
Biomass: liquids

BIOETHANOL

Process Combustion Gasification **Pyrolysis** Methanation Fermentation Extraction + esterification

General characteristics

Advantages:

- (indigenous) natural resource; reduces oil import
- known and simple technology; labour-intensive
- large application domain; small plants

Limitations:

- production and substitution (for oil) are limited
- requires important infrastructure and land
- requires adaptations (engines)
- Rem: only ethanol is of interest;
 methanol is more difficult to synthesize (wood pyrolysis), toxic and best made from natural gas

Engine fuels

FUEL	MJ / kg	MJ / L	kg / L
Gasoline	43.9	32.2	0.73
Diesel	43	36.6	0.85
Ethanol	26.7	21.1	0.79
Methanol	20	15.9	0.80

Properties

Property	Ethanol	Methanol	Gasoline	Diesel
formula	C ₂ H ₅ OH	CH₃OH	C5-C12	C14-C19
molar weight	46.1	32	100	240
C wt% H wt% O wt%	52.2 13.1 34.7	37.5 12.5 50	86 14 0	86 14 0
Boiling point	78	65	30-220	240-360°C
Autoignition	423	470	257°C	
Explosion limits	4-19 vol%		1.4-7.6 vol%	
Octane index	106-111	106-115	79-98	
Cetane index	0-5	0-10	5-10	45-55

=> Ethanol is a **gasoline substitute**, not one for diesel

Biomass sources for bioethanol

- 1. Sugars: sugar cane, melasse (=sirupy residue after sugar extraction), sweet sorghum, beet
 - direct fermentation
 - the plant residues (=bagasse) deliver the energy to operate the site
- 2. Amylaceous plants (starch, inulin): manioc, corn, potatoes, cereals, artichoke (topinambour)
 - requires a prior so-called saccharification step
 - no self-sufficiency like with sugar-only plants
- 3. Cellulosic: wood, agro-residues, energy crops
 - requires aggressive hydrolysis (dilute acid at high temperature or concentrated acid at low temperature)
 - examples: american aloe, ficus indica, cat-tail plant

Bioethanol yield (land-use)

Source	t biomass / ha.yr	EtOH L / t biomass	EtOH L / ha.yr
sugar cane	50	70	3500
melasse		280	
sweet sorghum	35	86	3000
manioc	12-20	180	2200-3600
potato	15	125	1875
corn	6	370	2200
wood	5-20	160	800-3200

100 g glucose yield in practice 47 g ethanol (59 ml anhydrous)

LOW! 0.35 L /m²

(cf. 1 m^2 of grapes vineyard yield ca. 1 bottle of wine (0.7 L with 13% ethanol))

Energy balance

aerobic respiration (O₂ from air):

```
C_6H_{12}O_6(2870kJ/mol) + 6O_2 \rightarrow 6CO_2 + 6H_2O + 38ATP(1160kJ) + heat(37°C)
```

- 40% storage efficiency
- fermentation (the yeast uses O_2 from glucose, not from air) $C_6H_{12}O_6(2870kJ/mol) \rightarrow 2CO_2 + 2C_2H_5OH(2644kJ) + 2ATP(61kJ) + heat$
 - 90% theoretical efficiency to transform sugars into ethanol
 - the glucose energy stays in the ethanol and is not stored in the bacteria (only 2 ATP); above 13% ethanolic solution, the yeast bacteria do not survive (→ wine!)
- practical yield: 0.5 L ethanol from 1 kg glucose = 70% efficiency

Sugar cane

- cellulosic fibres (bagasse) containing sugars
- milling, washing and filtration separates the bagasse (=fuel for the site) from the sugar juice
- the juice is concentrated (> melasse), sterilised and fermented with yeast

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{invertase} 2 C_6H_{12}O_6 \xrightarrow{zymase} 4 C_2H_5OH + 4 CO_2$$

- 1-3 days fermenting yields a 8-10% alcohol solution (slow process)
- a 'stripping' filtration is then done to separate EtOH from solids and water
- distillation until the **96% EtOH**-4%H₂O azeotrope
- benzene addition + final distillation until anhydrous ethanol (99.7%)
- the distillation effluent (=animal food and fertilizer) is 10-13 times the produced ethanol volume (large volume process)
- for starches (manioc), the process is similar with one prior step: sugars are extracted from the milled/washed manioc by amylase and gluco-amylase enzymes (=saccharification step)

'Jerusalem artichoke'

- american & mediterranean, 'sunflower'-like
- 3 m high, inuline tubers (fructose), 1 to 3 kg per plant
- very resistant plant; survives even down to -15°C
- 70-80 t/ha fresh, 10 t/ha dry matter, 20 wt% of tubers
- the tubers are hydrolysed to a juice (80% fructose, 20% glucose)
- 1 L ethanol (0.8 kg) per 12 kg fresh tubers (2.4 kg dry) = 33% yield by mass: 6000 L / ha
- cost ca. 0.5 €/L (¾ from plant production cost, ⅓ from the transformation cost tubers → ethanol)

Sweet sorghum

- up to 30 tonnes dry matter / ha; warm wet areas
- 10-14 t sugars (sucrose, in the stalks) / ha
- 4000 L / ha
- bagasse used for site self-sufficiency
- cost ca. 0.66 €/L (¾ plant production, ¼ transformation)
- crop cycle is from May to October; very short harvest time

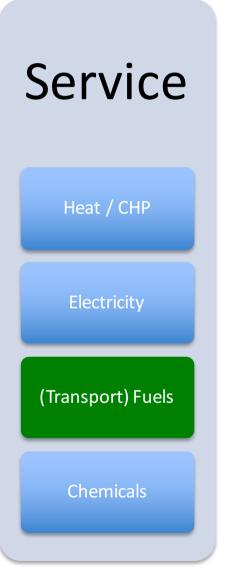
Ethanol efficiency effects in engines

- Overall transport efficiency loss due to larger tank volume & weight:
 -1% loss
- Volume of combustion products is higher with ethanol
- Gain with higher octane number of ethanol
 +6% to10% compared to gasoline
- In total, the overall transport efficiency for ethanol is more efficient than gasoline in light duty vehicles (LDV)
- Benefits:
 - saving of 0.7-1 L gasoline (2.3-3 kg CO₂) per L EtOH
 - reduced emissions of CO, HC, SO_x, benzene (cleaner combustion)

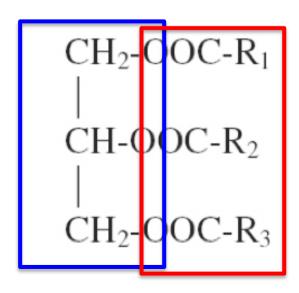
Source:

1) Wyman, Charles E. Handbook on Bioethanol: Production and Utilization. Tylor and Francis 1996. ISBN 1-56032-553-4

Bioethanol use


- as hydrated (96%, azeotrope) in all-ethanol engines (Brasil)
- as 'dry' (99.7%) blended with gasoline (5-10% in EU, USA; 24% in Brasil)
- its main drawback is the low yield and high land use; its application will thus remain limited (≈5% of transport fuel), with notable exceptions like Brazil (which has huge land reserves and the appropriate climate for sugar cane and high yield (8000 L/ha.yr))

BIODIESEL

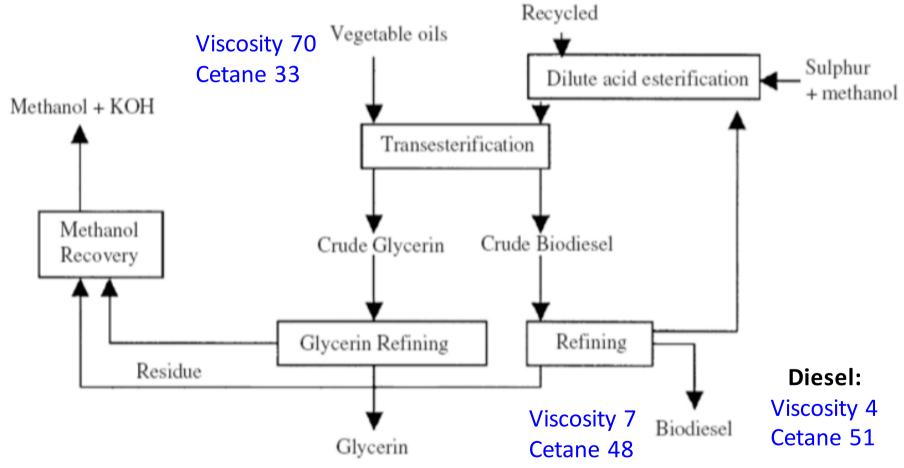


Biodiesel

- Source:
 - rapeseed (*colza*), sunflower (*tournesol*), soyabeanOil content = 40%
 - animal fats, frying oil
- Triglycerides: 1 mol glycerine + 3 mol fatty acids

Transesterification process

Transesterification (alkoholysis):


reaction of triglyceride and alcohol to esters and glycerol:

reversible reaction

- 1000 kg 110 kg methyl-esters glycerine
- use of excess alcohol to shift equilibrium towards products
- usable alcohols: methanol, ethanol, propanol, butanol, ...
- most frequently used: methanol
 - cheap
 - polar
 - fast reaction

Process goal: oil viscosity reduction ÷ 10

Transesterification: Process scheme

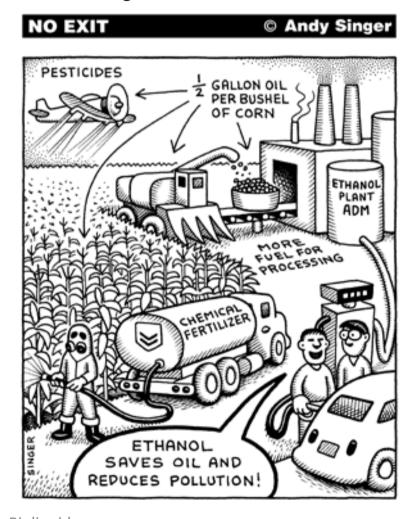
from: Marchetti, J.M. et al., Renewable and sustainable energy reviews 11, pp. 1300-1311, 2007.

Cost of biodiesel

very low yield! => land use!

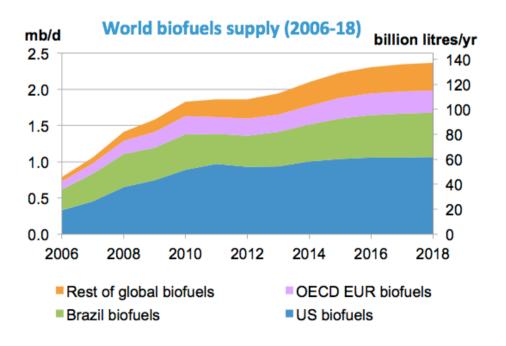
1 order of magnitude still further below ethanol yields

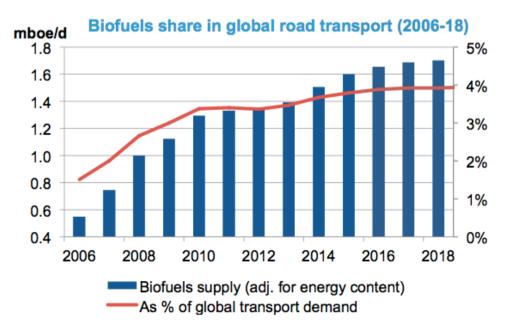
Crop	Seeds yield (t / ha)	Seeds oil content (%)	Seeds prod.cost (€/t)	Oil cost (€/t)	Yield L / ha
Sunflower w.o. irrig.	0.76	44	302	687	380
Sunflower (irrigated)	2.214	44	267	606	1100
Rapeseed (colza)	1.49	40	264	661	680
Saf-flower (safran)	0.856	35	268	766	340
Cynara (cardon)	2.0	25	118	472	570
Biomass production Difference = transfo		•	ca. ⅓ ca. ⅔	ca. 0.6 € / L	


Biodiesel vs. diesel

	Property	Rapeseed oil	Methyl- ester	Sunflower oil	Methyl- ester	Diesel
	Density kg/L	0.92	0.88	0.92	0.88	0.84
/	LHV MJ/L	34.3	33.1	34.1	33.0	35
	Viscosity mm ² /s 20°C	78	7.5	66	8	4
	Melting point °C	-2	-6	-18		
'	Cetane number	34	48	33	50	51
/	Carbon residue%	0.25	0.05	0.42	0.05	0.15
/	Sulfur %	0.0001	0.24	0.01	0.01	0.29

Biodiesel comments

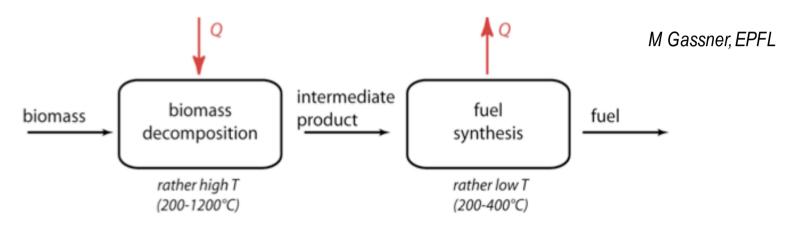

- its low yield and high land use are even (much) worse than for bioethanol
- it has no specific advantages in cost or efficiency over (fossil) diesel
- its use is very controversial and further marginalised



IEA Facts on biofuels

- Biofuels world output (**90%=ethanol**) grows from 20 Mtoe (2005) to 92 Mtoe (2030), to meet **4%** of road transport
- Current land use for biofuel production: 14 mio ha = 1% of arable land. By 2030 this would rise to 2.5% (i.e. the size of France+Spain).
- Cost of bioethanol production: 0.2 \$/L (Brasil), 0.3 \$/L (USA), 0.55 \$/L (EU); shipping costs are v. small
- Biofuels are expected to play a bigger role in future from wood-gasification (2nd gen)

Mobility fuels from wood: 'secondary' generation biofuels


- 1st generation
 - Biogas
 - Bioethanol
 - Biodiesel
 - limited conversion
 - slow processes
 - large residues

- 2nd generation
 - Wood gas derivatives

- efficient
- catalysed (thermochemical)

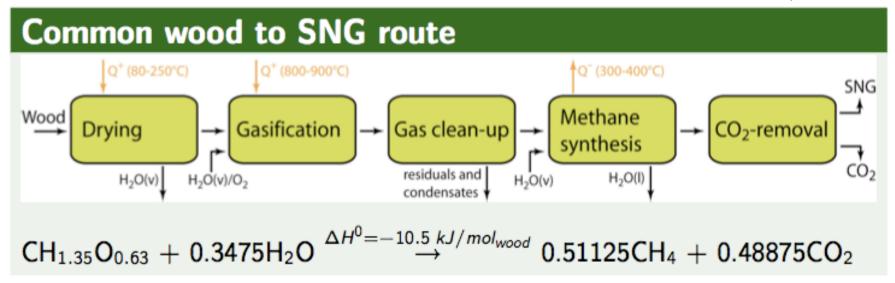
2nd generation biofuels

Thermochemical biomass to fuel reforming proceeds typically in two (or more) reaction steps:

- gasification
- pyrolysis

non-condensable/
condensable
substances
(H₂, CO, CO₂, H₂O,
CH₄, C_xH_y,
char, tars)

Fuel synthesis step

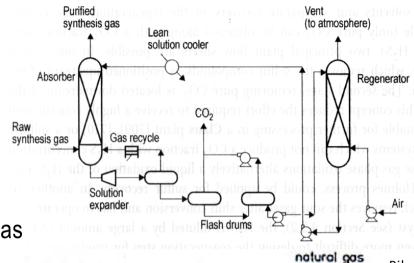

- methanation
- FT synthesis
- DME synthesis
- methanol synthesis

Wood → syngas → methane

Gasification with producer gas to methane reforming:

$$CO + 3H_2 \rightleftharpoons CH_4 + H_2O$$
 $\Delta h_r^0 = -206kJ/mol$ (1)
 $C_2H_4 + 2H_2O \rightleftharpoons 2CO + 4H_2$ $\Delta h_r^0 = 210kJ/mol$ (2)
 $CO_2 + H_2 \rightleftharpoons CO + H_2O$ $\Delta h_r^0 = 41kJ/mol$ (3)

M Gassner, EPFL

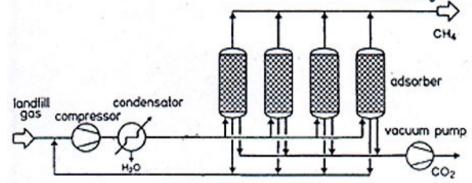

 \rightarrow CH₄/CO₂ separation needed

CH₄ / CO₂ separation

M Gassner, EPFL

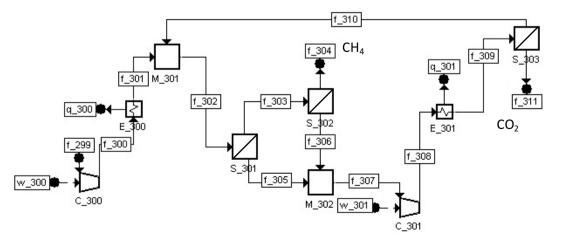
Physical absorption

Energy cost: 220 kWh_{el}/kg gas



Appl, M.: Ammonia. Principles and Industrial Practice. Wiley, Weinheim, 1999.

P = 50 bar

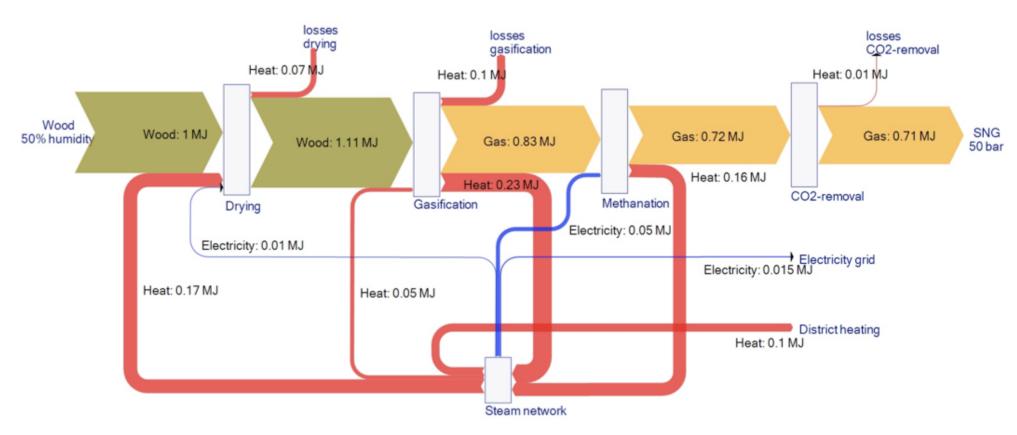

Pressure Swing Absorption

Energy cost: 70 kWh_{el}/kg gas

Pilarczyk et al.: Natural Gas from Landfill Gases. Resources and Conservation 14 (1987).

P = 5 - 6 bar

P = 50 bar


Polymer Membranes

Energy cost: 600 kWh_{el}/kg gas

Rem: 1 kg gas $(50\% \text{ CH}_4)$ = 33 moles CH₄ = 3800 kWh

24 mars 2020 ME460 - Bioliquids 25

Efficiency for wood-to-CH₄: 70%

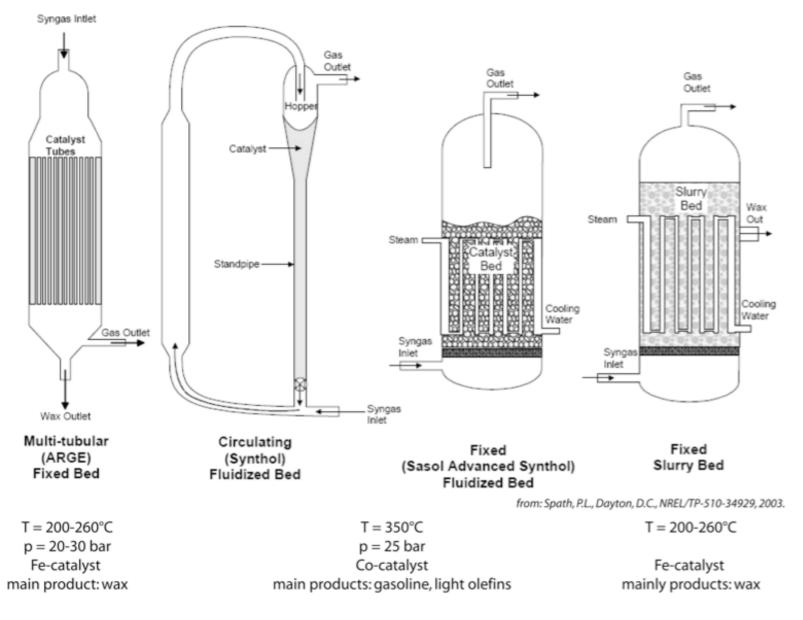
M Gassner, EPFL

Liquid synfuel fabrication from syngas

Fischer-Tropsch synthesis:

chain growth reaction (polymerisation) to heavy-weight liquid hydrocarbons:

$$CO + 2H_2 \rightarrow -CH_{2^-} + H_2O$$
, $\Delta h_r^0 = -165 \text{ kJ/mol}$


- building blocks: H₂, CO
- CO/H₂-ratio adjustment via upstream water gas shift reaction:

$$CO_2 + H_2 \rightleftharpoons CO + H_2O$$
, $\Delta h_r^0 = 41 \text{ kJ/mol}$

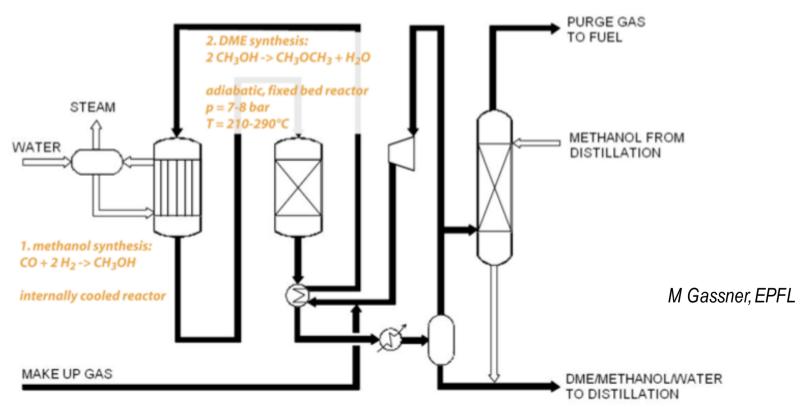
- postprocessing
 - hydrocracking with H₂ to remove double bounds
 - \blacksquare wax \rightarrow diesel + kerosene
 - ... petrochemical processing

M Gassner, EPFL

F-T technology is well established

DME synthesis

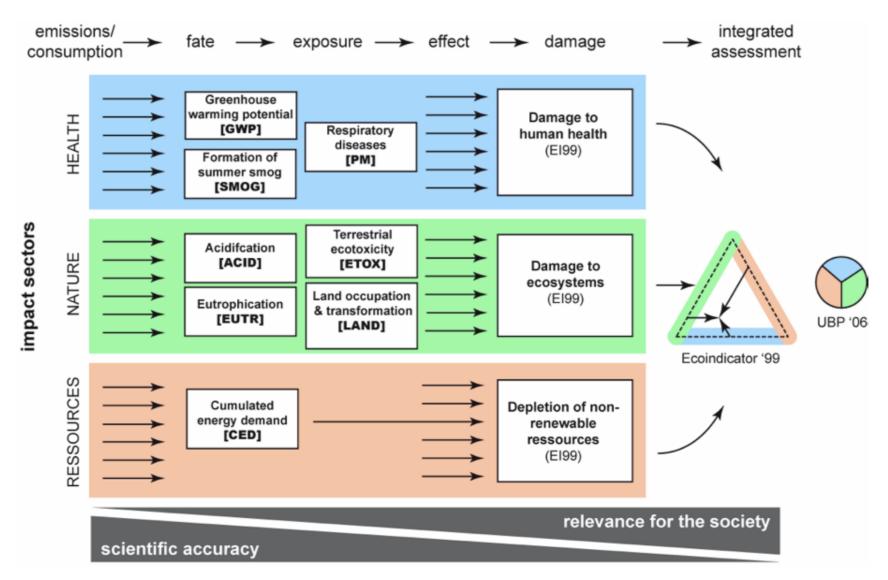
clean alternative fuel for diesel or LPG; also a gas turbine fuel

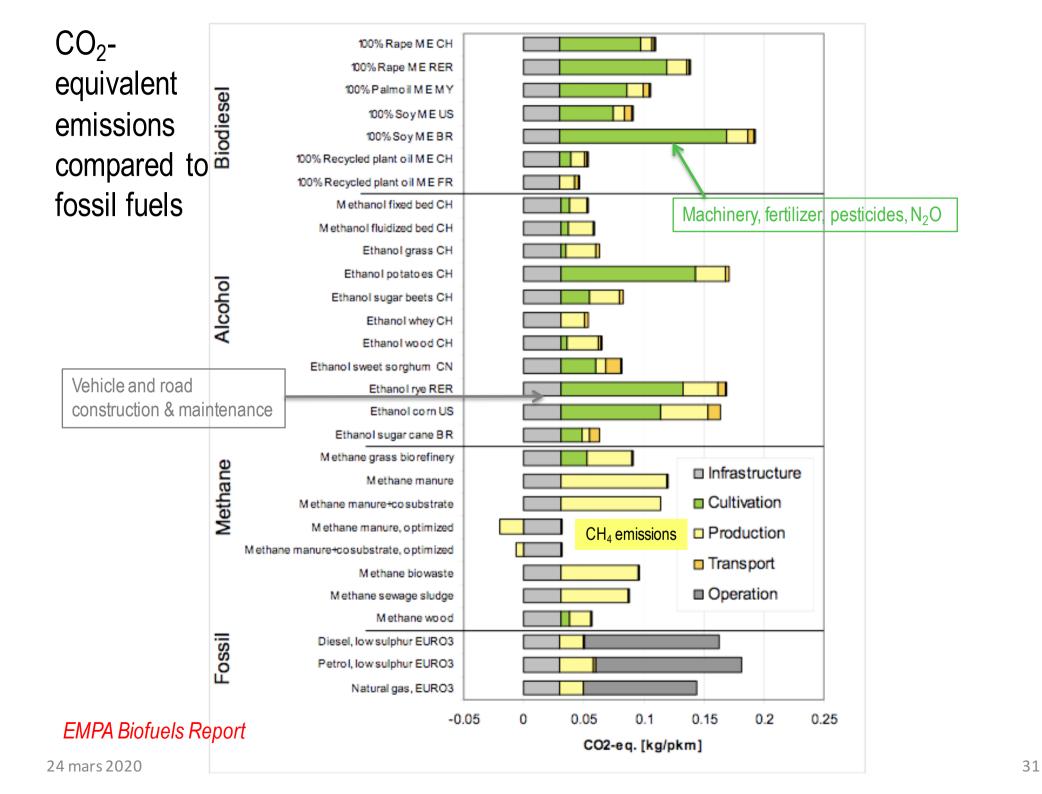

two step (via methanol dehydration)

■
$$CO + 2 H_2 \rightleftharpoons CH_3OH$$
,

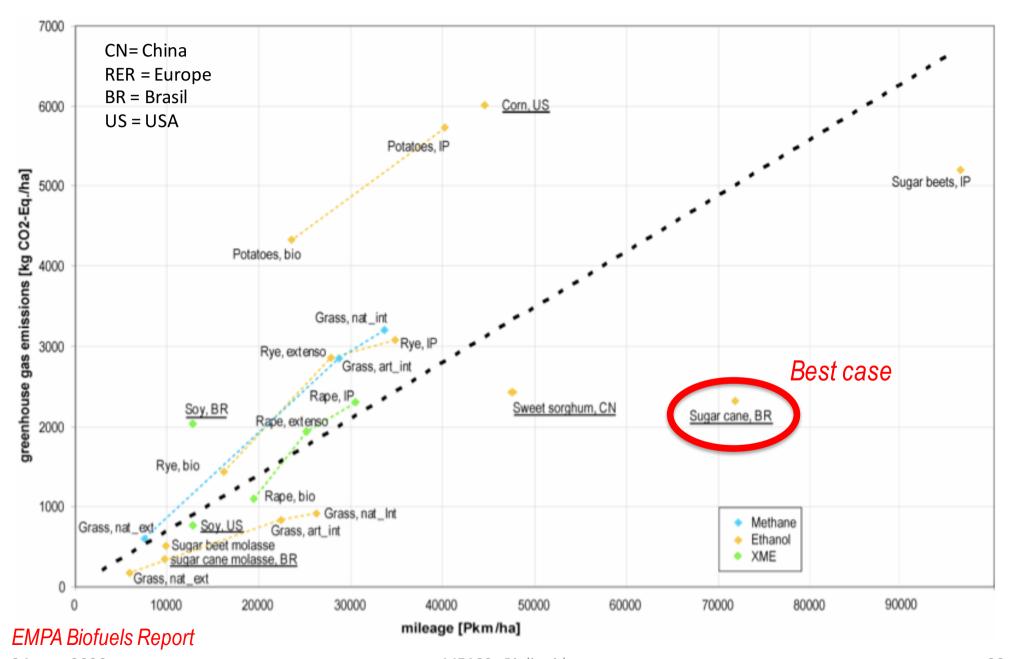
■ 2
$$CH_3OH \rightleftharpoons CH_3OCH_3 + H_2O$$
,

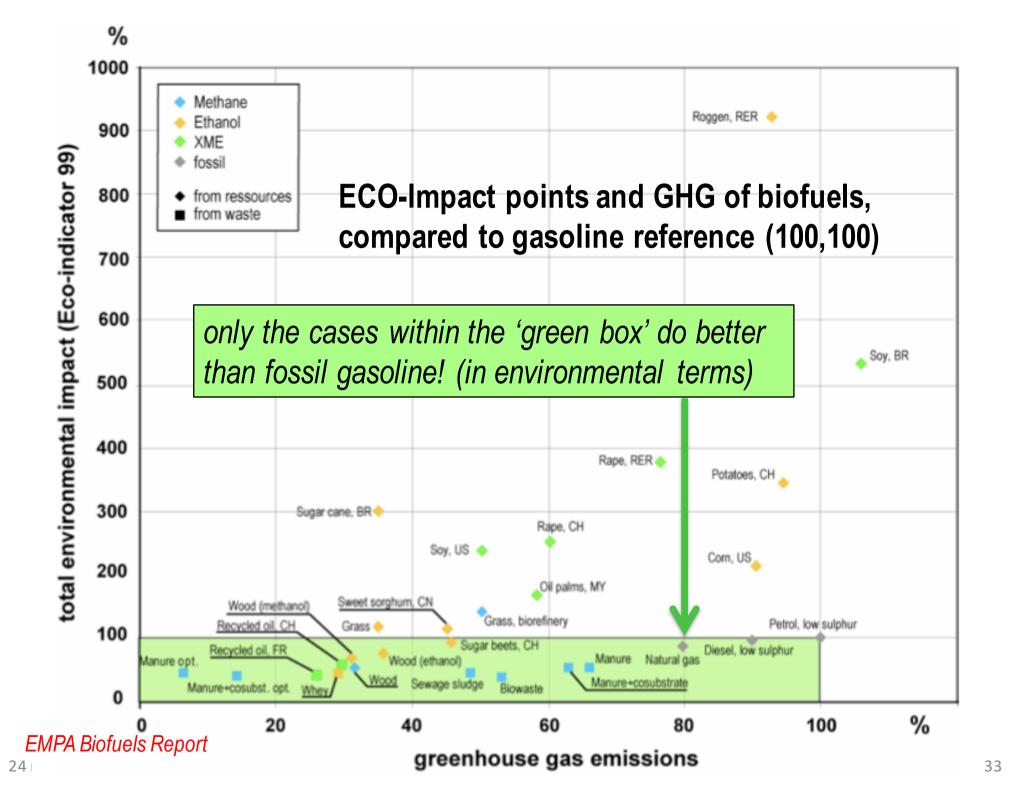
$$\Delta h_r^0 = -90 \text{ kJ/mol}$$


$$\Delta h_r^0 = -183 \text{ kJ/mol}$$

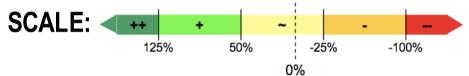


adapted from: Topsoe technology for large-scale production of DME. Topsoe Technologies, Denmark


EMPA report (2007/2013) on biofuel assessment


LCA study (Life Cycle Analysis), biofuels use in CH only

CO₂-equiv. emissions vs. transport-km (per ha land use)



GHGimpact

energy ca	arrier	Wo	od	Gra	ass	Man	ure		ste ood	Wh	ey	Biow	aste	l	age dge
use path		min	m ax	min	max	min	max	min	max	min	m ax	min	max	min	max
Heating		++	++												
Cogeneration (CHP)		++	++	+	++	++	++			++	++	~	+	++	++
Car (methane)		++	++	+	+	++	++	++	++	+	+	~	~	+	+
Car (ethanol)		++	++	++	++					+	+				
Municipal solid waste incineration "average technology"								++	++			~	~		-
Municipal solid waste incineration "latest technology"												++	++		
Cement kiln								++	++					~	~

'Best use' practice of the biofuels

EMPA Biofuels Report

ECO99'-impact

											0 70				
	energy carrier	Wood		Grass Mar		ure	Waste wood		Whey		Biow aste		l	vage idge	
use path		min	max	min	max	min	max	min	max	min	max	min	max	min	max
Heating		~	++												
Cogeneration (CHP)		~	++	~	~	+	++			+	++	-	-	+	++
Car (methane)		+	+	~	~	++	++	+	+	+	+	2	~	++	++
Car (ethanol)		~	~	+	+					++	++				
Municipal solid waste inciner "average technology"	ation							~	+			-	-		
Municipal solid waste inciner "latest technology"	ation											+	++		
Cement kiln								+	+					-	-

Summary on biomass in general

What you are expected to know:

- the composition of 'biomass'
- the essential numbers (potential, energy density,...)
- how to distinguish bio-mass,-gas,-ethanol,-diesel
- the conversion roadmap

Summary on biomass-to-electricity

- wood is under-used for power generation
- in direct combustion (alone, or with wastes, 1-10 MW_{el} plants), it reaches ≈20% efficiency with steam cycles (exception: cocombustion in coal plants), and usually additional cogenerated heat (30%)
- efficiency is improved with prior gasification and use in gas engines (< 5 MW_{el}) or combined cycles (multi 10-MW_{el})
- biogases are under-used for power generation (esp. from manure, agro-residues and MSW/ISW)
- they are converted in engines (0.1-1 MW_{el}) with 30-40% efficiency, and cogenerated heat

Summary on biomass-to-mobility fuels

- Bioethanol may be advantageous in a few cases (sugar-Brasil, corn-USA) as a gasoline additive or replacement but can only supply a few% of world mobility fuel
- Biodiesel may remain marginal
- Biogas (as CH₄ in gas cars) is very valuable from manure, agro-residues, MSW as a natural gas substitute and still a largely untapped resource
- Wood-reserves could be used via gasification for upgrading to (2nd generation) biomethane and bioethanol