Biomass: biogases

BIOGAS

Sources for biogas generation

=> essentially wet wastes, too inefficient too burn:

 organic industrial effluents 	<5% organic dry matter
 sewage 	5%
 farming residues 	10%
 solid wastes (digesters, landfill) 	>20%
 municipalities (≈20 m³/yr.person) 	MSW
 industry 	ISW
- >100 m ³ biogas produced per tonne	'solid' waste (≈20% org. solids)

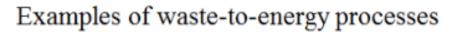
 - >100 m³ biogas produced per tonne 'solid' waste (≈20% org. solids) (ca. 500 L biogas per kg organic dry matter)

When to digest waste?

Waste disposal scheme options, in particular for organics :

- incineration:
- composting:
- methanisation:
- landfill:

for **solid** wastes


= aerobic; for farming (fertilising)

= anaerobic digestion

as a lesser option, when none of the other options apply...; landfilling, however, is restricted in the case of <u>organic</u> wastes

=> most appropriate for liquid wastes with an organic fraction

EU "waste-to-energy hierarchy"

Anaerobic digestion of organic waste where the digestate is recycled as a fertliser

Waste incineration and co-incineration operations with a high level of energy recovery Reprocessing of waste into materials that are to be used as solid, liquid or gaseous fuels

Waste incineration and co-incineration operations with limited energy recovery Utilisation of captured landfill gas

"The role of waste-to-energy in the <u>circular economy</u>", Brussels, 26.1.2017 COM(2017) 34 final

Anaerobic digestion - AD (1)

- =transformation of organic matter by microorganisms (bacteria) in absence of O₂
- internal reduction + oxidation breakdown of the biomass polymers (C-H-O) to the simplest building blocks :

CH₄ (fully reduced) + **CO**₂ (fully oxidized) => biogas

- mature market technology
- drawback: lignine is nearly undigestable, cellulose is difficult to digest

=> AD is a slow process (10-20 days residence time), occurring at ≈35-55°C

Digestion process (2)

4 distinct steps in time; using 3 different bacterial groups

1. Hydrolysis (uses exo-enzymes)

= the *slowest* of the 4 steps (<u>rate-determining</u>)

breaks solid org. matter down to liquified monomeres & dimeres:

cellulose \rightarrow cellobiose + glucose

starch \rightarrow maltose + glucose

2. Digestion

= formation of organic acids

acetic / propionic / butyric acid (= $C_2/C_3/C_4$ -OOH), lactic acid, ethanol, and little H₂ and CO₂

Digestion process (3)

3. 'Acidogenesis'

higher acids break down to CH_3COOH (acetic acid), H_2 and CO_2 , approximatively as in the overall reaction:

 $C_6H_{12}O_6 + 2H_2O \rightarrow 2 CH_3COOH + 2 CO_2 + 4 H_2$

4. 'Methanogenesis': a. $2CH_3COOH \rightarrow 2 CH_4 + 2 CO_2$ (70-80% of CH_4 product)

b. $CO_2 + 4 H_2 \rightarrow CH_4 + 2 H_2O$ (20-30% of CH_4 product)

Reactions a & b take place upon different bacterial actions. These 2 parallel CH_4 -synthesis reactions explain why biogas compositions typically are (60±5)% CH_4 and (40±5%) CO_2

Overall approximation: $C_6H_{12}O_6 \rightarrow 3CH_4 + 3CO_2$

Anaerobic digestion - AD (4)

- The main objective for <u>sewage and similar effluents</u> (e.g. food industry) is waste treatment, i.e. depollution of liquid streams that are too heavily charged in organics, which cannot be discharged directly into the aquatic ecosystem; hence biogas is here mainly a by-product (energy recovered to power the "depollution plant")
- However, in the case of largely untapped <u>farm waste</u> (manure, crop residues) and <u>MSW/ISW</u>, biogas is not a byproduct but an active <u>energy vector</u> (and especially for valorisation into electricity production, in gas <u>engines</u> or <u>fuel cells</u>)

Chemical formulae for biogas generation

<u>'Buswell' formula:</u>

 $C_a H_b O_c + \left[a - \frac{1}{4}b - \frac{1}{2}c\right] H_2 O \rightarrow \left(\frac{1}{2}a + \frac{1}{8}b - \frac{1}{4}c\right) C H_4 + \left(\frac{1}{2}a - \frac{1}{8}b + \frac{1}{4}c\right) C O_2$ e.g. for **manure**, approximated as $C_4H_8O_2$ (butyric acid): $C_4 H_8 O_2 + [4 - 2 - 1] H_2 O \rightarrow (2 + 1 - \frac{1}{2}) C H_4 + (2 - 1 + \frac{1}{2}) C O_2 = \frac{5}{8} C H_4 + \frac{3}{8} C O_2$ <u>'Buswell-Boyle'</u> (with N, S): $C_a H_b O_c N_d S_e + \frac{1}{4} [4a - b - 2c + 3d + 2e] H_2 O_c$ $\rightarrow \frac{1}{8}(4a+b-2c-3d-2e)CH_4$ + $\frac{1}{8}(4a - b + 2c + 3d + 2e)CO_2$ + dNH_3 + eH_2S

<u>Remark</u>: CO_2 , NH_3 , H_2S dissolve better in H_2O than CH_4 , hence the recovered gas is actually methane-enriched

Digestion is a batch process

- once a day, fresh organic substrate is filled in, and digested matter is removed from a batch reactor
- mean residence time (days):
 - saturation after 20 days

$$\theta = \frac{V_{reactor} \left[m^3 \right]}{V_{org} \left[m^3 / d \right]}$$

- daily specific load (kg/m³.d)
- $M_{day} = V_{org} \cdot \frac{M}{V} = \frac{M}{\theta}$ - M can designate fresh or dry organic matter
- biogas production can be expressed as:

 m^3 biogas m³reactor m³biogas/

Example:

Farm with 60 animals. Manure waste: $3 \text{ m}^3/\text{day}$. ($\approx 3000 \text{ kg}$) Organic dry matter = 50 kg/m^3 (=150 kg/day=5% organics) Mean residence time θ = 20 days. Biogas production = $65 \text{ m}^3/\text{day}$. ($\approx 433 \text{ L}$ / kg d.m.)

• Reactor volume :

$$V_{reactor}\left[m^3\right] = \theta . V_{org} = 20 * 3 = 60m^3$$

• Daily specific load:

$$M_{day} = \frac{M_{org}}{\theta} = \frac{50kg/m^3}{20days} = 2.5kg/m^3.day$$

- Specific biogas production:
 - per reactor volume:

$$P = \frac{65m^3/d}{60m^3} = 1.08\frac{m^3/d}{m^3}$$

– per organic matter:

$$P = \frac{65m^3/day}{M_{org}\left[\frac{kg}{m^3}\right] \cdot \frac{V_{reactor}\left[m^3\right]}{\theta[days]}} = \frac{65}{50.\frac{60}{20}} = 0.43\frac{m^3}{kg_{org.matter}}$$

Digestor reactor temperature

Enzyme					Optimal	T rar	nge
'Psychrophilic'				20°C			
'Mesophilic'					20-45°C		
'Thermophilic'				>45°C			
relative CH₄ production		.00%				heat	any reactors operate at 28-37°C () they are red by burning t of the biogas
	10	20 3	30	40	50	60	°C

24 mars 2020

ME460 Biogas

Experience values

- The determining factors in biogas production are:
 - temperature; part of the biogas is used to heat the reactor; the biogas production rate saturates at 40°C
 - residence time (days); saturates at 20 days
 - organic matter charge (usually 3-10%)

Production	Unit	Cows	Pigs
per animal and day	m_{biogas}^3 head day	1.3 <u>+</u> 0.3	1.5 <u>+</u> 0.6
per mass	$m_{biogas}^{3}/kg_{org.matter}$	0.3 <u>+</u> 0.05	0.5 <u>+</u> 0.05

 \rightarrow 1.5 m³/day @ 20 MJ/m³ = 30 MJ/day \approx 8 kWh/day

= equivalent to 2 m^2 of thermal solar collectors

Any farm animal produces ca. 18-20 kg of manure per year per kg of its own body weight

Biogas vs. natural gas

Property	Unit	NG	BG (60% CH ₄)
LHV	MJ / m ³	36	21.5
Density	kg/m ³	0.82	1.21
Ignition T	°C	620	700
Ignition speed in air	m/s	39	0.25
Air factor	-	9.5	5.7
Exhaust, max CO ₂	Vol%	11.9	17.8
Exhaust, dew point	°C	59	60-160

Some characteristics of biogas production

- the digestate is a good quality **fertilizer** (2% nitrogen)
 - better than (air-)composted waste (<1% nitrogen)
- a significant part of the produced biogas is used for **heating** of the digester and the installation itself (farm,...)
- (cold) desulfurisation of the biogas is done with FeCl₃ solution (to precipitate FeS); sulfur is removed as it is poisonous (for the atmosphere but also in downstream CHP engines or fuel cells)

Biogas use and potential (EU)

	2007	gas engines 介	ultimate
Source	Use (PJ)	kW _e /site	Potential
Effluents	7	200 kW	140 PJ
Sewage	37	50-200	215
Manure	30	10-100	750
Solid agro	45		1370
MSW,ISW	15	0.1-1 MW	330
Landfill	120	1 MW	-
TOTAL	254 PJ	huge margin	2805 PJ
	(6 Mtoe)		(67 Mtoe)

Biogas application examples (CH)

Source	Biogas m³/day	% CH ₄	% yr Ioad	Installed power	Effi- ciency
Farm 37 cattle	70	57	60	5 kW _{el}	18%
Sewage 30'000 p.	1000	65	65	130 kW _{el}	28%
MSW 80'000 p.	1300	60	95	90 kW _{el}	25%

=> small power sites (gas engines); low (electrical) efficiency

Special case of landfill gas (LFG)

- (multi) MW_{el} -size sites (with gas engines, gas turbines)
- an important fraction of world biogas (20 Mtoe)
- 3 Mtoe in EU-27
- important anthropogenic GHG emitter! (as CH₄)
- often heavily contaminated (with F, CI, NH₃, H₂S, Si,...)
- often of low calorific value (diluted with N_2/O_2)
 - engines stop running <45% CH₄
 - fuel-assisted flaring or venting !