
Biological Modeling of Neural Networks

Week 4 

Reducing detail:

Analysis of 2D models

Wulfram Gerstner

EPFL, Lausanne, Switzerland

3.1 From Hodgkin-Huxley to 2D

3.2 Phase Plane Analysis

3.3 Analysis of  a 2D Neuron Model

4.1 Separation of time scales

4.2 Type I and II Neuron Models
- limit cycles: constant input

4.3 Pulse input
- where is the firing threshold?

4.4. Further reduction to 1 dim

- nonlinear integrate-and-fire (again)

Reading for week 4:

NEURONAL DYNAMICS

- Ch. 4.4 – 4.7 

Cambridge Univ. Press



-Reduction of Hodgkin-Huxley to 2 dimension
-step 1: separation of time scales

-step 2: exploit similarities/correlations

Week 4 – Review from week 3
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Week 4 – Review from week 3
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Week 4 – review from week 3

Enables graphical analysis!
-Pulse input 

 AP firing (or not)

- Constant input

 repetitive firing (or not)

 limit cycle (or not)

2-dimensional equation
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Week 4 – Reducing Detail – 2D models

Type I and      type II 

I0 I0

f
f-I curve f-I curve

ramp input/

constant input

I0

neuron



4.1 Nullclines change for  constant stimulus
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4.1 Separation of time scales
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4.1. Separation of time scales
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Week 4 – Exercise 1 preparation

Now exercises



Start at 9:30

Next lecture at 9:40



4.1. Summary: Separation of time scales

We have seen a first separation of time scales last week to remove the m-

variable.  Today I have introduced a second separation of time scale: the 

w-variable is (in reality a bit) slower than the voltage variable.

For mathematical reasons we considered the limit where w is MUCH 

slower than the voltage variable.

In this limit, the flow arrows are all horizontal – except in the region very 

close to the u-nullcline.

This condition can be exploited for two interesting stimuli: 

(i) A constant stimulus strong enough to evoke a limit cycle. In this case 

the trajectory either jumps or follow the u-nullcline.

(ii) A pulse stimulus. In this case, the voltage either goes rapidly back to 

the fixed point or it takes a detour.

We look at both stimulation paradigms again throughout the lecture.
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Week 4 – 4.2.  Type I and II Neuron Models

Type I and type II  models

I0 I0

f
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ramp input/

constant input

I0

neuron



Review:  Nullclines change for  constant stimulus
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4.2. Limit cycle (example: FitzHugh Nagumo Model)
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4.2.  Limit Cycle

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)

-unstable fixed point in 2D

-bounding box with inward flow

 limit cycle  (Poincare Bendixson)



4.2.  Limit Cycle

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)

-containing one unstable fixed point

-no other fixed point 

-bounding box with inward flow

 limit cycle  (Poincare Bendixson)

In 2-dimensional equations,

a limit cycle must exist, if we can

find a surface  



4.2 Type II Model 

constant input
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4.1.  Hopf bifurcation
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Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)
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Blackboard 2



I0

 Discontinuous

gain function: Type II

Hopf bifurcation: pair of complex Eigenvalues

Stability lost  oscillation with finite frequency

Subcritical     local oscillation is also unstable, and 

therefore jump (in neuron models)

to a  large limit cycle

4.2.  Hopf bifurcation:  f-I -curve

f-I curve

ramp input/

constant input

I0



4.2 Example: FitzHugh-Nagumo /  Hopf bifurcation

I=0

I>Ic



4.2. Type I and II Neuron Models

Type I and type II  models

I0 I0

f
f-I curve f-I curve

ramp input/

constant input

I0

neuron

Now:

Type I model



type I Model: 3 fixed points
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4.2.  Type I Neuron Models: saddle-node bifurcation

apply constant stimulus I0

size of arrows!
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Blackboard 3:

- flow arrows, 

- ghost/ruins

4.2.  Type I Neuron Models: saddle-node bifurcation

constant input 
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4.2.  Type I Neuron Models: saddle-node bifurcation



4.2. Example: Morris-Lecar as type I Model

I=0

I>Ic
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4.2. Example: Morris-Lecar as type I Model



Response at  firing threshold?

ramp input/

constant input

I0

Type I                    type II

I0 I0

ff

f-I curve f-I curve

Saddle-Node

Onto limit cycle
For example:

Subcritical Hopf

4.2. Type I and II Neuron Models



4.2.  Type I and II Neuron Models

Type I and type II  models

I0 I0

f
f-I curve f-I curve

ramp input/

constant input

I0

neuron

Enables graphical analysis!

Constant input

 repetitive firing (or not)

 limit cycle (or not)

2-dimensional equation
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Neuronal Dynamics – Quiz 4.1.
A. 2-dimensional neuron model with (supercritical) saddle-node-

onto-limit cycle bifurcation 

[ ] The neuron model is of type II, because there is a jump in the f-I 

curve

[ ] The neuron model is of type I, because the f-I curve is continuous

[ ] The neuron model is of type I, if the limit cycle passes through a 

regime where the flow is very slow.

B. Threshold in a 2-dimensional neuron model with subcritical 

Hopf bifurcation 

[ ] The neuron model is of type II, because there is a jump in the f-I 

curve

[ ] The neuron model is of type I, because the f-I curve is continuous

[ ] starting with zero current, and slowly increasing the current, is this 

true?  

“ in the regime below the Hopf bifurcation, the neuron is

at rest or will necessarily converge to the resting state”
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Week 4 - Exercise 2.1-2.5: NOW! 

Now exercises



Next lecture at 11:15

Figure 1
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4.2. Exercise
Blackboard 4:

Saddle, stable manifold, 

Slow response



4.2 Bifurcations, simplifications

Bifurcations in neural modeling,

Type I/II neuron models,

Canonical simplified models

Nancy Koppell,

Bart Ermentrout,

John Rinzel,

Eugene Izhikevich

and many others



4.2. Summary: Limit cycles and neuron models

1) In 2 dimensions we have a powerful theorem: if we can find a bounding 

box around an unstable fixed such that all flow arrows point inside the 

box, then there must be a limit cycle.

2) We can change the stability of the fixed point(s) by a constant input.

3) The limit cycle MAY appear at the moment when the fixed point looses 

stability. In this case it would often be a limit cycle of small amplitude in 

the neighborhood of the fixed point. 

4) But we can also observe bistability between the stable fixed point and a 

limit cycle.

5) Neuron models can be classified according to the bifurcation type that 

makes a limit cycle appear. Type 1 neuron models have a smooth f-I 

curve and are always linked to a saddle-node-onto limit cycle bifurcation. 

6) Type 2 models can have various origins; an example is the subcritical 

Hopf-bifurcation
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4.3. Threshold for Pulse Input in 2dim. Neuron Models
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4.3 Threshold for Pulse input
Blackboard 4:

Saddle, stable manifold, 

Slow response
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4.3  Type I model: Pulse input



4.3 Type I model: Threshold for Pulse input

Stable manifold plays role of

‘Threshold’ (for pulse input)

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)



4.3 Type I model: Delayed spike initation for Pulse input

Delayed spike initiation close to

‘Threshold’ (for pulse input)

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)



Week 4– Quiz 4.2.
A. Threshold in a 2-dimensional neuron model with saddle-node bifurcation 

[ ] The voltage threshold for repetitive firing is always the same

as the voltage threshold for pulse input.

[ ] in the regime below the saddle-node bifurcation, the voltage threshold for 

repetitive firing  is given by the stable manifold of the saddle.

[ ] in the regime below the saddle-node bifurcation, the voltage threshold for 

action potential firing in response to a short pulse input is given by the stable 

manifold of the saddle point. 



4.3 Threshold for pulse input in 2dim. Neuron Models

pulse input

I(t)

neuron

u

Delayed spike

u

Reduced amplitude

NOW: model with subc. Hopf



Review from 4.1: FitzHugh-Nagumo Model: Hopf bifurcation
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4.3  FitzHugh-Nagumo Model  with pulse input
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4.3 Separation of time scales, example FitzHugh-Nagumo Model
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4.3  FitzHugh-Nagumo model: Threshold for Pulse input

Middle branch of u-nullcline

plays role of

‘Threshold’ (for pulse input)

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)
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4.3 Detour: Separation fo time scales in 2dim models

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)
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4.3 FitzHugh-Nagumo model: Threshold for Pulse input

trajectory 

-follows u-nullcline:

-jumps between branches:  

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)
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Assumption:

slowslow

slow

slow

fast

fast

slow

fast



4.2 Threshold for pulse input  in 2dim. Neuron Models

pulse input

I(t)

neuron

u

Delayed spike

u

Reduced amplitude

Biological input scenario

Mathematical explanation:

Graphical analysis in 2D



Week 4– Quiz 4.3.

B. Threshold in a 2-dimensional neuron model with subcritical Hopf bifurcation 

[ ] in the regime below the Hopf bifurcation, the voltage threshold for action potential 

firing in response to a short pulse input is the middle branch of the u-nullcline.

[ ] in the regime below the  bifurcation, a voltage threshold for action potential firing in 

response to a short pulse input exists only if uw  



4.3. Summary: Pulse input and thresholds

Neuron models with Saddle-node-onto limit cycle  bifurcation have

- a smooth f-I curve

- a well-defined threshold for pulse input: either and AP occurs or not.

- Transition from subthreshold to superthreshold happens via an AP with 

very large delay.

Neuron models with subcritical Hopf-bifurcation have

- a non-smooth f-I curve

- not a well-defined voltage: there is a small regime where AP transforms 

into non-AP

- However, together with a separation of time scale, the middle branch of 

the u-nullcline acts as a voltage threshold.



The END

The END
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4.4.  Further reduction to 1 dimension

Separation of time scales

 Flux nearly horizontal



4.4. Further reduction to 1 dimension

Separation of time scales
-w is nearly constant 

(most of the time)

2-dimensional equation
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4.4.  Further reduction to 1 dimension

Hodgkin-Huxley reduced to 2dim
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4.4.  Spike initiation: Nonlinear Integrate-and-Fire Model

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)
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 Nonlinear I&F (see week 1!)
During spike initiation, the 2D models with separation of time scales

can be reduced to a 1D model equivalent to nonlinear integrate-and-fire



4.4.  2D model, after spike initiation

Separation of time scales

-w is  constant (if not firing) 

2-dimensional equation
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Integrate-and-fire:

threshold+reset for AP 



2dimensional Model

Separation of time scales

-w is  constant (if not firing) 

2-dimensional equation
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4.4.  From 2D    to      Nonlinear Integrate-and-Fire Model

Nonlinear Integrate-and-Fire Model



Neuronal Dynamics – Literature for week 3 and 4.1
Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski,

Neuronal Dynamics: from single neurons to networks and 

models of cognition. Chapter 4 Cambridge Univ. Press, 2014

OR J. Rinzel and G.B. Ermentrout,  (1989). Analysis of neuronal excitability and oscillations. 

In Koch, C. Segev, I., editors, Methods in neuronal modeling. MIT Press, Cambridge, MA. 

Selected references.

-Ermentrout, G. B. (1996). Type I membranes, phase resetting curves, and synchrony. 

Neural Computation, 8(5):979-1001.

-Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., and Brunel, N. (2003). How spike 

generation mechanisms determine the neuronal response to fluctuating input. 

J. Neuroscience, 23:11628-11640.

-Badel, L., Lefort, S., Berger, T., Petersen, C., Gerstner, W., and Richardson, M. (2008). 

Biological Cybernetics,  99(4-5):361-370.

- E.M. Izhikevich, Dynamical Systems in Neuroscience, MIT Press (2007)



4.3.  Nonlinear Integrate-and-Fire Model

Image: Neuronal Dynamics, 

Gerstner et al.,

Cambridge Univ. Press (2014)
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 Nonlinear I&F (see week 1!)
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Exponential integrate-and-fire model

(EIF)



Neuronal Dynamics – 4.2.  Exponential Integrate-and-Fire Model
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Direct derivation from Hodgkin-Huxley

Fourcaud-Trocme et al, J. Neurosci. 2003



Neuronal Dynamics – Quiz 4.3.
A. Exponential integrate-and-fire model.  

The model can be derived

[ ] from a 2-dimensional model, assuming that the auxiliary variable w is constant.

[ ] from the HH model, assuming that the gating variables h and n are constant.

[ ] from the HH model, assuming that the gating variables m is constant.

[ ] from the HH model, assuming that the gating variables m is instantaneous.

B.  Reset. 

[ ] In a 2-dimensional model, the auxiliary variable w is necessary to implement a 

reset of the voltage after a spike

[ ] In a nonlinear integrate-and-fire model, the auxiliary variable w is necessary to 

implement a  reset of the voltage after a spike

[ ] In a nonlinear integrate-and-fire model,  a  reset of the voltage after a spike is 

implemented algorithmically/explicitly


