
Week 3 – Reducing detail:

Two-dimensional neuron models

Wulfram Gerstner

EPFL, Lausanne, Switzerland

3.1 From Hodgkin-Huxley to 2D

- Overview: From 4 to 2 dimensions

- MathDetour 1: Exploiting similarities

- MathDetour 2: Separation of time scales

3.2 Phase Plane Analysis
- Role of nullclines

3.3 Analysis of  a 2D Neuron Model

- constant input vs pulse input
- MathDetour 3: Stability of fixed points

3.4 TypeI and II Neuron Models

next week!

Biological Modeling of Neural Networks

Reading for week 3:

NEURONAL DYNAMICS

- Ch. 4.1- 4.3 

Cambridge Univ. Press



3.1. Review of week 2 :Hodgkin-Huxley Model

Hodgkin-Huxley model

Compartmental models
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3.1 Review of week 2  :  Hodgkin-Huxley Model

Dendrites (week x:video):

Active processes?

action 

potential
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Na+

K+

-70mV

Ions/proteins

Week 2:

Cell membrane contains

- ion channels

- ion pumpsa
assumption:

passive dendrite

 point neuron

spike generation
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3.1. Review of week 2 :Hodgkin-Huxley Model

ion pumpsconcentration difference voltage difference
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Hodgkin and Huxley, 1952

3.1.  Review of week 2: Hodgkin-Huxley Model

NaI KI 4 equations

= 4D system 



Type I and       type II  models
ramp input/

constant input

I0

I0 I0

ff

f-I curve f-I curve

Can we understand the dynamics of the HH model?

- mathematical principle of Action Potential generation?

- constant input current vs pulse input?

- Types of neuron model (type I and II)? (next week)

- threshold behavior? (next week)

 Reduce from 4 to 2 equations

Week 3 – 3.1.  Overview and aims



Can we understand the dynamics of the HH model?

 Reduce from 4 to 2 equations

Week 3 – 3.1.  Overview and aims



Week 3 – Quiz 3.1.

A - A biophysical point neuron model

with 3 ion channels, 

each with activation and inactivation, 

has a total number of equations  equal to  

[ ] 3  or  

[ ] 4 or  

[ ] 6 or  

[ ] 7 or

[ ] 8 or more    



Toward a 

two-dimensional  neuron model

-Reduction of Hodgkin-Huxley to 2 dimension
-step 1: separation of time scales

-step 2: exploit similarities/correlations

Week 3 – 3.1.  Overview and aims



3 4( ) ( ) ( ) ( )Na Na K K l l

du
C g m h u E g n u E g u E I t

dt
       

)(

)(0

u

umm

dt

dm

m




)(

)(0

u

unn

dt

dn

n




)(

)(0

u

uhh

dt

dh

h




stimulus

NaI KI leakI

u u

h0(u)

m0(u) )(uh

)(um

1) dynamics of m are fast ))(()( 0 tumtm 

Details later!

3.1.  Reduction of Hodgkin-Huxley model



Reduction of dimensionality: Separation of time scales
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Two coupled differential equations

Separation of time scales

Reduced 1-dimensional system

Exercise 1 (week 3)

at beginning of lecture 2 !
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𝜏1 ≪ 𝜏2  x=h(y)
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3.1.  Reduction of Hodgkin-Huxley model



Reduction of Hodgkin-Huxley 

Model to 2 Dimension
-step 1:

separation of time scales

-step 2: 

exploit similarities/correlations

3.1.  Reduction of Hodgkin-Huxley model

Now !
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3.1.  Reduction of Hodgkin-Huxley model



dynamics of h and n are similar
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3.1 Detour 1.  Exploit similarities/correlations

h

Math. Argument

(blackboard)



dynamics of h and n are similar
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dynamics of h and n are similar
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3.1.  Reduction of Hodgkin-Huxley model
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3.1.  Reduction to 2 dimensions
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Enables graphical analysis!

-Discussion of threshold

- Constant input current vs pulse input

-Type I and II

- Repetitive firing

2-dimensional equation

Phase plane analysis



Week 3 – Quiz 3.2-similar dynamics

Exploiting similarities:

A sufficient condition to replace two gating variables r,s

by a single gating variable w is

[ ] Both r and s have the same time constant (as a function of u)

[ ] Both r and s have the same activation function

[ ] Both r and s have the same time constant (as a function of u)

AND the same activation function

[ ] Both r and s have the same time constant (as a function of u)

AND activation functions that are identical after some additive rescaling

[ ] Both r and s have the same time constant (as a function of u)

AND activation functions that are identical after some multiplicative

rescaling



Week 3 – Reducing detail:

Two-dimensional neuron models

Wulfram Gerstner

EPFL, Lausanne, Switzerland

3.1 From Hodgkin-Huxley to 2D

- Overview: From 4 to 2 dimensions

- MathDetour 1: Exploiting similarities

- MathDetour 2: Separation of time scales

3.2 Phase Plane Analysis
- Role of nullclines

3.3 Analysis of  a 2D Neuron Model

- constant input vs pulse input
- MathDetour 3: Stability of fixed points

3.4 TypeI and II Neuron Models

next week!

Biological Modeling of Neural Networks



Discuss Exercise 1 – MathDetour 3.1: Separation of time scales
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Exercise 1 (week 3)

even more general 𝜏1 ≪ 𝜏2 𝑥 = ℎ(𝑦)
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Discuss exercise 1 – Reduction of Hodgkin-Huxley model

Fast compared to what?



Neuronal Dynamics – Quiz 3.3.
A- Separation of time scales:

We start with two equations

[  ] If              then the system can be 

reduded to 

[  ] If              then the system can be 

reduded to 

[  ] None of the above is correct.
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Attention 

If I(t) can move rapidly,

choice [1] is

not always correct

Pay attention to I(t):
We assume that I(t) is slow 

compared to both time 
constants.
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<<



Week 3 – Summary 3.1
In order to reduce the HH model from 4 to 2 equations we have to simplify. We 

use two different mathematical methods.

1. Separation of time scale.

If the time scale of two variables is different by a factor 10 or a hundred, we 

can assume that the faster one of the two variables has already converged to 

its ‘momentary stable state’ on the slow time scale.  Thus, we can remove the 

fast variable. We use the separation of time scale to remove the variable m.

2. Exploit similarities.

If two variables evolve on the same time scale, they have, if we are lucky, 

some similar temporal evolution. We can reduce the two variables to one 

dimension by turning the coordinate system such that the first dimension is the 

one where the two variables evolve ‘together’. The simplification consists in 

suppressing the second variable. This is similar to PCA where you would also 

only keep the first component. However, we need to do this such that also the 

DYNAMICS stays approximately correct, after reduction to 1 dimension. 

We use this trick to compress h and n into a single variable w.



Week 3 – Reducing detail:
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3.1 From Hodgkin-Huxley to 2D

- Overview: From 4 to 2 dimensions

- MathDetour 1: Exploiting similarities

- MathDetour 2: Separation of time scales

3.2 Phase Plane Analysis
- Role of nullclines

3.3 Analysis of  a 2D Neuron Model

- constant input vs pulse input
- MathDetour 3: Stability of fixed points

3.4 TypeI and II Neuron Models

next week!
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3.2.  Phase Plane Analysis/nullclines

Enables graphical analysis!
-Discussion of threshold

-Type I and II

2-dimensional equation
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u-nullcline:

all points with du/dt=0

w-nullcline:

all points with dw/dt=0

First step:
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3.2.  FitzHugh-Nagumo Model
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MathAnalysis,

blackboard
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3.2.  flow arrows

Consider change in small time step

Flow on nullcline

Flow in regions between nullclines
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Neuronal Dynamics – 3.2.  flow arrows

Consider change in small time step

Flow on nullcline

Flow in regions between nullclines



Week 3 – Quiz 3.4

A.  u-Nullclines

[ ] On the u-nullcline, arrows are always vertical

[ ] On the u-nullcline, arrows point always vertically upward

[ ] On the u-nullcline, arrows are always horizontal

B. w-Nullclines

[ ] On the w-nullcline, arrows are always vertical

[ ] On the w-nullcline, arrows are always horizontal

[ ] On the w-nullcline, arrows point always to the left

Take 1 minute



Now Ex 1 and 2.1

Lecture at 11h15
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3.2.  FitzHugh-Nagumo Model
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Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)
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u-nullcline

w-nullcline
Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)



3.2.  Phase Plane Analysis

Enables graphical analysis!

Important role of 

- nullclines

- flow arrows

2-dimensional equation
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),( wuG
dt

dw
w 

Application to

neuron models



Week 3 – Summary 3.2

Once we are in two dimensions we can use phase plane analysis. Two 

important concepts are the ‘nullclines’; and the local direction of the ‘flow’.

Intersections of the two nullclines correspond to fixed points. It is a bit of 

work to decide whether a fixed point is stable or not. However, in some 

cases (such as a saddle point) stability is visible directly from the graph.

Stability of a fixed point is determined by linearizing around the fixed point. 

Since we are in 2 dimensions, linearization yields a 2x2 matrix. The 

eigenvalues determine the stability (See exercise 2.1).

The FitzHuhg Nagumo model is a particularly simple 2-dimensional model. 

The reduction of the full Hodgkin-Huxley model yields a more complicated 

picture in the phase plane.



3.3.  Analysis of a 2D neuron model

Enables graphical analysis!- Pulse input

- Constant input

2-dimensional equation
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2 important input scenarios



pulse input

3.3.  2D neuron model : Pulse input
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3.3.  FitzHugh-Nagumo Model : Pulse input
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3.3.  FitzHugh-Nagumo Model : Pulse input

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)Pulse input: jump of voltage/initial condition

FN model with 0 10.9; 1.0b b 
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3.3.  FitzHugh-Nagumo Model – 2 different inputs 

constant input: 

- graphics?

- spikes?

- repetitive firing? 

Pulse input: 

- jump of voltage

- ‘new initial condition’

- spike generation for large input pulses  

Now

DONE!

2 important input scenarios
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Intersection point (fixed point)

-moves

-changes Stability

3.3.  FitzHugh-Nagumo Model: Constant input
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3.1 From Hodgkin-Huxley to 2D

3.2 Phase Plane Analysis
- Role of nullcline

3.3 Analysis of  a 2D Neuron Model

- pulse input

- constant input

-MathDetour 3: Stability of fixed points

3.4 Type I and II Neuron Models

(next week)

Week 3 – part 3: Analysis of a 2D neuron model



Discussion of exercise 2 Detour.  Stability of fixed points

2-dimensional equation
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How to determine stability

of fixed point?
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Discussion of exercise 2 - Detour: Stability of fixed points.  
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Discussion of Exercise 2: Detour - Stability of fixed points
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Discussion of Exercise 2: Detour.  Stability of fixed points
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3.3. Neuron models and Stability of fixed points

2-dimensional equation
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Stability characterized 

by Eigenvalues of 

linearized equations

Now Back:

Application to our

neuron model
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Intersection point (fixed point)

-moves
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3.3.  FitzHugh-Nagumo Model: Constant input
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3.3.  FitzHugh-Nagumo Model: Constant input
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3.3.  FitzHugh-Nagumo Model : Constant input

Image: 

Neuronal Dynamics, 

Gerstner et al.,

Cambridge (2014)constant input: u-nullcline moves

limit cycle
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f
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Neuronal Dynamics – Quiz 3.5.
A. Short current pulses.  In a 2-dimensional neuron model, the effect of a delta 

current pulse  can be analyzed 

[ ] By moving the u-nullcline vertically upward

[ ] By moving the w-nullcline vertically upward

[ ] As a potential change in the stability or number of the fixed point(s)

[ ] As a new  initial condition

[ ] By following the flow of arrows in the appropriate phase plane diagram

B.  Constant current.  In a 2-dimensional neuron model, the effect of a constant 

current  can be analyzed 

[ ] By moving the u-nullcline vertically upward

[ ] By moving the w-nullcline vertically upward

[ ] As a potential change in the stability or number of the fixed point(s)

[ ] By following the flow of arrows in the appropriate phase plane diagram
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NOW Exercise 2.1: Stability of Fixed Point in 2D

Exercises:

2.1now!

2.2  homework

- calculate stability

- compare

0
dt

du

0
dt

dw

w

u

I(t)=I0



Week 3 – Summary 3.3

Phase plane analysis of neuron models is particularly 

interesting because the input I only enters into the first 

variable (voltage u).

As a consequence of this observation, we can discuss two 

important input scenarios as follows:

1. Constant input. In this case the u-nullcline is shifted 

vertically.

2. Pulse input. In this case the u-nullcline is not shifted, but 

the pulse causes a horizontal shift of the initial condition.



Type I and       type II  models
ramp input/

constant input

I0

I0 I0

ff

f-I curve f-I curve

Can we understand the dynamics of the 2D model?

Computer exercise now

The END for today
Now: computer exercises



du
u w

dt

dw
u w

dt





 

 

dx x

dt 
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NOW Exercise 2.1: Stability of Fixed Point in 2D

- calculate stability

- compare

0
dt

du

0
dt

dw

w

u

I(t)=I0
Exercises:

2.1 start now!

2.2  homework

(you may start if you

have time)

Exercise: later

11h20-11h35



Discussion of Exercise 2 Detour.  Stability of fixed points
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Discussion of Exercise 2 - Detour.  Stability of fixed points
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zoom in:
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Discussion of Exercise 2 Detour.  Stability of fixed points

Linear matrix equation

Search for solution

Two solution with Eigenvalues ,  

u wF G    

u w w uF G F G    



Discussion of Exercise 2: Detour.  Stability of fixed points

Linear matrix equation

Search for solution

Two solution with Eigenvalues ,  

u wF G    

u w w uF G F G    

Stability requires:

0 0and   

0u wF G 

0u w w uF G F G 
and
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saddle
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Discussion of exercise 2: Detour.  Stability of fixed points
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