Biological Modeling of Neural Networks 3.1 From Hodgkin-Huxley to 2D

Wulfram Gerstner EPFL, Lausanne, Switzerland

Reading for week 4: **NEURONAL DYNAMICS** - Ch. 4.4 – 4.7

Cambridge Univ. Press

3.2 Phase Plane Analysis

3.3 Analysis of a 2D Neuron Model

4.1 Separation of time scales

4.2 Type I and II Neuron Models

- limit cycles: constant input

4.3 Pulse input

- where is the firing threshold?

4.4. Further reduction to 1 dim

- nonlinear integrate-and-fire (again)

Week 4 – Review from week 3

-Reduction of Hodgkin-Huxley to 2 dimension -step 1: separation of time scales

-step 2: exploit similarities/correlations

Week 4 – Review from week 3

$$C \frac{du}{dt} = -g_{Na}[m(t)]^{3}h(t)(u(t) - E_{Na}) - g_{K}[n(t)]^{4}(u(t) - E_{K}) - g_{I}(u(t) - E_{I}) + I(t)$$

$$C \frac{du}{dt} = -g_{Na} m_{0}(u)^{3}(1 - w)(u - E_{Na}) - g_{K}[\frac{w}{a}]^{4}(u - E_{K}) - g_{I}(u - E_{I}) + I(t)$$
1) dynamics of *m* are fast $\longrightarrow m(t) = m_{0}(u(t))$
2) dynamics of *h* and *n* are similar $\longrightarrow 1 - h(t) = an(t)$
 $w(t) w(t)$

$$C\frac{du}{dt} = -g_{Na}[m(t)]^{3}h(t)(u(t) - E_{Na}) - g_{K}[n(t)]^{4}(u(t) - E_{K}) - g_{I}(u(t) - E_{I}) + I(t)$$

$$C\frac{du}{dt} = -g_{Na}m_{0}(u)^{3}(1 - w)(u - E_{Na}) - g_{K}[\frac{w}{a}]^{4}(u - E_{K}) - g_{I}(u - E_{I}) + I(t)$$
1) dynamics of *m* are fast $\longrightarrow m(t) = m_{0}(u(t))$
2) dynamics of *h* and *n* are similar $\longrightarrow 1 - h(t) = an(t)$

$$\frac{dh}{dt} = -\frac{h - h_{0}(u)}{a}$$

$$\frac{dh}{dt} = -\frac{h - h_0(u)}{\tau_h(u)} \xrightarrow{dt} \frac{dt}{dt}$$

$$\frac{dn}{dt} = -\frac{n - n_0(u)}{\tau_n(u)} \xrightarrow{dt} \frac{dt}{dt}$$

 $\frac{dw}{dt} = -\frac{w - w_0(u)}{\tau_{eff}(u)}$

Week 4 – review from week 3

2-dimensional equation stimulus

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

Enables graphical analysis! -Pulse input

\rightarrow AP firing (or not)

- Constant input

- \rightarrow repetitive firing (or not)
- → limit cycle (or not)

4.1 Nullclines change for constant stimulus

stimulus

$$\tau \frac{du}{dt} = F(u, w) + I(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

apply constant stimulus Io

Blackboard 1
$$\varepsilon = \frac{\tau}{\tau_w}$$

u-nullcline

4.1 Separation of time scales

stimulus

$$\tau \frac{du}{dt} = F(u, w) + I(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

u-nullcline

4.1. Separation of time scales

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$
Separation of time scal

$$\tau_w >> \tau_u$$

Blackboard 1

Unless close to nullcline

Week 4 – Exercise 1 preparation

Now exercises

Exercise 1: Inhibitory rebound

Consider the following two-dimensional Fitzhugh-Nagumo model:

$$\begin{bmatrix} \frac{du}{dt} &= u\left(1-u^2\right) - w + I \equiv F(u,w) \\ \frac{dw}{dt} &= \varepsilon\left(u-0.5w+1\right) \equiv \varepsilon G(u,w), \end{bmatrix}$$
(1)

where $\varepsilon \ll 1$.

1.1 Suppose that an inhibitory current step is applied,

$$I(t) = \left\{ egin{array}{cc} -I_0 & t \leq 0 \ 0 & t > 0 \end{array}
ight.$$

How does the fixed point move?

1.2 What happens after the driving current is removed? Sketch the form of the trajectories for increasing values of I_0 . What happens for large I_0 ?

4.1. Summary: Separation of time scales

We have seen a first separation of time scales last week to remove the mvariable. Today I have introduced a second separation of time scale: the w-variable is (in reality a bit) slower than the voltage variable. For mathematical reasons we considered the limit where w is MUCH slower than the voltage variable.

In this limit, the flow arrows are all horizontal – except in the region very close to the u-nullcline.

This condition can be exploited for two interesting stimuli:

- (i) A constant stimulus strong enough to evoke a limit cycle. In this case the trajectory either jumps or follow the u-nullcline.
- (ii) A pulse stimulus. In this case, the voltage either goes rapidly back to the fixed point or it takes a detour.

We look at both stimulation paradigms again throughout the lecture.

Biological Modeling of Neural Networks 3.1 From Hodgkin-Huxley to 2D

Week 4 **Reducing detail: Analysis of 2D models**

3.2 Phase Plane Analysis

3.3 Analysis of a 2D Neuron Model

4.1 Separation of time scales

4.2 Type I and II Neuron Models - limit cycles: constant input

4.3 Pulse input

- where is the firing threshold?

4.4. Further reduction to 1 dim

- nonlinear integrate-and-fire (again)

Week 4 – 4.2. Type I and II Neuron Models

ramp input/ constant input

neuron

Type I and type II models

Review: Nullclines change for constant stimulus

$$\tau \frac{du}{dt} = F(u, w) + I(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

apply constant stimulus Io

stimulus

u-nullcline

4.2. Limit cycle (example: FitzHugh Nagumo Model)

stimulus

$$\tau \frac{du}{dt} = F(u, w) + I(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

-unstable fixed point
 -closed boundary
 with arrows pointing inside
 Iimit cycle

4.2. Limit Cycle

-unstable fixed point in 2D
-bounding box with inward flow
→ limit cycle (Poincare Bendixson)

In 2-dimensional equations, a limit cycle must exist, if we can find a surface

-containing one unstable fixed point -no other fixed point -bounding box with inward flow → limit cycle (Poincare Bendixson)

4.1. Hopf bifurcation

 $\gamma < 0$

4.2. Hopf bifurcation: *f-I*-curve

Hopf bifurca Stability lost Subcritical

Hopf bifurcation: pair of complex Eigenvalues

- Stability lost \rightarrow oscillation with finite frequency
 - → local oscillation is also unstable, and therefore jump (in neuron models) to a large limit cycle

4.2 Example: FitzHugh-Nagumo / Hopf bifurcation

4.2. Type I and II Neuron Models

Now: Type I model

4.2. Type I Neuron Models: saddle-node bifurcation

type I Model: 3 fixed points

stimulus

$$\tau \frac{du}{dt} = F(u, w) + I(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

apply constant stimulus Io

Saddle-node bifurcation

4.2. Type I Neuron Models: saddle-node bifurcation

stimulus

$$\tau \frac{du}{dt} = F(u, w) + I(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

Blackboard 3:flow arrows,ghost/ruins

constant input

4.2. Type I Neuron Models: saddle-node bifurcation

4.2. Example: Morris-Lecar as type I Model

I=0

|>|_c

4.2. Example: Morris-Lecar as type I Model

 I_0

4.2. Type I and II Neuron Models

↓ |_0

Response at firing threshold?

Type I

Saddle-Node Onto limit cycle

ramp input/ constant input

f-l curve

type II

For example: **Subcritical Hopf**

Enables graphical analysis!

Constant input

- \rightarrow repetitive firing (or not)
- \rightarrow limit cycle (or not)

Neuronal Dynamics – Quiz 4.1.

onto-limit cycle bifurcation

curve

[] The neuron model is of type I, if the limit cycle passes through a regime where the flow is very slow.

B. Threshold in a 2-dimensional neuron model with subcritical **Hopf bifurcation**

[] The neuron model is of type II, because there is a jump in the f-I curve

true?

" in the regime below the Hopf bifurcation, the neuron is at rest or will necessarily converge to the resting state"

A. 2-dimensional neuron model with (supercritical) saddle-node-

- [] The neuron model is of type II, because there is a jump in the f-I
- [] The neuron model is of type I, because the f-I curve is continuous
- [] The neuron model is of type I, because the f-I curve is continuous [] starting with zero current, and slowly increasing the current, is this

Week 4 - Exercise 2.1-2.5: NOW!

Now exercises

Exercise 2: Phase Plane Analysis

In this exercise, we use the phase plane to study the dynamics of a two dimensional, nonlinear neuron model. The system is described by:

$$\begin{cases} \frac{d}{dt}u = F(u, w)\\ \\ \frac{d}{dt}w = G(u, w) \end{cases}$$

where F(u, w) = f(u) - w + I(t) and $G(u, w) = \epsilon(g(u) - w)$ with $\epsilon = 0.1$. I(t) is an external current. Figure 1 shows the *u*- and *w*-nullclines for the case I(t) = 0:

2.1 Given $F(u_4, 0) = 5$, $G(u_4, 0) = 1$, draw a few flow arrows along the two nullclines in figure 1.

2.2 Without doing any computation, can you determine the stability of the fixed point 2 (the one at (u_2, w_2))? Justify your answer.

2.3 Discuss the stability of the third fixed point (the one at (u_3, w_3)) analytically. That is, linearize the system at the fixed point 3 and discuss the evolution of a small perturbation around that point. For the numeric calculations, use $\epsilon = 0.1$ and approximate the values of $\frac{d}{du}f(u)|_{u_3}$ and $\frac{d}{du}g(u_3)|_{u_3}$ from figure 1.

2.4 Assume the neuron is at rest. Then, at t_0 we apply a pulse stimulus I(t) to this system:

$$I(t) = (u_3 - u_1)\delta(t - t_0)$$

Sketch the trajectory (u(t), w(t)) in Figure 1. (i)

Sketch the membrane potential u(t) vs. time in a new figure. (ii)

Make sure you get the two plots qualitatively correct: Clearly indicate important states, for example at $t < t_0$, at t_0 , and at $t > t_0$. Furthermore, in your u(t) plot, fast and slow regions should be distinguishable.

2.5 Referring to figure 1, discuss the effect of injecting pulse currents $I(t) = q\delta(t - t_0)$ of different amplitudes q into the neuron. What happens if we gradually increase q? Does this neuron model have a threshold?

Next lecture at 11:15

(2)

: (u.w) = 0 G (u,w) = 0 fixed point ≥ w3 w2 w1 0 1 u1 u2 uЗ 20 5 u4 u

Figure 1

4.2. Exercise

$\tau \frac{du}{dt} = F(u, w) + RI(t)$ $\frac{dw}{dw} = F(u, w)$

 $\tau_w \frac{dw}{dt} = G(u, w)$

pulse input *I(t)*

Blackboard 4: Saddle, stable manifold, Slow response

4.2 Bifurcations, simplifications

Bifurcations in neural modeling, Type I/II neuron models, Canonical simplified models

Nancy Koppell, Bart Ermentrout, John Rinzel, Eugene Izhikevich and many others

4.2. Summary: Limit cycles and neuron models

1) In 2 dimensions we have a powerful theorem: if we can find a bounding box around an unstable fixed such that all flow arrows point inside the box, then there must be a limit cycle.

2) We can change the stability of the fixed point(s) by a constant input. 3) The limit cycle MAY appear at the moment when the fixed point looses stability. In this case it would often be a limit cycle of small amplitude in the neighborhood of the fixed point.

4) But we can also observe bistability between the stable fixed point and a limit cycle.

5) Neuron models can be classified according to the bifurcation type that makes a limit cycle appear. Type 1 neuron models have a smooth f-l curve and are always linked to a saddle-node-onto limit cycle bifurcation. 6) Type 2 models can have various origins; an example is the subcritical Hopf-bifurcation

Biological Modeling of Neural Networks 3.1 From Hodgkin-Huxley to 2D

Week 4 **Reducing detail: Analysis of 2D models**

3.2 Phase Plane Analysis

3.3 Analysis of a 2D Neuron Model

4.1 Separation of time scales 4.2 Type I and II Neuron Models - limit cycles: constant input

4.3 Pulse input

- where is the firing threshold?

4.4. Further reduction to 1 dim

- nonlinear integrate-and-fire (again)

4.3. Threshold for Pulse Input in 2dim. Neuron Models

I(t)

Delayed spike

U

Reduced amplitude U

Review from 4.1: Saddle-node onto limit cycle bifurcation

4.3 Threshold for Pulse input

stimulus

 $\tau \frac{du}{dt} = F(u, w) + RI(t)$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

pulse input *I(t)*

Blackboard 4: Saddle, stable manifold, Slow response

4.3 Type I model: Pulse input

stimulus

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

pulse input

4.3 Type I model: Threshold for Pulse input

Stable manifold plays role of 'Threshold' (for pulse input)

4.3 Type I model: Delayed spike initation for Pulse input

Delayed spike initiation close to 'Threshold' (for pulse input)

Week 4– Quiz 4.2.

A. Threshold in a 2-dimensional neuron model with saddle-node bifurcation
 [] The voltage threshold for repetitive firing is always the same as the voltage threshold for pulse input.

[] in the regime below the saddle-node bifurcation, the voltage threshold for repetitive firing is given by the stable manifold of the saddle.

[] in the regime below the saddle-node bifurcation, the voltage threshold for action potential firing in response to a short pulse input is given by the stable manifold of the saddle point.

4.3 Threshold for pulse input in 2dim. Neuron Models

pulse input

I(t)

Delayed spike

neuron

Reduced amplitude

NOW: model with subc. Hopf

Review from 4.1: FitzHugh-Nagumo Model: Hopf bifurcation

stimulus

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

apply constant stimulus Io

u-nullcline

4.3 FitzHugh-Nagumo Model with pulse input

W

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

pulse input

Biological Modeling of Neural Networks 3.1 From Hodgkin-Huxley to 2D

Week 4 Reducing detail: Analysis of 2D models

3.2 Phase Plane Analysis

3.3 Analysis of a 2D Neuron Model

4.1 Separation of time scales 4.2 Type I and II Neuron Models - limit cycles: constant input

4.3 Pulse input

- where is the firing threshold?

- with separation of time scales

4.4. Further reduction to 1 dim

- nonlinear integrate-and-fire (again)

4.3 Separation of time scales, example FitzHugh-Nagumo Model

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$
Separation of time scale
pulse input $\tau_{w} \gg \tau_{u}$
I(t)

4.3 FitzHugh-Nagumo model: Threshold for Pulse input

Middle branch of u-nullcline plays role of 'Threshold' (for pulse input)

4.3 Detour: Separation fo time scales in 2dim models

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

Assumption:

 $\tau_w >> \tau_u$

trajectory -follows u-nullcline: slow -jumps between branches: fast

4.3 FitzHugh-Nagumo model: Threshold for Pulse input

4.2 Threshold for pulse input in 2dim. Neuron Models

Biological input scenario

Delayed spike

Mathematical explanation: Graphical analysis in 2D

Reduced amplitude

Week 4– Quiz 4.3.

B. Threshold in a 2-dimensional neuron model with subcritical Hopf bifurcation

[] in the regime below the Hopf bifurcation, the voltage threshold for action potential firing in response to a short pulse input is the middle branch of the u-nullcline.

[] in the regime below the bifurcation, a voltage threshold for action potential firing in response to a short pulse input exists only if $\tau_w >> \tau_u$

4.3. Summary: Pulse input and thresholds

Neuron models with Saddle-node-onto limit cycle bifurcation have

- a smooth f-l curve
- a well-defined threshold for pulse input: either and AP occurs or not. - Transition from subthreshold to superthreshold happens via an AP with very large delay.

Neuron models with subcritical Hopf-bifurcation have

- a non-smooth f-l curve
- not a well-defined voltage: there is a small regime where AP transforms into non-AP
- However, together with a separation of time scale, the middle branch of the u-nullcline acts as a voltage threshold.

The END The END

Biological Modeling of Neural Networks 3.1 From Hodgkin-Huxley to 2D

Week 4 **Reducing detail: Analysis of 2D models**

3.2 Phase Plane Analysis

3.3 Analysis of a 2D Neuron Model

4.1 Separation of time scales 4.2 Type I and II Neuron Models

- limit cycles: constant input

4.3 Pulse input

- where is the firing threshold?

4.4. Further reduction to 1 dim

- nonlinear integrate-and-fire (again)

4.4. Further reduction to 1 dimension

stimulus

$$\tau \frac{du}{dt} = F(u, w) + I(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

Separation of time scales

$$au_w >> au_u$$

→ Flux nearly horizontal

4.4. Further reduction to 1 dimension

2-dimensional equation stimulus

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w) \qquad \text{slow!}$$

Separation of time scales -w is nearly constant (most of the time)

4.4. Further reduction to 1 dimension

Hodgkin-Huxley reduced to 2dim

$$\tau \frac{du}{dt} = F(u, w) + I(t)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

$$\Im$$

$$3$$

$$2$$

$$2$$

$$3$$

$$2$$

$$3$$

Separation of time scales

$$\tau_{w} \xrightarrow{u} \tau_{u}$$

$$\tau_{w} \frac{dw}{dt} \approx 0 \rightarrow w \approx w_{rest}$$

 $>> \tau$

$$\tau \frac{du}{dt} = F(u, w_{rest}) + RI(t)$$

0

-1

Stable fixed point

During preparation/initation of spike

4.4. Spike initiation: Nonlinear Integrate-and-Fire Model

 $\tau \frac{du}{dt} = F(u, w_{rest}) + RI(t) = f(u) + RI(t)$ Image: Neuronal Dynamics, Gerstner et al., → Nonlinear I&F (see week 1!) During spike initiation, the 2D models with separation of time scales can be reduced to a 1D model equivalent to nonlinear integrate-and-fire

Cambridge Univ. Press (2014)

4.4. 2D model, after spike initiation

and downswing of AP

2-dimensional equation

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

Separation of time scales -wis constant (if not firing)

$$\tau \frac{du}{dt} = f(u) + RI(t)$$

Integrate-and-fire: threshold+reset for AP

4.4. From 2D to Nonlinear Integrate-and-Fire Model

2dimensional Model

Relevant during spike and downswing of AP

Nonlinear Integrate-and-Fire Model w-dynamics replaced by Threshold and reset in Integrate-and-ire

2-dimensional equation

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$F_w \frac{dw}{dt} = G(u, w)$$

Separation of time scales -w is constant (if not firing) $\tau \frac{du}{dt} = f(u) + RI(t)$ Linear plus exponential

Neuronal Dynamics – Literature for week 3 and 4.1

Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski, Neuronal Dynamics: from single neurons to networks and models of cognition. Chapter 4 Cambridge Univ. Press, 2014 OR J. Rinzel and G.B. Ermentrout, (1989). Analysis of neuronal excitability and oscillations. In Koch, C. Segev, I., editors, *Methods in neuronal modeling*. MIT Press, Cambridge, MA.

Selected references.

- -Ermentrout, G. B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Computation, 8(5):979-1001.
- -Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., and Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating input. J. Neuroscience, 23:11628-11640.
- -Badel, L., Lefort, S., Berger, T., Petersen, C., Gerstner, W., and Richardson, M. (2008). Biological Cybernetics, 99(4-5):361-370.
- E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press (2007)

4.3. Nonlinear Integrate-and-Fire Model

Exponential integrate-and-fire model (EIF)

$$f(u) = -(u - u_{rest}) + \Delta \exp(\frac{u - \vartheta}{\Delta})$$

$$\tau \frac{du}{dt} = F(u, w_{rest}) + RI(t) = f(u) + RI(t)$$

$$\rightarrow \text{Nonlinear I&F (see week)}$$

Image: Neuronal Dynamics, Gerstner et al., Cambridge Univ. Press (2014)

ek 1!)

Neuronal Dynamics – 4.2. Exponential Integrate-and-Fire Model

Direct derivation from Hodgkin-Huxley

$$C\frac{du}{dt} = -g_{Na} m^{3} h (u - E_{Na}) - g_{K} n^{4} (u - E_{K}) - g_{l} (u - E_{l}) + I(t)$$

$$C\frac{du}{dt} = -g_{Na}[m_0(u)]^3 h_{rest}(u - E_{Na}) - g_K[n_{rest}]^4(u - E_K) - g_l(u - E_l) + I(t)$$

$$\tau \frac{du}{dt} = F(u, h_{rest}, n_{rest}) + RI(t) = f(u) + RI(t)$$

Fourcaud-Trocme et al, J. Neurosci. 2003

$$f(u) = -(u - u_{rest}) + \Delta \exp(\frac{u - \vartheta}{\Delta})$$

gives expon. I&F

Neuronal Dynamics – Quiz 4.3.

A. Exponential integrate-and-fire model.

The model can be derived

[] from a 2-dimensional model, assuming that the auxiliary variable w is constant.
[] from the HH model, assuming that the gating variables h and n are constant.
[] from the HH model, assuming that the gating variables m is constant.
[] from the HH model, assuming that the gating variables m is instantaneous.

B. Reset.

[] In a 2-dimensional model, the auxiliary variable w is necessary to implement a reset of the voltage after a spike
[] In a nonlinear integrate-and-fire model, the auxiliary variable w is necessary to implement a reset of the voltage after a spike
[] In a nonlinear integrate-and-fire model, a reset of the voltage after a spike is implemented algorithmically/explicitly