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J3.1. Review of week 2 :Hodgkin-Huxiey Model
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- Hodgkin-Huxley model
- Compartmental models



3.1Review of week 2 : Hodgkin-Huxley Model

Week 2: Dendrites (week x:video):
Cell membrane contains Active processes?
- lon channels . ___assumption:
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J3.1. Review of week 2 :Hodgkin-Huxley Model
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3.1. Review of week 2: Hodgkin-Huxiey Model

Hodgkin and Huxley, 1952 _ Inside
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Can we understand the dynamics of the HH model?
- mathematical principle of Action Potential generation?
- constant input current vs pulse input?
- Types of neuron model (type | and Il)? (next week)
- threshold behavior? (next week)

- Reduce from 4 to 2 equations

Type | and type Il models

ramp input/ + f-l curve ] f-1 curve
f

constant input L
i / |

lo lo




Can we understand the dynamics of the HH model?

- Reduce from 4 to 2 equations




 Week3-OQuiz3t

'A A biophysical point neuron model
. with 3 ion channels,

'each with activation and inactivation,
.has a total number of equations equal to
I[] 3 or

.[ 14 or

I[] 6 or

[ ]
[ ]

8 Oor more



Toward a
two-dimensional neuron model

-Reduction of Hodgkin-Huxley to 2 dimension
-step 1: separation of time scales

-step 2: exploit similarities/correlations



stimulus

3.1. Reduction of Hodgkin-Huxiey model
I

1) dynamics of m are fast - m(t) = mg,(u(t))



Reduction of dimensionality: Separation of time scales

Two coupled differential equations

dt dx

TlE: X+h(y)

f2%=f(y)+g(x)

Exercise 1 (week 3)

at beginning of lecture 2 ! Separation of time scales
11 << T9 9 X:h(y)

Reduced 1-dimensional system

dy
T2 f(y)+g(h(y))




| | | stimulus
du ~ 3/\Na _ . {K\ . Aﬁleak ~ l
Cor = " InaMhlU—Ey)—gn U—-E)—g U—-FE)+1()
dm  m-—mgy(u) r,
dat 7, (U) No(U) Th W)
dh  h—hy(u) No(U) 7, (U
dt 7z, (u) u |
dn  n—ny(u)
dt 7, (u)
1) dynamics of m are fast - m(t) =mg(u(t))

2) dynamics of h and n are similar



Reduction of Hodgkin-Huxley

Model to 2 Dimension
-step 1:
separation of time scales

-step 2:
exploit similarities/correlations

Now !



stimuius
du

CE :_gNamgh(u o ENa)_gKn4(u o EK)_gl(u o EI)+ I (lt)

2) dynamics of h and n are similar - 1—h(t) =an(t)

u




3.1Detour 1. Exploit similarities/correlations

dynamics of h and n are similar

1—h(t) =an(t)




3.1Detour 1. Exploit similarities/correlations

dynamics of h and n are similar

1—h(t) =an(t)
at rest

__________________________________________________________________________________________________________________ E: 7, (U)
dan _ n—n,(u)




h rest

3.1Detour 1. Exploit similarities/correlations

h | dynamics of h and n are similar

() Rotate coordinate system

(1) Suppress one coordinate

(1) Express dynamics in new
variable

\ 1—h(t) = an(t) = w(t)
0 rest) x I Il % — h_ho (U) d_W — W_WO(U)
__________________________________________________________________________________________________________________ 7n (W) dt . (u)

h(t) % _ ) el P (U)
X dt z, (U)




I Na I IIeak
du - v r jj — s A
CE=—9Na[m(t)] h(t) (u(t) - Ey,) — 0 [NM®I*(u(t)-E,) —g,ut)—E)+1(t)
S = =g, My (W) - W)~ Ey) - 0 [T (U-E )~ 0, (u=E)+1()
1) dynamics of m are fast = m(t) m, (u(t))
2) dynamics of h and n are similar 1-h(t)=an()
wt)  w(t)
%_ h_ho(u)
dt 7, (u) dw  w—w, (u)
dn _ _n-—ny(u) - dt Tere (U)

dt 7 (u)



INa IK IIeak
du 3/\ o0 Vj\; ~
CE:_gNa mo(u) (1_W)(U_ENa)_gK(g) (U_EK)_gl(u_El)+|(t)
dw  w—w,(u)
dt - z-eff (U)
du
Z'E =F(u(t),w(t))+ R I(t)
S =G, W)

d



2-dimensional equation

c‘;—‘tjz f(u(t), w(t))+ 1 ()

dw

praial (u(t), w(t))

Enables graphical analysis! ~ ——— Phase plane analysis

-Discussion of threshold

- Constant Input current vs pulse input
-Type | and I

- Repetitive firing



Week 3 - Quiz 3.2-similar dynamics

.Explomng similarities:

A sufficient condition to replace two gating variables r,s

'by a single gating variable w is

'[ ] Both r and s have the same time constant (as a function of u)
I[] Both r and s have the same activation function

|[] Both r and s have the same time constant (as a function of u)
. AND the same activation function

[ 1 Both r and s have the same time constant (as a function of u)
' AND activation functions that are identical after some additive rescaling
:[] Both r and s have the same time constant (as a function of u)

AND activation functions that are identical after some multiplicative

rescaling
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Discuss Exercise 1- MathDetour 3.1: Separation of time scales

Two coupled differential equations

dx
TlE: X+h(y)

fz(;—{=f(y)+g(x)

Exercise 1 (week 3)
Separation of time scales

even more general T, K T, >x = h(y)
Reduced 1-dimensional system

dy
T2 f(y)+g(h(y))




Discuss exercise 1- Reduction of Hodgkin-Huxiey model

| | | stimulus
du p 3/\Na . /f\ . Aﬁleak ~ l
Cdt :_gNam h(u_ENa)_gKn (U_EK)_9|(U_E|)+I(t)
dm m—m,(u) i
dt 7, (U) No(U) Th 7 (W)
dh  h—hy(u) No(u) 7 (U)
a B 7, (U) u U
d_n __n- no(u)
dt 7 (u)
dynamics of m is fast - m(t) = m,(u(t))

Fast compared to what?




Neuronal Dynamics — Quiz 3.3.

A- Separation of time scales:
We start with two equations

ol

jf:—x+y+la)
fgﬁxz—y+x?+A |
dt Pay attention to /(t):
[ 11f ;<< 7, then the system can be We assume that I(t) is slow

compared to both time

d >
= y+Ly+1(t)] +A constants.

dt

| 1If 7, << 7, then the system can be
reduded to

dx

T, — ==X+ X*+ A+ 1(t)

I
l
l
l
l
l
l
l
l
l
l
l
| reduded to
l
l
l
l
l
l
l
l
l
l
l %t

1 [ ] None of the above Is correct.



~ Week3- Summary31

In order to reduce the HH model from 4 to 2 equations we have to simplify. We
use two different mathematical methods.

1. Separation of time scale.

If the time scale of two variables Is different by a factor 10 or a hundred, we
can assume that the faster one of the two variables has already converged to
its ‘'momentary stable state’ on the slow time scale. Thus, we can remove the
fast variable. We use the separation of time scale to remove the variable m.

2. Exploit similarities.

If two variables evolve on the same time scale, they have, Iif we are lucky,
some similar temporal evolution. We can reduce the two variables to one
dimension by turning the coordinate system such that the first dimension Is the
one where the two variables evolve ‘together’. The simplification consists in
suppressing the second variable. This is similar to PCA where you would also
only keep the first component. However, we need to do this such that also the
DYNAMICS stays approximately correct, after reduction to 1 dimension.

We use this trick to compress h and n into a single variable w.
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/I\Na I/K\ r\j\IIeak
du ; S W, o o
CE:_gNa mo(u) (1_W)(U_ENa)_gK(g) (U_EK)_gl(u_El)+|(t)
dw  w—wg(u)
dt z. (U)
stimulus
P F (u,w) + RI (t)
dt |
rwd—W:G(u,W)

dt



3.2. Phase Plane Analysis/nuliclines

2-dimensional equation

stimulus
du |
—=F(u,w)+ RI(t
T (U, w) (t)
dw
—=0G(u,w
| Tw ot (U, w)
First step: . .
| Enables graphical analysis!
u-nullcline:

-Discussion of threshold

all points with du/dt=0
-Type | and I

w-nullcline:
all points with dw/dt=0



3.2. FizHugh-NagumoModet

du

—=F(u,w)+ RI(t
T (U, w) + RI(t)
1 :
=u—§u3—w+ RI (t) MathAnalysis,
blackboard
rwd—sz(u,W):bo+b1u—w
dt
u-nullcline

w-nullcline



32 flowarrows

dU — ' —
Td_ _E (u’ W) LR (t) Stimulus 1=0 d_w 4
(; wo
r, — =G (U, w)
dt

Consider change In small time step

Flow on nulicline (1)=0

Flow In regions between nullclines

Stable fixed point
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Neuronal Dynamics - 3.2. flowarrows

dU — ' —
Td_ _E (u’ W) LR (t) Stimulus 1=0 d_w 4
(; wo
r, — =G (U, w)
dt

Consider change In small time step

Flow on nulicline (1)=0

Flow In regions between nullclines

Stable fixed point




Week3-Quiz34

A. u-Nullclines

[ ] On the u-nullcline, arrows are always vertical

[ ] On the u-nulicline, arrows point always vertically upward
[ ] On the u-nullcline, arrows are always horizontal

Take 1 minute

B. w-Nullclines

[ ] On the w-nullcline, arrows are always vertical

[ ] On the w-nullcline, arrows are always horizontal
[ ] On the w-nullcline, arrows point always to the left



Exercise 1: Separation of time scales N oW EX 1 and 2 . 1
A. Onec-dimensional system LeCtu re at 11 h 15

Consider the following differential equation

dx

T— =
dt

—r+c. (1)

1.1 Find the fixed point zy of this system. Hint: a fixed point is a stationary solution = % = 0.

1.2 Show that the fixed point is a stable one, and that the solution of (1) converges exponentially towards the
fixed point with a time constant 7. Hint: write down the solution assuming an initial condition z(t = 0) # .

1.3 Consider the case where ¢ is time-dependent, namely,

0 fort <0
c=c(t)=4¢ clor0<t<1
0 fort>1.

Calculate the solution z(t) with initial condition x(f{ = —10) = 0.

1.4 Take the expression x(t) you have found in the previous question. Consider 7 = 0.5 and 7 = 0.01 and
sketch the function graph.

B. Separation of time scales

Consider the following system of equations:

du
a f(u) —m
dm

EE = —iIT ‘|—L(H-)

with € = 0.01.

1.5 Exploit the fact that € < 1 and reduce the system to one equation (note the similarity between the
m-equation and Eq.(1)).

1.6 Sect f(u) = —au+ b where a > 0, b € R and ¢(u) = tanh(u). Discuss the stability of the fixed points with
respect to @ and b, Hint: use the graphical analysis for one dimensional equations from week 1: when plotting
f(u) and ¢(u) against u, you can read off the fixed point from that graph.

Exercise 2: Phase plane stability analysis

2.1 Linear system

Comnsider the following linear system:

- du
— = U — W
di
dw
— Pfu — w.

- dt

. ) . . d (H a —1 .
These equations can be written in matrix form as 22x = Ax where z = " and A = g 1) Determine

the conditions for stability of the point (u = 0,w = 0) in the case 8 > a by studying the eigenvalues of the
above matrix. (Hint: Distinguish the cases of real and complex eigenvalues.)
2.2 Piecewise linear Fitzhugh-Nagumo model

The Fitzhugh-Nagumo model is defined by the equations

du

au F(u,w)= f(u) —w+1T
dt

d

% = G(u,w) =bu —w

Here, wu(t) is the membrane potential and w(t) is a second, time-dependent variable. I stands for the injected
current. A simplified model is obtained by considering a piecewise linear f(u):

|"

—1u ifu<1

1
fluy=3 =1 4 if1<wu<1+2a

il

21+a)—u ifu>1+2a

witha < 1,b > 1/a.

(i) Sketch the “nullclines” du/dt = 0 and dw/dt = 0 in a (u,v)-plot. Consider the case I = 0. How does the
fixed point move as I is varied? Sketch the form of the flow (i.e., the vector (du/dt, dw/dt) ) along the nullclines
and deduce qualitatively the shape of the trajectories.

(1) Calculate the Jacobian matrix evaluated at the fixed point,

JF oF
5 ou  Ow
oG oG
u  Ow

Determine, by studying the eigenvalues of J, the linear stability of the fixed point as a function of I. What
happens when the fixed point destabilizes?



10
Td—u:F(u,W)+RI(t) }
dt
=u—%u3+Rl(t) w3
dw
TWEIG(U,W) :bO -|-b1U—W

/]

change bo, bz

Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014)



3.2. Nuliclines of reduced Himodel

aw _
dt
stimulus | | | | | |
3 H —
du "
r— =F(u,w)+ RI(t) 5 L _
at G =0
aw SIS -
., — =G (u,w) - _
dt .
0 7 du 0
u-nulicline S pVE=0 { at
| | | | | |
—60 —40 =20 0 20 40
. uw [mV]
w-nullcline
Stable fixed point Image: Neuronal Dynamics,

Gerstner et al.,
Cambridge Univ. Press (2014)



2-dimensional equation

stimulus

du l
re = FUwW)+RI®)

dw
— G(u,
Tw g — GUwW)
Enables graphical analysis! —— Application to

Important role of neuron models

- nullclines
- flow arrows




~ Week3- Summary32

Once we are In two dimensions we can use phase plane analysis. Two
important concepts are the ‘nullclines’; and the local direction of the ‘flow'.

Intersections of the two nullclines correspond to fixed points. It Is a bit of
work to decide whether a fixed point is stable or not. However, iIn some
cases (such as a saddle point) stability Is visible directly from the graph.

Stabllity of a fixed point Is determined by linearizing around the fixed point.
Since we are In 2 dimensions, linearization yields a 2x2 matrix. The
eigenvalues determine the stability (See exercise 2.1).

The FitzHuhg Nagumo model is a particularly simple 2-dimensional model.
The reduction of the full Hodgkin-Huxley model yields a more complicated
picture In the phase plane.



2-dimensional equation

stimulus

z_d_u: F(u,w) Rll(t)

dt
| | | T dw =G(u,w)
2 important input scenarios at
- Pulse input Enables graphical analysis!

- Constant input



3.3. 2D neuron model : Pulse input

4 | \€>
1)[ ?EUZF(U,W)+R| h
— dt
Tl d
= r,—wW=0G(U,w)
. dt /

pulse Input




du 1

dw

r—=F(Uu,w)+RI(t)=u—-=u’-w+RI(t S —-=0
1(£)=0 1/
dW /
7, — =G(u,w) =D, +bu—w
dt |
| I(t)  Pulse input: jump of voltage du
pulse Input ——=0




3 | | | | |
B
2 L —
> 1r -
=S
s Or -
1L _
(p N
_9 | | | |
0 00 100 150 200
| t [ms]
FN model withb, =0.9;b, =1.0 Image: Neuronal Dynamics,

. . Lo . Gerstner et al.,
Pulse input: jump of voltage/initial condition Cambridge Univ. Press (2014)



3.3. FitzHugh-Nagumo Model - 2 different inputs

dw

Pulse input: ~ DONE! =—==0
. S dt
- jJump of voltage W
- ‘new initial condition’ I()=0
- spike generation for large input pulses

2 Important Input scenarios

constant input: U
- graphics? |
Jrap — Now \/

- Spikes?
- repetitive firing?




du
TE_ F(u,w)+RI, W 9w _ olw-nullicline

U we RI,
3

TWC(i:I_\iV:G(U’W):bOJFblu_W

Intersection point (fixed point)

-MoVes du _

-changes Stability dt
u-nulicline




Week 3 — part 3: Analysis of a 2D neuron model
il \13.1 From Hodgkin-Huxley to 2D

EEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEE

\3.2 Phase Plane Analysis

- Role of nullcline

3.3 Analysis of a 2D Neuron Model
\I - pulse input

- constant input
-MathDetour 3: Stability of fixed points



Discussion of exercise 2 Detour. Stability of fixed points

2-dimensional equation

stimulus

du |

—=F(u,w)+ RI
Tdt ( ) 0
dw
—=0G(u,w
7, =GUW)

How to determine stability
of fixed point?



Discussion of exercise 2 - Detour: Stahility of fixed points.

dw
r,— =0, +bu—w
dt
W aw _ 5lw-nullcline
| dt
| stable?
b: (t)=I,
/ u=
du du
uuv _ N o
Tdt =F(u,w)+RI, at

u-nullcline



Discussion of Exercise 2: Detour - Stability of fixed points

stimulus d—W =0
1 dt
du W
dt
dw
Tw—— =CU—W




Discussion of Exercise 2: Detour. Stability of fixed points

Td—uzF(u,W)JrRIO W

at aw _ 4 wonulicline

dw
fwgr =G(u,w) stable?

Zoom In:
— I(t)=,
du _ 54
table at
uns : :

stable S2ddle Math derivation . icline

NOW



3.3. Neuron models and Stability of fixed points

2-dimensional equation

du
— = F(u,w) +RI
4 dt ( ) 0
Now Back: - C(lj_\iv _ G(u,w)
Application to our Stability characterized
neuron model by Eigenvalues of

linearized equations

d (F, F,
a’ -\ G, G, )"



3.3. FHitzHugh-Nagumo Model: Gonstant input

du
TE_ F(u,w)+RI, W 9w _ olw-nullicline

U we RI,
3

TWC(i:I_\iV:G(U’W):bOJFblu_W

Intersection point (fixed point)

-MoVes du _

-changes Stability dt
u-nulicline




3.3. HitzHugh-Nagumo Model: Gonstant input

du
TE_ F(u,w)+RI, W 9w _ olw-nullicline

U we RI,
3

TWC(i:I_\iV:G(U’W):bOJFblu_W

Intersection point (fixed point)

-MoVes du _

-changes Stability dt
u-nulicline




3.3. FHitzHugh-Nagumo Model : Gonstant mnut

) N el S S S e st | | | |
w=0] <« = |uw=0 D

2+ «—
1~ _ _ _ e ;'1— \ \
Sor L ) S .
3

B A - - 0 [ -
_1 [ e > —> — >\~ —1 — B
=1 aadhdistiadid 2 |
— T = | = — 1 © B | l l |
-3 -2 -1 0 1 2 3 0 50 100 150 200
u [mV] t [ms]
_ _ _ Image:
FN model with bO — 09, bl =1.0, Rlo =2 ) f-] curve Neuronal Dynamics,
_ _ f Gerstner et al.,
constant input: u-nullcline moves / Cambridge (2014)
limit cycle =

lo



Neuronal Dynamics - Quiz 3.5.

A. Short current pulses. In a 2-dimensional neuron model, the effect of a delta
current pulse can be analyzed

[ ] By moving the u-nulicline vertically upward

[ ] By moving the w-nullcline vertically upward

[ ] As a potential change In the stability or number of the fixed point(s)

| ] As a new Initial condition

| ] By following the flow of arrows In the appropriate phase plane diagram

B. Constant current. In a 2-dimensional neuron model, the effect of a constant
current can be analyzed

[ ] By moving the u-nullcline vertically upward

| ] By moving the w-nullcline vertically upward

| | As a potential change In the stability or number of the fixed point(s)

| ] By following the flow of arrows In the appropriate phase plane diagram




NOW Exercise 2.1: Stabllity of Fixed Point in 2D

au —ou — W
dt d_W:Q
v " “dt
— AU —W |
dt P

- calculate stabllity

Exercises: - compare
dXx X

dt 7

2.1now!

2.2 homework




Week 3 — Summary 3.3

Phase plane analysis of neuron models is particularly

Interesting because the input | only enters into the first

variable (voltage u).

As a consequence of this observation, we can discuss two

Important input scenarios as follows:

1. Constant input. In this case the u-nulicline Is shifted
vertically.

2. Pulse input. In this case the u-nullcline Is not shifted, but
the pulse causes a horizontal shift of the initial condition.



_ Computerexercisenow

Can we understand the dynamics of the 2D model?

The END for today

Now: computer exercises

Type | and type Il models

ramp Input/ + f-l curve ] f-1 curve
f

constant input o
i / |

lo lo




NOW Exercise 2.1: Stabllity of Fixed Point in 2D

du — aou — W
dt d_W:Q
dw " dt
= U —WwW |
dt P

- calculate stabllity
Exercises: - compare
2.1 start now!

2.2 homework

(you may start If you
have time)

Exercise: later




Discussion of Exercise 2 Detour. Stahility of fixed points

T(;_‘:: F (u,w) +RI, Fixed point at (U, W)
| At fixed point
de_\isz(u’W) 0=F(u,,w,)+RI,
| 0=G(u,,
zoom in: (Wor o)
X=U-U,

y = W-=W,



Discussion of Exercise 2 - Detour. Stahility of fixed points

T(;_‘:: F (u,w) +RI, Fixed point at (U, W)
| At fixed point
TWd—\f[VZG(U,W) 0=F(Uy, W) +RlI,
| 0=G(u,,w
Z00Im In.: ( : O)

X=U-U,

y=W-W, dx B
TE_FUX_I_ Fwy {_l;r B FH Fw N

dy Elf N Gru er I

T, — =G X+G,y

Y dt



Discussion of Exercise 2 Detour. Stability of fixed points
Linear matrix equation

d [ F, Fy
aF \a, o,

Search for solution
:r,(t) = e exp()\t)

Two solution with Eigenvalues A , A4
A +A =F +G_
AA =FG,—F,G,



Discussion of Exercise 2: Detour. Stability of fixed points
Linear matrix equation

i o Fu Fw
a -\ G, Go ) ¥

Search for solution

Stability requires:
A, <0 and A <0

:13(1‘) = e exp()\f) l
Two solution with Eigenvalues A , A4
F+G, <0
A +A =F +G_ and

S

A =FG,-FEG, FG,—-F.G, >0



Discussion of exercise 2: Detour. Stability of fixed points

. dw
stimulus — =0

dt




