⁾

- Relative stereoselectivity was observed.
- Trans-product favored
- With cyclic imines Cis-product was exclusively isolated

(1) Staudinger, H. *Ber. Dtsch. Chem. Ges.* 1905, *38*, 1735 - 1739. (2) Staudinger, H. *Justus Liebigs Ann. Chem.* 1907, *356*, 51-123. (2) Tidwell, T. T. *Angewandte Chemie International Edition* 2008, *47*, 1016–1020.

Hegedus et al. 1991

Staudinger Reaction Mechanism

• Xu et al. 2006

Hegedus, L. S.; Montgomery, J.; Narukawa, Y.; Snustad, D. C. *Journal of the American Chemical Society* 1991, *113*, 5784–5791.
Jiao, L.; Liang, Y.; Xu, J. *Journal of the American Chemical Society* 2006, *128*, 6060–6069.

Staudinger Reaction Studies (Xu et al.)

Asymmetric Synthesis of azetidinone

- Chiral auxiliary based systems (Evans ^(a), Wagle ^(b))
- Doyle's rhodium-catalyzed C-H insertion into diazoacetamides.^(c)
- Alper's rhodium-catalyzed ring expansion-carbonylation of aziridines^(d)
- Tomioka's amine-catalyzed condensation of ester enolates and imines ^(e)
- Catalyzed Staudinger reaction
- Kinugasa reaction
- Aziridine enlargement

(a) Evans, D. A.; Sjogren, E. B. Tetrahedron Lett.1985, 26, 3783-3786. (b) Bose, A. K.; Manhas, M. S.; van der Veen, J. M.; Bari, S. S.; Wagle, D. R. *Tetrahedron*, 1992, 48, 4831-4844. (c) Doyle, M. P.; Kalinin, A. V. *Synlett*, 1995, 10, 1075-1076. (d) Calet, S.; Urso, F.; Alper, H. *J. Am. Chem. Soc.* 1989, 111, 931-934. (e) Fujieda, H.; Kanai, M.; Kambara, T.; Iida, A.; Tomioka, K. A. *J. Am. Chem. Soc.* 1997, 119, 2060-2061

Staudinger Ümpolung General Mechanism

Staudinger Reaction between Zwitterionic Enolates and Imines (Lectka et al.)

Lectka et al. strategy

BQ

Bifunctional Lewis Acid-Nucleophile-Based Asymmetric Catalysis


```
MLn = In(OTf)_3
```

Lectka et al. 2003-2005

- (1) France, S.; Shah, M. H.; Weatherwax, A.; Wack, H.; Roth, J. P.; Lectka, T. Journal of the American Chemical Society 2005, 127, 1206-1215.
- (2) Taggi, A. E.; Hafez, A. M.; Lectka, T. Accounts of Chemical Research 2003, 36, 10–19.

Staudinger Reaction between Zwitterionic Enolates and Imines Mechanism

• Lectka et al. 2005

(1) France, S.; Shah, M. H.; Weatherwax, A.; Wack, H.; Roth, J. P.; Lectka, T. Journal of the American Chemical Society 2005, 127, 1206–13 1215.

Solid Phase Synthesis of Azetidinone via Zwitterionic Enolates

(1) Hafez, A. M.; Taggi, A. E.; Wack, H.; Drury, W. J.; Lectka, T. Organic Letters 2000, 2, 3963–3965.

Staudinger Reaction for α,α- disubstituted Azetidinone Synthesis

• Fu et al. 2005, First Trans selective α-disubstuted Azetidinone

Staudinger Reaction for a,a- disubstituted Azetidinone Mechanism (Fu et al.)

Lee, E. C.; Hodous, B. L.; Bergin, E.; Shih, C.; Fu, G. C. Journal of the American Chemical Society 2005, 127, 11586–11587.

Staudinger NHC Catalyzed Reaction for α,αdisubstituted Azetidinone Synthesis

• Ye et al. 2008

13 entries 75:25-99:1 d.r. 91-99% e.e. 58-75% yield

Zhang, Y.-R.; He, L.; Wu, X.; Shao, P.-L.; Ye, S. Organic Letters 2008, 10, 277–280.

Copper(I) Phenylacetylide with Nitrones (Kinugasa reaction)

• Kinugasa et Hashimoto, 1972

Only one enantiomer is drawn

Mechanism

(1) Kinugasa, M.; Hashimoto, S. Journal of the Chemical Society, Chemical Communications 1972, 466.

Kinugasa reaction

• Miura et al. 1995 First catalytic asymmetric Kinugasa reaction

(1) Miura, M.; Enna, M.; Okuro, K.; Nomura, M. *The Journal of Organic Chemistry* 1995, *60*, 4999–5004 (2) Lo, M. M.-C.; Fu, G. C. *Journal of the American Chemical Society* 2002, *124*, 4572–4573.

Intramolecular Kinugasa

• Fu et al., 2003

Kinugasa's Reaction

• Evans et al., 2007

• Tang et al., 2012

20 entries >70:30 d.r. >88% e.e. 34-98% yield

TOX

18 entries

>90:10 d.r.

>86% e.e.

41-72% yield

- (1) Asymmetric synthesis: the essentials; Wiley-VCH: Weinheim, 2007.
- (2) Chen, J.-H.; Liao, S.-H.; Sun, X.-L.; Shen, Q.; Tang, Y. Tetrahedron 2012, 68, 5042-5045

Kinugasa's Reaction (Chen et al.) Access to Trans-Azetidinone

Chen et al., 2013 Trans-azetidinone

Entry^[a]

Entry^[a]

2

3

5

2

3

4 8^[d]

1

2

3

(1) Chen, Z.; Lin, L.; Wang, M.; Liu, X.; Feng, X. Chemistry - A European Journal 2013.

Ring Expension from Aziridine

• Firstly described by Deyrup and Clough 1969

• Sharma et al. 2006

Deyrup, J. A.; Clough, S. C. *Journal of the American Chemical Society* 1969, *91*, 4590–4591.
Sharma, S. D.; Kanwar, S.; Rajpoot, S. *Journal of Heterocyclic Chemistry* 2006, *43*, 11–19.

Ring Expension from Aziridine (Wulff et al.)

• Wulff et al. 2013

- 		VANOL or VAPOL catalyst F		
N-substituents (P) ^[a]	Aziri- dine	Ligand	Average yield [%]	Average ee [%] ^[b]
(R)-α-methylbenzyl	cis	VAPOL	70 ^[c,d]	100 (≥87)
	cis	VANOL	72 ^[c,e]	$100 (\geq 90)$
	trans ^[f]	VAPOL	74	100 (≥90)
	trans ^[f]	VANOL	75	100 (≥90)
benzhydryl	cis	VAPOL	70	88
	cis	VANOL	77	88
DAM	cis	VAPOL	73	88
	cis	VANOL	78	85
BUDAM	cis	VAPOL	88	95
	cis	VANOL	90	94
MEDAM	cis	VAPOL	92	97
	cis	VANOL	91	96

(1) Huang, L.; Zhao, W.; Staples, R. J.; Wulff, W. D. *Chemical Science* 2013, *4*, 622.
(2) Huang, L.; Zhang, Y.; Staples, R. J.; Huang, R. H.; Wulff, W. D. *Chemistry - A European Journal* 2012, *18*, 5302–5313

Ring Expension from Aziridine (Wulff et al.)

Mechanism

• Further functionalization

Conclusions

- *Cis*-trisubstituted Azetidinone, enantioselectively obtained with;
 - Lectka et al. (bifunctional catalysis In(OTf)3 + Benzoylquinine) Staudinger
 - Fu et al. (planar-chiral bis(azaferrocene) + Cu(I)) Kinugasa
 - Evans et al. (bisoxazoline/Cu(II)) Kinugasa
 - Tang et al. (trisoxazoline/Cu(I)) Kinugasa
- *Trans*-trisubstituted Azetidinone, enantioselectively obtained with;
 - Cheng et al. (chiral secondary diamine/Cu(II)) Kinugasa
- *Cis*-tetrasubstituted Azetidinone, enantioselectively obtained with;
 - Fu et al. (PPY-ferrocene) Staudinger
- Trans-tetrasubstituted Azetidinone, enantioselectively obtained with;
 - Fu et al. (PPY-ferrocene) Staudinger
 - Ye et al. (NHC) Staudinger
- *Cis*-trisubstituted and halogenated Azetidinone, enantioselectively obtained with;
 - Wulff et al. From azetidine enlargement

THANK YOU FOR YOUR ATTENTION

J. Y. Pfeiffer A. M. Beauchemin, *J. Org. Chem.*, **2009**, *74*, 8381-8383. J. Moran, J. Y. Pfeiffer, S. I. Gorelsky, A. M. Beauchemin, *Org. Lett.*, **2009**, *11*, 1895-1898.

Catalytic Asymmetric Dearomatization Reactions

HA Minh Tu

Frontiers in Chemical Synthesis III: *Stereochemistry* (Prof. Jérôme Waser, Prof. Xile Hu)

Questions

1. This transformation was optimized to formation of oxidone

In certain conditions, there is another product, which is that?

2. In the oxidation protocol of 2-aryl-3-alkylindol by H2O2 catalyzed by chiral peptide (Movassaghi and Miller's work), aspartic residue is crucial factor. Can you suggest the intermediate and mechanism for this reaction?

Outline

Introduction

Catalytic methods for asymmetric dearomatization

Dearomatization by Oxidative reactions

Dearomatization by Diels-Alder and related reactions

Transition-Metal-Catalyzed reactions

Dearomatization by Cascade sequences

Nucleophilic dearomatization of electron-deficient aromatic rings

Stepwise strategy

Hydrogenation

Conclusion

Introduction

Catalytic Asymmetric Dearomatization Reactions are interesting...

- Product variety of ring systems
- Possible to form complex and unique structures
- Abundant of starting materials (aromatic rings)

Limitation

- Racemic product or low enantioselectivity
- Harsh conditions required
Introduction

Some pioneers in this field

- John A. Porco Jr: Total synthesis using asymmetric dearomatization reactions
- Shu-Li You: Construct polycyclic scaffolds with quaternary centers and total synthesis by asymmetric dearomatization reactions
- Stéphane Quideau: hypervalent iodine-based methodologies for oxidative dearomatization

S. P. Roche, and J. A. Porco Jr., *Angew. Chem. Int. Ed*, **2011**, 50, 4068
W. Zhang, C.-X. Zhuo, S. –L. You, *Angew. Chem. Int. Ed*, **2012**, 51, 12662
L. Pouységu, D. Deffieux, S. Quideau, *Synlett*, **2008**, 4, 467

Compatible with: electron-rich arenes: phenols, indoles, pyroles Oxidant: hypervalent iodine compounds, transition metal catalyst

T. Dohi, A. Maruyama, N. Takenaga, K. Senami, S. Caemmerer and Y. Kita, *Angew. Chem. Int. Ed*, **2008**, 47, 3787 J. Boppisetti and V. Birman, *Org. Lett.*, **2009**, 11, 1221

G. Lyvinec, M. Marguerit, K. Bathany, A. Chénedé, S. Quideau, *Angew. Chem. Int. Ed*, **2009**, 48, 4605 M. Uyanik, T. Yasui, and K. Ishihara, *Org. Lett.*, **2010**, 49, 2175

J. Liang, S-X. Yuan, P. W. Hong, Chi-Ming Che, *Tetrahedron Letters*, **2003**, 44, 5917

S. Sato, M. Shibuya, N. Kanoh, Y. Iwabuchi, Chem. Comm., 2009, 6264

J. Mulcaphy, J. Du Bois, JACS, **2008**, 130, 12630

S. Omura et al., *Tetrahedron Letters*, **2000**, 46, 1459 and *JACS*, **2000**, 122, 2122 J. Zhu, A. Germain, and J. A. Porco Jr., *Angew. Chem. Int. Ed.*, **2004**, 43, 1239

J. Zhu, N. Grigoriadis, J. P. Lee, and J. A. Porco Jr., *JACS*, **2005**, 127, 9342 A. Germain, D. Bruggemeyer, J. Zhu, C. Genet, P. O' Brien, and A. Porco Jr., *JOC*, **2011**, 76, 2577

M. Schmidt, J. A. Ashenhurst, M. Movassaghi, *Org. Lett*, **2008**, 18, 4009 F. Kolundzic, M. Noshi, M. Tjanda, M. Movassaghi, and S. J. Miller, *JACS*, **2011**, 133, 9104

Dearomatization by Diels-Alder and Related reactions

C. Gioia, A. Hauville, L. Bernardi, F. Fini, and A. Ricci, Angew. Chem. Int. Ed, 2008, 47, 9236

B. Tan, G. Hernández-Torres, and C. F. Barbas, JACS, 2011, 133, 12354

K. Shibatomi, K. Futatsugi, F. Kobayashi, S. Iwasa, and H. Yamamoto, JACS, 2010, 132, 5625

Dearomatization by Diels-Alder and Related reactions

S. Ghosh, X. Hong, S. Wacharasindhu, P. Kirchhoefer, and M. Harmata, *JACS*, **2003**, 125, 2058 B-F. Sun, C-L. Wang, R. Ding, J-Y. Xu, G-Q. Lin, *Tetrahedron Lett.*, **2011**, 52, 2155

Dearomatization by Diels-Alder and Related reactions

R. P. Reddy, H. M. Davies, *JACS*, **2007**, 129, 10312, and *JOC*, **1997**, 62, 1095 N. Shimada, T. Oohara, J. Krishnamurthi, H. Nambu, and S. Hashimoto, *Org. Lett.*, **2011**, 13, 6284

L. Repka, J. Ni, and S. E. Reisman, *JACS*, **2010**, 132, 14418

E. Linton, M. C. Kozlowski, JACS, 2008, 130, 16163 and Angew. Chem. Int. Ed., 2012, 51, 2448

Transition-Metal-Catalyzed Dearomatization Reactions

R. Mukai, M. Futamata, S. Tanaka, Y. Tamaru, and M. Kimura, *JACS*, **2005**, 127, 4592 J. Quancard, B. M. Trost, *JACS*, **2006**, 128, 6314

Transition-Metal-Catalyzed Dearomatization Reactions

Q-F. Wu, H. He, W-B. Liu, S-L. You, *JACS*, **2010**, 132, 11418 and *Angew. Chem. Int. Ed*, **2011**, , 50, 4455 T. Nemoto, Y. Ishige, M. Yoshida, Y. Kohno, M. Kanematsu, and Y. Hamada, *Org. Lett.*, **2010**, 12, 5020

Transition-Metal-Catalyzed Dearomatization Reactions

J. Garcia-Fortanet, F. Kessler and S. L. Buchwald, JACS, 2009, 131, 6676

S. Rousseaux, J. Garcia-Fortanet, M. A. Del Aguila Sanchez, and S. L. Buchwald, JACS, 2011, 132, 9282

Cascade Asymmetric Dearomatization Sequences

J. F. Austin, S.-G. Kim, C. J. Sinz, W.-J. Xiao, D. W. C. MacMillan, *Proc. Natl. Acad. Sci. USA* **2004**, 101, 5482–5487 S. B. Jones, B. Simmons, D. W. C. MacMillan, *J. Am. Chem. Soc.* **2009**, 131, 13606–13607

Cascade Asymmetric Dearomatization Sequences

Michael/Manich cyclization cascade

Cascade Asymmetric Dearomatization Sequences

O. Lozano, G. Blessley, T. M. del Campo, A. Thompson, R. Borman, V. Gouverneur, Angew. Chem. Int. Ed, **2011**, 50, 8255 S. Zhu, D. W. C. MacMillan, *J. Am. Chem. Soc.* **2012**, 134, 10815–10818.

Electron-Deficient aromatic rings need to be activated

M. Takamura, K. Funabashi, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. **2000**, 122, 6327–6328; J. Boppisetti and V. E. Ichikawa, M. Suzuki, K. Yabu, M. Albert, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. **2004**, 126, 11808–11809

M. S. Taylor, N. Tokunaga, E. N. Jacobsen, *Angew. Chem. Int. Ed.* **2005**, 44, 6700–6704 K. Frisch, A. Landa, S. Saaby, K. A. Jørgensen, *Angew. Chem. Int. Ed.* **2005**, 44, 6058–6063 Y. Yamaoka. H. Mivabe. Y. Takemoto. *J. Am. Chem. Soc.* **2007**. 129. 6686–6687.

M. Á. Fernández, B. Maciá, M. G. Pizzuti, A. J. Minnaard, B. L. Feringa, *Angew. Chem. Int. Ed.* **2009**, 48, 9339–9341. C. Nadeau, S. Aly, K. Belyk, *J. Am. Chem. Soc.* **2011**, 133, 2878–2880.

Stepwise strategy: Dearomatization/Asymmetric Catalysis

M. Breuning, E. J. Corey, Org. Lett. 2001, 3, 1559–1562.
R. Imbos, A. J. Minnaard, B. L. Feringa, J. Am. Chem. Soc. 2002, 124, 184–185
O. Liu. T. Rovis. J. Am. Chem. Soc. 2006. 128. 2552–2553:

Stepwise strategy: Dearomatization/Asymmetric Catalysis

N. T. Vo, R. D. M. Pace, F. O'Hara, M. J. Gaunt, *J. Am. Chem. Soc.* **2008**, 130, 404–405 R. Leon, A. Jawalekar, T. Redert, M. J. Gaunt, *Chem. Sci.* **2011**, 2, 1487–1490 M.-O. Jia. S.-L. You. *Chem. Commun.* **2012**. 48. 6363–6365.

Stepwise strategy: Dearomatization/Asymmetric Catalysis

Q. Gu, Z.-Q. Rong, C. Zheng, S.-L. You, J. Am. Chem. Soc. 2010, 132, 4056–4057 and Chem. Sci. 2011, 2, 1519–1522;

Conclusion

- One of the most efficient methods
- Great potential as a practical application in synthesis of natural products

However...

- Limited to electron-rich aromatic rings
- Activation is necessary for electron-poor aromatic rings
- Simples arenes are not compatible

THANK YOU FOR YOUR ATTENTION

Frontiers in Chemical Synthesis III: Stereochemistry

Synergism between metals in asymmetric additions onto carbonyl compounds

Michele Boyhi 2013

Outline

Introduction

- Dual Activation (electrophile/nucleophile)
- Cooperative Bimetallic system
- Types of bimetallic asymmetric catalysts
 - Classification
 - Relevant examples

Catalytic Asymmetric Alkylation of Carbonyl Compounds

- Noyori
- Kozlowski
- Shibasaki
- Catalytic Asymmetric Aldol, Mannich-type, 1,4-Addition Reactions
 - Trost
 - Shibasaki

Borane-Mediated asymmetric **reduction** of carbonyl compounds (CBS reduction): excellent example of **dual activation**

• BH₃ activated by the *N*-**Lewis Base** of the oxazaborilidine

• Carbonyl activated by the *B*-Lewis Acid

• Minimization of the the steric interactions between the R^L of the ketone and the R-oxazaborilidine via a 6-membered TS

• High chemo- and **stereo**- selectivity

Scheme 1. Proposed mechanism for the CBS reduction of ketones. R = H, *n*-alkyl, allyl, aryl, 3-phenylpropyl, cyclohexyl, β -branched substituents with or without stereogenic centers, trialkylsilyl methyl.

The dual activation occurs at positions controlled by an asymmetric environment, and so nucleophiles react with electrophiles from a defined direction, resulting in high enantioselectivity.

¹⁾ Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C. P.; Singh, V. K. *J. Am. Chem. Soc.* **1987**,109,7925-7926. (2) Corey, E. J.; Helal, C. J. *Angew. Chem., Int. Ed.* **1998**, 37, 1987-2012.

Cooperative Bimetallic Catalysis

Introduction

Conventional metal-based catalysts consist of a **single metal center** equipped with proper chiral ligands.

Synergistic, cooperative activation through multiple metal centers can be often found in enzyme biocataysts.¹ Exceptional effiency and selectivity can be obtained by holding two reaction partners in optimal geometry through non-covalent bonding inetractions.^{2,3}

Single activation of one reactant

is generally attributed to the observed catalytic activity

Simultaneously activation of multiple reacting species.

Pioneering work (Kumada): Asymmetric palladium catalyzed allylic alkylation of 1,3-diketone⁴

Additional chelation control unit, in the proper distance, of the nucleophile through the **alkali metal cation**.

Proposed mechanism

(1) E. K. van den Beuken and B. L. Feringa, *Tetrahedron*, **1998**, *54*, 12985–13011. (2) G. J. Rowlands, *Tetrahedron*, **2001**, *57*, 1865–1882. (3) J.-A. Ma and D. Cahard, *Angew. Chem., Int. Ed.*, **2004**, *43*, 4566–4583. (4) T. Hayashi, K. Kanehira, H. Tsuchiya and M. Kumada, *Chem. Commun.*, **1982**, 1162–1164

Classification

Types of bimetallic catalysts

Metals used in bimetallic catalysis:

- Alkali metals
- Transition metals
- Lanthanides

The key to success for efficient catalysis is probably the **proper arrangement** of those metals in **close proximity** (3.5 - 6 A)

From a **mechanistic** point of view, **one metal** plays a role as a **Lewis acid** for activating **electrophiles**, while the **other metal ion** serves as the **counterion** of **nucleophiles**.

From a **structural** point of view cooperative bimetallic catalysts can be classified into several **different types**.

In **Type 5-8 two separate metal species** are involved in dual activation of both reaction partners.

Single-framed bimetallic systems (Types 1 and 2): two

metal centers are embedded in a single chiral ligand unit through direct complexation (type 1) or coordiantion of a basic site (type 2). Each metal activates different reactants (Nu/E).

Pd-catalyzed asymmetric allylation of β -diketone enolates with the aid of a **chiral phospane ligand tethered to an azacrown ether.**

Types 3 and 4

Type 4 bimetallic catalysts activate **one reactant by one metal**, however the other metal stabilizes the reacting metal through **metal-metal redox** cooperation.²

1) Pd(OAc)₂, MeOH

2) PhICl₂, DCM, -30°C

81%

Reductive elimination from a dinuclear core with synergistic, bimetallic redox partecipation of both metals.

23 °C

CH₂Cl₂

Types 3 and 4 approaches developped for non-chiral transformation, there is no reported example of asymmetric reactions.

(1) T. Ooi, M. Takahashi, M. Yamada, E. Tayama, K. Omoto and K. Maruoka, *J. Am. Chem. Soc.*, **2004**, *126*, 1150–1160. (2) D. C. Powers, D. Benitez, E. Tkatchouk, W. A. Goddard III and T. Ritter, *J. Am. Chem. Soc.*, **2010**, *132*, 14092–14103

R

Type 4

Pd(II)

3

94%

Type 5

8

Separate bimetallic systems (Type 5): two metallic species are simultaneously involved in an enantioselective reaction. Identical or different metal species activate both nucleophile and electrophile.

(Salen)Cr(III) complexes catalyze asymmetric ring opening of mesoepoxide with TMSN₃ with high yield and enantioselectivity. Kinetic studies revealed the second-order rate dependence on a catalyst and significant **non-linear effects** were observed.

1b actual catalytic specie Na 1b•L HN_3 ťΒu 1a: X = CI (2 mol%) 1b: X = N₂ N₃ Et₂O or TBME TMSO $Y = CH_2$, CHR, CH₂-CH₂, CH=CH, N-R, O, C=O 2. 83-98% ee Bimetallic mechanism where two 1b•L

distinct Cr catalyst are involved.

Type 5

(1) Martinez, L. E.; Leighton, J. L.; Carsten, D. H.; Jacobsen, E. N. J. Am. Chem. Soc. 1995,117, 5897-5898. (2) Hansen K. B.; Leighton, J. L.; Jacobsen, E. N. J. Am. Chem. Soc. 1996, 118,10924-10925. (3) Konsler, R. G.; Karl, J.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120,10780-10781.

(salen)Co(III) catalyst for hydrolytic kinetic resolution (HKR) of racemic epoxide with high selectivity factors $(k_{rel} = k_{fast} / k_{slow})$. $R \xrightarrow{O}_{(\pm)} + H_{2O} \xrightarrow{(salen)Co(III)}_{neat or THF} \xrightarrow{O}_{R} + \underset{R}{O}_{R} + \underset{H_{2}}{O}_{R} + \underset{H_{2}}{O}_{R}$

Type 5

Second-order dependence on **cobalt** concentration suggests that two metal centers are involved in the rate-limitig TS. Dual activation mechanism: epoxide activated by one (salen)metal unit and cobalt hydroxide specie delivered by a second catalyst unit.

1) Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. *Science* **1997**,*277*,936-938. (2) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. *Am. Chem. Soc.* **2002**, 124,1307-1315.(3) Nielsen, L. P. C.; Stevenson, C. P.; Blackmond, D. G.; Jacobsen, E. N. *J. Am. Chem. Soc.* **2004**, 126,1360-1362.
Catalytic asymmetric conjugate addition reactions of cyanides to α,β -unsaturated imides.

Type 5

Homobimetallic patway: both cyanide and imide activated by (salen)AlCl

Type 5

Combination of μ -oxo dimeric (salen)Aldimer (to activate the imide) and (pybox)ErCl₃ (to activate the cyanide) improves the catalytic system (dual activation). (salen)Al(μ -oxo)dimer alone can't activate the cyanide.

Type 5

La-Ag heterobimetallic catalyst for asymmetric Conia-ene reactions. Cooperative activation by the hard Lewis acid and the Sof lewis acid crucial for reactivity and selectivity.²

(1) Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 17168-17169. (2) A. Matsuzawa, T. Mashiko, N. Kumagai and M. Shibasaki, Angew. Chem., Int. Ed., 2011, 50, 7616–7619.

Bridged bimetallic systems: In type 6 two chiral metallic units are connected by μ -oxo or halide bridges.

TMSCN addition to carbonyl compounds via bimetallic activation: the bridge μ -oxo titanium species is the actual precatalyst (simultaneously activates both the carbonyl and the TMSCN).

Y. N. Belokon', S. Caveda-Cepas, B. Green, N. S. Ikonnikov, V. N. Khrustalev, V. S. Larichev, M. A. Moscalenko, M. North, C. Orizu, V. I. Tararov, M. Tasinazzo, G. I. Timofeeva and L. V. Yashkina, *J. Am. Chem. Soc.*, **1999**, *121*, 3968–3973.

Type 6

Highly enantioselective additon of azide to *meso*-epoxide in the presence of chiral zirconium complex.

Type 6

(1) W. A. Nugent, J. Am. Chem. Soc., **1992**, 114, 2768–2769. (2) B. W. McCleland, W. A. Nugent and M. G. Finn, J. Org. Chem., **1998**, 63, 13 6656–6666

14

Type 7

(1) R. G. Konsler, J. Karl and E. N. Jacobsen, *J. Am. Chem. Soc.*, **1998**, *120*, 10780–10781. (2) C. Mazet and E. N. Jacobsen, *Angew. Chem., Int. Ed.*, **2008**, *47*, 1762–1765

<u>Tethered bimetallic systems (supramolecular approach):</u> In type 8

two catalytic units are linked through a reversible metal-coordination or non-covalent bonding interaction such as hydrogen bonding.

Reversible nature supramolecular catalyst \rightarrow allosteric regulation

Type 8

Types of bimetallic catalysts

Type 8

(noncovalent

J. Park, K. Lang, K. A. Abboud and S. Hong, *J. Am. Chem. Soc.*, **2008**, *130*, 16484–16485

Types of bimetallic catalysts

Chiral homodimeric bimetallic system which can be **self-assembled** through self-complementary **hydrogen bonding** interactions.

This catalyst displays superior reactivity and selectivity in the asymmetric Henry reaction compared to the simple unfunctionalized (salen)Co catalyst.

Simple monomeric (salen)Co cat: 11% yield, 55% ee

Structure confirmed by X-ray analysis and ¹H-NMR studies kinetic 2° order

Type 8

(noncovalent tether) <u>Catalytic asymmetric alkylation of carbonyls compounds</u>: First example of highly enantioselective alkylation of aldehydes with Et_2Zn , catalyzed by (-)-DAIB.

Bimetallic TS \rightarrow high catalytic activity and excellent enantioselectivity

(1) M. Kitamura, S. Suga, K. Kawai and R. Noyori, *J. Am. Chem. Soc.*, **1986**, *108*, 6071–6072; (2) Kitamura, M.; Suga, S.; Oka, H.; Noyori, R. J. Am. Chem. Soc. **1998**, *120*, 9800-9809; (3) Rasmussen, T.; Norrby, P. O. *J. Am. Chem. Soc.* **2003**, *125*, 5130-5138.

Noyori

Catalytic asymmetric alkylation of carbonyls compounds

(1) M. Kitamura, S. Suga, K. Kawai and R. Noyori, *J. Am. Chem. Soc.*, **1986**, *108*, 6071–6072; (2) Kitamura, M.; Suga, S.; Oka, H.; Noyori, R. J. Am. Chem. Soc. **1998**, *120*, 9800-9809; (3) Rasmussen, T.; Norrby, P. O. *J. Am. Chem. Soc.* **2003**, *125*, 5130-5138.

Noyori

Alkylation of Carbonyls

Catalytic asymmetric alkylation of carbonyls compounds:

(1) M. Kitamura, S. Suga, K. Kawai and R. Noyori, *J. Am. Chem. Soc.*, **1986**, *108*, 6071–6072; (2) Kitamura, M.; Suga, S.; Oka, H.; Noyori, R. 19 J. Am. Chem. Soc. **1998**, *120*, 9800-9809; (3) Rasmussen, T.; Norrby, P. O. *J. Am. Chem. Soc.* **2003**, *125*, 5130-5138.

Kozlowski

Lewis acid/base bifunctional salen catalyst for highly efficient enantioselective addition of Et_2Zn to aldehydes.

(1) E. F. DiMauro, M. C. Kozlowski, Org. Lett. 2001, 3, 3053 – 3056; (2) E. F. DiMauro, M. C. Kozlowski, J. Am. Chem. Soc. 2002, 124, 12668 – 12669; (3) E. F. DiMauro, M. C. Kozlowski, Org. Lett. 2002, 4, 3781 – 3784.

Kozlowski

Alkylation of Carbonyls

First enantioselective addition of Et_2Zn to α -ketoesters by using bifunctional salen catalyst.

Issues addressed with α -ketoesters : catalyst must accelerate the addition faster than uncatalyzed racemic addition and reduction.

(1) E. F. DiMauro, M. C. Kozlowski, *Org. Lett.* **2001**, *3*, 3053 – 3056; (2) E. F. DiMauro, M. C. Kozlowski, *J. Am. Chem. Soc.* **2002**, *124*, 12668 – 12669; (3) E. F. DiMauro, M. C. Kozlowski, *Org. Lett.* **2002**, *4*, 3781 – 3784.

Shibasaki

Alkylation of Carbonyls

Proline-derived ligand for enantioselective addition of Me_2Zn to α -ketoesters.

Dinuclear Zinc catalyst (chiral ProPhenol/Zn) for enantioselective direct aldol reactions

(1) B. M. Trost, H. Ito, J. Am. Chem. Soc. 2000, 122, 12003–12004; (2) B. M. Trost, H. Ito, E. R. Silcoff, J. Am. Chem. Soc. 2001, 123, 3367–3368; (3) B. M. Trost, V. S. C. Yeh, Angew. Chem. 2002, 114, 889-891; (4) Angew. Chem. Int. Ed. 2002, 41, 861 – 863; (5) B. M. Trost, V. S. C. Yeh, H. Ito, N. Bremeyer, Org. Lett. 2002, 4, 2621 – 2623.

Trost

Dinuclear Zinc catalyst (chiral ProPhenol/Zn) for enantioselective direct aldol and nitro-aldol.

1) B. M. Trost, H. Ito, *J. Am. Chem. Soc.* **2000**, *122*, 12003–12004; (2) B. M. Trost, H. Ito, E. R. Silcoff, *J. Am. Chem. Soc.* **2001**, *123*, 3367–3368; (3) B. M. Trost, V. S. C. Yeh, *Angew. Chem.* **2002**, *114*, 889-891; (4) *Angew. Chem. Int. Ed.* **2002**, *41*, 861 – 863; (5) B. M. Trost, V. S. C. Yeh, H. Ito, N. Bremeyer, Org. Lett. **2002**, *4*, 2621 – 2623.

Trost

Dinuclear Zinc catalyze Asymmetric Alkynylation of aldehydes

Trost

BINOL-based heterobimetallic catalysts that contain one rare earth metal (RE), three alkali metals (M) and three 1,1'-bis-2-naphtols for asymmetric direct aldols, nitroaldols, aza-Henry and conjugate additions.

(1) Y. M. A. Yamada, N. Yoshikawa, H. Sasai and M. Shibasaki, *Angew. Chem., Int. Ed.*, **1997**, *36*, 1871–1873; (2) M. Shibasaki, M. Kanai, S. 26 Matsunaga and N. Kumagai, *Acc. Chem. Res.*, **2009**, *42*, 1117–1127.

Shibasaki

Mechanism of the direct aldol with LBB (REMB)

(1) Y. M. A. Yamada, N. Yoshikawa, H. Sasai and M. Shibasaki, *Angew. Chem., Int. Ed.*, **1997**, *36*, 1871–1873; (2) M. Shibasaki, M. Kanai, S. 27 Matsunaga and N. Kumagai, *Acc. Chem. Res.*, **2009**, *42*, 1117–1127. Further example of BINOL-based bimetallic catalysts:

• Nitro aldol reaction (LLB)

• Conjugate addition of cyclopentenone of malonates (BINOL-derived aluninum alkali metal)

(1) Y. M. A. Yamada, N. Yoshikawa, H. Sasai and M. Shibasaki, *Angew. Chem., Int. Ed.*, **1997**, *36*, 1871–1873; (2) M. Shibasaki, M. Kanai, S. 28 Matsunaga and N. Kumagai, *Acc. Chem. Res.*, **2009**, *42*, 1117–1127.

Catalytic Asymmetric Strecker

Gadolinium complex with D-glucose-derived ligand (GluCAPO) for asymmetric Strecker reaction of ketimines with TMSCN with high enantioselectivities. Used also for cyanosilylation of ketone and ring opening reactions of meso-aziridines with TMSCN and TMSN₃.

Shibasaki

(1) Y. M. A. Yamada, N. Yoshikawa, H. Sasai and M. Shibasaki, Angew. Chem., Int. Ed., **1997**, *36*, 1871–1873; (2) M. Shibasaki, M. Kanai, S. 29 Matsunaga and N. Kumagai, Acc. Chem. Res., **2009**, *42*, 1117–1127.

Conclusion

Representative catalytic asymmetric reactions promoted by REMB complexes

(1) Y. M. A. Yamada, N. Yoshikawa, H. Sasai and M. Shibasaki, *Angew. Chem., Int. Ed.*, **1997**, *36*, 1871–1873; (2) M. Shibasaki, M. Kanai, S. 30 Matsunaga and N. Kumagai, *Acc. Chem. Res.*, **2009**, *42*, 1117–1127.

Frontiers in Chemical Synthesis III: Stereochemistry

Michele Boyhi 2013

Questions?

This specific $Et_2Zn/Linked BINOL$ complex favores the attack selectively from the *Re* face of the 'nuclephile'.

Answer

Answer

