.(Pﬂ- J 3.1 From Hodgkin-Huxley to 2D
Week 4 \l 3.2 Phase Plane Analysis
Reducing detail:

\J 3.3 Analysis of a 2D Neuron Model

Analysis of 2D models
Wulfram Gerstner 4.1 Separation of time scales
EPFL, Lausanne, Switzerland 4.2 Type | and Il Neuron Models
_ ; - limit cycles: constant input
Reading for week 4: ol 4 2 Dulse input
NEURONAL DYNAMICS m———— - where is the firing threshold’?
-Ch.4.4-4.7

Cambridge Univ. Press s



_ Weekd- Reviewiromweek3

-Reduction of Hodgkin-Huxley to 2 dimension
-step 1: separation of time scales

-step 2: exploit similarities/correlations



_ Weekd- Reviewfromweek3

du _ /I\Na _ - Iﬁ _ ) /\Ivleak\
C = ~Opna[MOF ) (U) -Ey) — g [N®I ) -Ex) —9,u®)-E)+1(t)
C o =90 M) (- WU~ E\) - 9, [T 0 -E )~ g, (1—E) +10)
1) dynamics of m are fast - m(t) =m, (u(t))
2) dynamics of h and n are similar - 1-n(t) =an(t)

Y Y t
dh  h-—h,(u) Wil Wi

dt 7. (U) dw wW—Ww, (U)

dn  n—ny,(u) | dt T oo (u)

dt z, (u)




_ Weekd- reviewfromweekd

2-dimensional equation

stimulus

2'(;—[: = F (u, w) + RI (t)

dw
T\ " =G(u,w)
Enables graphical analysis!
u -Pulse Input
du - AP firing (or not)
dt - Constant input
- repetitive firing (or not)

-> limit cycle (or not)




Week 4 — Reducing Detail - 2D models
ramp input/

- neuron
constant input
P 4 N
1o %
. /
Type | and type Il
f-1 curve ‘_ f-1 curve

LT

lo lo



stimulus

| W —— — o w-nullcline
Y Ew) 1 ()
dt
dw
= G(u,w
Zw e = G (U wW)
_ 1(t)=l,
apply constant stimulus I 1
au _
- dt
pacdeatt e T, u-nullcline




stimulus
du | W W _ o w-nulicline
T = F(u,w)+ (1)
dt
dw
T = G (u,w)
dt
(D=,
E—— du _
| dt

u-nullcline



~ 41Separationoftimescales = =000

stimulus

du |

= F(u,w) + RI (t \
T ( ) (t) Y,
dw
= G((Uu,w

Separation of time scales

Ty > T,

Blackboard 1

/MW

Al Stable fixed point
T > 17, — AW<< AU

Unless close to nullcline




Week 4 — Exercise 1 preparation

aw _
dt

=0

(t)=1,<0

NOow exercises




Exercise 1: Inhibitory rebound Start at 9:30
Next lecture at 9:40

Consider the following two-dimensional Fitzhugh-Nagumo

model: 2.0 W

i % — y (1 u:.g) w4 I = F(u,w)

T (1)
e(u—0.5w+1) =eG(u,w),

where € < 1.
e . . : u
1.1 Suppose that an inhibitory current step is applied, /
I, t<0
I{t) = { 0 >0
How does the fixed point move?
1.2 What happens after the driving current is removed? Jr;G:EI F=0

Sketch the form of the trajectories for increasing values of ! —2.0b |
Io. What happens for large I7



4.1. Summary: Separation of time scales

We have seen a first separation of time scales last week to remove the m-

variable. Today | have Iintroduced a second separation of time scale: the

w-variable is (in reality a bit) slower than the voltage variable.

For mathematical reasons we considered the limit where w iIs MUCH

slower than the voltage variable.

In this limit, the flow arrows are all horizontal — except in the region very

close to the u-nulicline.

This condition can be exploited for two interesting stimuli:

(1) A constant stimulus strong enough to evoke a limit cycle. In this case
the trajectory either jumps or follow the u-nulicline.

(1) A pulse stimulus. In this case, the voltage either goes rapidly back to
the fixed point or it takes a detour.

We look at both stimulation paradigms again throughout the lecture.



.(Pﬂ- J 3.1 From Hodgkin-Huxley to 2D
Week 4 \l 3.2 Phase Plane Analysis
Reducing detail:

\J 3.3 Analysis of a 2D Neuron Model
Analysis of 2D models

4.1 Separation of time scales

4.2 Type | and |l Neuron Models
- limit cycles: constant input

4.3 Pulse input

- where is the firing threshold?

4.4. Further reduction to 1 dim

- nonlinear integrate-and-fire (again)



_ Weekd- 42 TypelandliNeuronModels

. neuron
ramp Input/

. 4 N
constant input %
1o

- /

Type | and type Il models

f-1 curve f f-l curve

R

lo lo




Review: Nullclines change for constant stimulus

stimulus

| W AW _ o w-nullcline
Y Ew) 1 ()
dt
dw
= G(u,w
Zw e = G (U wW)
_ 1(t)=l,
apply constant stimulus [o 1
au _ g
dt

u-nullcline



4.2. Limit cycle (example: FitzHugh Nagumo Model)

stimulus
du |
= F(u,w)+ | (t
T ( ) + 1 (1)
dw
= G((Uu,w

-unstable fixed point
-closed boundary
with arrows pointing inside

- limit cycle

~ limit cycle




4.2. Limit Cycle

gL L=+ ¥ ¥ T 3 | | | |

2_* - - | 2_ 3

1_-_*’ ‘ - : \+-_-_ ;1_\ \ \ \ \\

SoF Lo Y E -
S
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x| Jratdhdiadindhd 2 |
— T, | = O T F B | l l |
-3 -2 -1 0 1 2 3 0 510, 100 150 200
u [mV] t [ms]
-unstable fixed point in 2D Image: Neuronal Dynamics,
. . h . d ﬂ Gerstner et al.,
-bOUﬂdlﬂg box with inwar oW Cambridge Univ. Press (2014)

-> limit cycle (Poincare Bendixson)



4.2. Limit Cycle

14%

In 2-dimensional equations,
a limit cycle must exist, If we can
find a surface

-containing one unstable fixed point
-no other fixed point
-bounding box with inward flow Image: Neuronal Dynamics,

. . . Gerstner et al.,
—> limit cycle (Poincare Bendixson) Cambridge Univ. Press (2014)




4.2 Type Il Model
constant input

stimulus
du |
T e F(u,w)+ I (1)
T Z\;V = G(u,w)
| Hopf bifurcation
iy

—

4 Discontinuous gai'n function
10
Stabllity lost = oscillation with finite frequency




4.1. Hopi bifurcation

unstable fixed point (y>0)

A=y+lw
A=y—lw
v <0

u(t) . stable fixed point (y<0)

T

Im(\),
v VA A aI - uﬂvﬂ\/\v/\v/ >
T Jom R ‘ol
y y Re(\)
O—> 1 >0

Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014)



4.2. Hopt bifurcation: /-/-curve

. A . f-Icurve
v Discontinuous
ramp input/ ya gain function: Type Il

constant input\ /

I|o | | IO

Hopf bifurcation: pair of complex Eigenvalues

Stablility lost = osclillation with finite frequency

Subcritical -2 local oscillation is also unstable, and
therefore jJump (in neuron models)
to a large limit cycle




B

4.2 Example: FitzHugh-Nagumeo / Hopf bifurcation
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4.2. Type land Il Neuron Models

. neuron
ramp Input/ -~ ~
constant input %

1o
- /
Now: Type | and type Il models
Type | model f-lcurve f-I curve

f

LT

lo lo




4.2. Type |l Neuron Models: saddie-node bifurcation

type | Model: 3 fixed points

stimulus

du |

T e F(u,w)+1(t)
dw
T o =G (U, w)

apply constant stimulus [o

Saddle-node bifurcation




4.2. Type | Neuron Models: saddie-node bifurcation

stimulus constant input
1
Y Ew) 1 ()
ot W dw
dw Y0
T =G (U, w) - dt
dt -

Blackboard 3: (t)=1,
- flow arrows, VA \ u
- ghost/ruins ’ ‘;—‘: 0




4.2. Type | Neuron Models: saddie-node bifurcation

stimulus constant input

du | W ;! dw
S8 = Fuw) 1 ® I

1 7/
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4.2. Example: Morris-Lecar as type | Model
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4.2. Example: Morris-Lecar as type | Model

stimulus
1
f‘;‘: — F(u, W)+ I (t)
d_W W= W (U)
dt z-eff (U)

W, (U) = 0.5[1+ tanh(42)]

o Low-frequency firing dt




4.2. Type land Il Neuron Models

Response at firing threshold?

Type | type |l
Saddle-Node For example:
Onto limit cycle Subcritical Hopf
ramp Input/ + f-l curve : f-1 curve

constant input /
i / |

lo lo




4.2. Typeland Il Neuron Models

2-dimensional equation

stimulus
du
—_Fuw+th
e (U, w) (t)
dw
—=0G(u,w
Tw o (u,w)

Enables graphical analysis!

Constant input
- repetitive firing (or not)
-> limit cycle (or not)

ramp Input/

constant input

neuron

[ 16

>

. /

Type | and type Il models

f-1 curve

T

lo

f

f-1 curve

—

lo



Neuronal Dynamics — Quiz4.1.

@__________________________________Mq

A. 2-dimensional neuron model with (supercritical) saddle-node-
onto-limit cycle bifurcation

[ ] The neuron model Is of type |l, because there is a jJump In the f-I

curve

[ ] The neuron model is of type |, because the f-I curve Is continuous

[ ] The neuron model is of type |, if the limit cycle passes through a

regime where the flow Is very slow.

B. Threshold in a 2-dimensional neuron model with subcritical
Hopf bifurcation
[ ] The neuron model is of type Il, because there is a jump In the f-I
curve
| ] The neuron model is of type |, because the f-1 curve Is continuous
[ ] starting with zero current, and slowly increasing the current, Is this
true?

" In the regime below the Hopf bifurcation, the neuron Is

at rest or will necessarily converge to the resting state”



Week 4 - Exercise 2.1-2.5: NOW!

aw _
dt

=0

(t)=1,<0

NOow exercises



Exercise 2: Phase Plane Analysis Next IeCtu re a-t 11. 15

In this exercise, we use the phase plane to study the dynamics of a two dimensional, nonlinear neuron
model. The system is described by:

—F(UW) =0

L '_.‘: ......... Gluw)=0
= F(u,w) ® fixed point

(2)

d
mu
dw = G(u,w)

where F(u,w) = f(u) —w + I(t) and G(u,w) = e(g(u) — w) with ¢ = 0.1. I(t) is an external current.

Figure 1 shows the u- and w-nullclines for the case I(t) = 0:
2.1 Given F'(ug4,0) = 5,G(uy,0) = 1, draw a few flow arrows along the two nullclines in figure 1.

2.2 Without doing any computation, can you determine the stability of the fixed point 2 (the one at

(u2,ws))? Justify your answer.

2.3 Discuss the stability of the third fixed point (the one at (u3,ws)) analytically. That is, linearize the

system at the fixed point 3 and discuss the evolution of a small perturbation around that point. For the

g T3 . & : A 1 — & L3 - i E ., i £ f_j v : .
numeric calculations, use € = 0.1 and approximate the values of ,if.-,,f(”)lua and --g (”d)lua from figure 1. F I g U re 1

2.4 Assume the neuron is at rest. Then, at ¢y we apply a pulse stimulus I(t) to this system:

I(ﬂ) p— (’-’_L;:; — H1)5(£ — f,n)
(i) Sketch the trajectory (u(t),w(#)) in Figure 1.

(ii) Sketch the membrane potential u(t) vs. time in a new figure.

Make sure you get the two plots qualitatively correct: Clearly indicate important states, for example at
t < tg, at ty, and at t > {,. Furthermore, in your u(t) plot, fast and slow regions should be distinguishable.

2.5 Refering to figure 1, discuss the effect of injecting pulse currents I(t) = ¢do(t — tg) of different
amplitudes ¢ into the neuron. What happens if we gradually increase ¢ 7 Does this neuron model have

a threshold?



stimulus BIaCkbOard 4:
du | Saddle, stable manifold,
T = F (u,w) + RI (1)
dt Slow response
dw dw
(2} dt :G(U,W) W IE_O
pulse Input

I(t) -

/ du_

stable dt




4.2 Bifurcations, simplifications

Bifurcations in neural modeling,
Type I/l neuron models,
Canonical simplified models

Nancy Koppell,
Bart Ermentrout,
John Rinzel,
Eugene Izhikevich
and many others



4.2. Summary: Limit cycies and neuron models

1) In 2 dimensions we have a powerful theorem: If we can find a bounding
box around an unstable fixed such that all flow arrows point inside the
box, then there must be a limit cycle.

2) We can change the stabllity of the fixed point(s) by a constant input.

3) The limit cycle MAY appear at the moment when the fixed point looses
stability. In this case it would often be a limit cycle of small amplitude In
the neighborhood of the fixed point.

4) But we can also observe bistablility between the stable fixed point and a
limit cycle.

5) Neuron models can be classified according to the bifurcation type that
makes a limit cycle appear. Type 1 neuron models have a smooth f-
curve and are always linked to a saddle-node-onto limit cycle bifurcation.
6) Type 2 models can have various origins; an example Is the subcritical
Hopf-bifurcation



.(Pﬂ- J 3.1 From Hodgkin-Huxley to 2D
Week 4 \l 3.2 Phase Plane Analysis
Reducing detail:

\J 3.3 Analysis of a 2D Neuron Model
Analysis of 2D models

4.1 Separation of time scales
4.2 Type | and |l Neuron Models

- limit cycles: constant input

4.3 Pulse input
- where is the firing threshold?
4.4. Further reduction to 1 dim

- nonlinear integrate-and-fire (again)




4.3. Threshold for Puise Input in 2dim. Neuron Models

. neuron
pulse Iinput -~ ~
(1) %

Delayed spike

Reduced amplitude




Review from 4.1: Saddle-node onto limit cycle bifurcation

stimulus

l
r‘;‘: — F(u, W) + RI (1)
T aw = G(u,w)

v dt




4.3 Threshold for Puise input

stimulus BIaCkbOard 4:
du | Saddle, stable manifold,
T = F (u,w) + RI (1)
dt Slow response
dw
=G(u,w .
(2YY d t ( ) W (:j_\iv 9

pulse Input
(D)

__________

/ /ddllmstable du _
stable >2UY€ dt




4.3 Type 1 model: Pulse input

stimulus

l
f‘;‘: — F(u, W) + RI (1)

dw
= G((Uu,w
zw - =GUwW)

pulse Input

Threshold
for pulse Input



4.3 Type | model: Threshold for Puise input

I
—60 —40 —20 0 20

—0.2

U

Stable manifold plays role of Image: Neuronal Dynamics,

Gerstner et al.,

‘Threshold’ (for pUlSG mput) Cambridge Univ. Press (2014)



0.3
0.2
S 0.1
0.0
—0.1

S

20

0

—20

—40

—60

Delayed spike Initiation close to

‘Threshold’ (for pulse input)

4.3 Type | model: Delayed spike initation for Pulse input

I —

0

20 40 60 80
t [ms]
Image: Neuronal Dynamics,

Gerstner et al.,
Cambridge Univ. Press (2014)




Week 4- Quiz4.2.

A. Threshold in a 2-dimensional neuron model with saddle-node bifurcation
[] The voltage threshold for repetitive firing is always the same
as the voltage threshold for pulse input.

[ ] In the regime below the saddle-node bifurcation, the voltage threshold for
repetitive firing Is given by the stable manifold of the saddle.

[ ] In the regime below the saddle-node bifurcation, the voltage threshold for
action potential firing in response to a short pulse input Is given by the stable
manifold of the saddle point.




4.3 Threshold for puise Input in 2dim. Neuron Models

. neuron
pulse Iinput - ~
I(t) § %/\
N /

Delayed spike Reduced amplitude

NOW: model with subc. Hopf



Review from 4.1; FitzHugh-Nagumo Model: Hopt bifurcation

stimulus

l ‘_ ~—— =0 w-nullcline
299 _ Eww) + RI(@®) W
dt
dw
=G((u,w
Tw e = G U, W)
_ 1(t)=l,
apply constant stimulus [o 1
du _ 5
dt

u-nullcline



stimrlus
du
T = F (u,w) + RI (1)
dt
dw W
Twgr T G(u, w) No explicit
threshold
pu|Se input for pUISe iﬂpUt
10
u>
\[au_,
dt

Stable fixed point 1(1)=0




Biological Modeling of Neural NeFm nggllgggkm Huxley to 2D

B
We:k4 NNNNN | 32 Phase Plane Analysis
Reducing detail: d 3.3 Analysis of a 2D Neuron Model

Analysis of 2D models
4.1 Separation of time scales

4.2 Type | and |l Neuron Models
- limit cycles: constant input

4.3 Pulse input

- where is the firing threshold?

4.4. Further reduction to 1 dim

- nonlinear integrate-and-fire (again)



stimulus

du | dw
— F (u, RI (t ‘. aw _
T dt (u W)—I— ( ) W A T O
dw
= G((Uu,w

Separation of time scales
pUISe input Tw == Ty
(t)

Stable fixed point




4.3 FitzHugh-Nagumo model: Threshold for Puise input

Assumption,

2.0 ' : '
w=0 _
/ Tw >>Z'u 1o -
0.0 -
= 0.0 ¢ = |
~1.0 -
2.0 -
-3.0 0.0 3.0 0.0 5?.0 100.0
U

Middle branch of u-nulicline
plays role of Image: Neuronal Dynamics,

Gerstner et al.,

‘Threshold’ (for pulse input) Cambridge Univ. Press (2014)



stimulus

du l W
T = F (u,w) + RI (1)

dt

dw

= G((Uu,w

Ty =G U, W)
Assumption:

TW >>Z'u

Image: Neuronal Dynamics,
Gerstner et al.,
Cambridge Univ. Press (2014)



4.3 FitzHugh-Nagumo model: Threshold for Pulse input

S0 Assumption; ~slow
£ s> T o
_ slow slow L0 s
~1.0 -
20 |
slow
-2.0
-3.0 0.0 3.0 0.0 50.0 100.0
U [
trajectory
-follows u-nullcline: slow Image: Neuronal Dynamics,

Gerstner et al.,

'ijpS between branches:- Cambridge Univ. Press (2014)



4.2 Threshold for puise Input in 2dim. Neuron Models

. neuron
pulse Iinput - ~
1(t) - %
Biological input scenario '
N /
Delayed spike Reduced amplitude
U | U |

Mathematical explanation:
Graphical analysis in 2D




 Week4-Quiz43.

B. Threshold in a 2-dimensional neuron model with subcritical Hopf bifurcation
[ ] In the regime below the Hopf bifurcation, the voltage threshold for action potential
firing In response to a short pulse input Is the middle branch of the u-nulicline.

[ ] In the regime below the bifurcation, a voltage threshold for action potential firing In
response to a short pulse input exists only if 7, >>7,




~4.3.Summary: Pulse input and thresholds

Neuron models with Saddle-node-onto limit cycle bifurcation have

- a smooth f-I curve

- a well-defined threshold for pulse input: either and AP occurs or not.

- Transition from subthreshold to superthreshold happens via an AP with
very large delay:.

Neuron models with subcritical Hopf-bifurcation have

- a non-smooth f-I curve

- not a well-defined voltage: there Is a small regime where AP transforms
INto non-AP

- However, together with a separation of time scale, the middle branch of
the u-nullcline acts as a voltage threshold.



The END
The END




.(Pﬂ- J 3.1 From Hodgkin-Huxley to 2D
Week 4 \l 3.2 Phase Plane Analysis
Reducing detail:

\J 3.3 Analysis of a 2D Neuron Model
Analysis of 2D models

4.1 Separation of time scales
4.2 Type | and |l Neuron Models
- limit cycles: constant input

4.3 Pulse input

- where Is the firinc threshold’?




4.4. Further reduction to 1dimension

stimulus

du | W
= F(u,w) + | (t

T ( )+ 1(t)

dw
= G((Uu,w

Separation of time scales

Ty > T,

- Flux nearly horizontal

Stable fixed point




4.4. Further reduction to 1dimension

2-dimensional equation

stimulus

rd—u = F(u, w) Rll(t)

dt
dw
T gy G(u,w) slow!

Separation of time scales
-W IS nearly constant

(most of the time)



4.4. Further reduction to 1dimension

Hodgkin-Huxley reduced to 2dim

L I I | I I
du 3 F -
r—=F(Uu,w)+I(t) : /d—W=0
dt 5L 2 ]
dw G = (
TW - — G U, W = 1 L |
o (U, w) < 1 B
Separation of time scales 3 %: 0
{
TW >> Tu I I I I *
dw —60 —40 —20 0 20 40
Tw E ~0—> w= Whest u [mV]
du Stable fixed point
r—=F(U,W)+RI({) ——— During preparation/initation of spike

dt



4.4. Spike intiation: Nonlinear Integrate-and-Fire Model

10 | -
>, 8F
§ 1k Uyest |
\3“ 2 L 19 7 cset
= [
0 - |
_2 l L1 I _50 I I I
—50 0 50 -80 —-70 —60 =50
uw [MV] w [MV]
du Image: Neuronal Dynamics
TE = F(u, Wrest) +RI(t) = T(u)+RI(t) Gerstner et al.,

. Cambridge Univ. P 2014
> Nonlinear I&F (see week 1) ambridge Univ. Press (2014)

During spike initiation, the 2D models with separation of time scales
can be reduced to a 1D model equivalent to nonlinear integrate-and-fire



4.4. 2D model, after spike initiation

NI 2-dimensional equation
)L i M F(uw)+RI(t)
G =0 dt
= 1r - dw
S —— ., —=G0G(u,w
0 ' //:"4 4——% > dt ( )
L LYF= aration of time scales

-W IS constant (If not firing)
T(;—l: = f (u)+RI(t)

Integrate-and-fire:
threshold+reset for AP

|
—60 —40 —20 0 20
w [mV]

Relevant during spike
and downswing of AP



44. from2D to Nonlinear Integrate-and-Fire Model

2-dimensional equation
du

2dimensional Model T T F(u,w) +RI(t)
Relevant during spike dw
and downswing of AP C Wt GU,w)

Separation of time scales

Nonlinear Integrate-and-Fire Model W IS constant (it not firing)

w-dynamics replaced by fd—u = f (u)+RI(t)

Threshold and reset In at \
Integrate-and-ire Linear plus exponential



Neuronal Dynamics — Literature for week 3 and 4.1

Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski,

Neuronal Dynamics: from single neurons to networks and

models of cognition. Chapter 4 Cambridge Univ. Press, 2014

OR J. Rinzel and G.B. Ermentrout, (1989). Analysis of neuronal excitability and oscillations.
In Koch, C. Segeyv, |., editors, Methods in neuronal modeling. MIT Press, Cambridge, MA.

Selected references.

-Ermentrout, G. B. (1996). Type | membranes, phase resetting curves, and synchrony.
Neural Computation, 8(5):979-1001.

-Fourcaud-Trocme, N., Hansel, D., van Vreeswik, C., and Brunel, N. (2003). How spike
generation mechanisms determine the neuronal response to fluctuating input.

J. Neuroscience, 23:11628-11640.

-Badel, L., Lefort, S., Berger, T., Petersen, C., Gerstner, W., and Richardson, M. (2008).
Biological Cybernetics, 99(4-5):361-370.

- E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press (2007)



— 100 -
>
Exponential integrate-and-fire model é 100 -
(EIF) g _
f (U) — —(U o urest) T Aexp(%) E':
oy 0
_ O I I I
—&0 —70 —60 —o0)
u [MV]
du Image: Neuronal Dynamics,
TE = F(u, Wrest) +RI(t) = T(u)+RI(t) Gerstner et al.,

_ Cambridge Univ. Press (2014)
- Nonlinear I1&F (see week 1!)



Neuronal Dynamics - 4.2. Exponential Integrate-and-Fire Model

Direct derivation from Hodgkin-Huxley

du
CE:_gNa rnsh(u_ENa)_gKn4 (U_EK)_QI(U_EI)_I_I(t)

du

C E = _gNa[mO (U)]3 hrest (U o ENa) — 0k [nrest]4 (U o EK) —0 (U o EI) + | (t)

Fourcaud-Trocme et al, J. Neurosci. 2003
f(u)=—(-u,,)+Aexp(*:=)

rest

PSRN +RIO = FW+RIQ  OIves expon. 1&F



Neuronal Dynamics — Quiz4.3.

A. Exponential integrate-and-fire model.

The model can be derived

[ ] from a 2-dimensional model, assuming that the auxiliary variable w is constant.
[ ] from the HH model, assuming that the gating variables h and n are constant.

[ ] from the HH model, assuming that the gating variables m is constant.

[ ] from the HH model, assuming that the gating variables m Is instantaneous.

B. Reset.

[ ] In a 2-dimensional model, the auxiliary variable w Is necessary to implement a
reset of the voltage after a spike

[ ] In a nonlinear integrate-and-fire model, the auxiliary variable w Is necessary to

Implement a reset of the voltage after a spike

[ ] In a nonlinear integrate-and-fire model, a reset of the voltage after a spike Is

iImplemented algorithmically/explicitly




