M. Troyanov, M. Cossarini Exercices

30 Mars 2020

Série 4 – avec solutions

4.1. Prouver que pour toute connexion ∇ sur une variété M, l'application

$$\begin{array}{cccc} T: & \Gamma(M) \times \Gamma(M) & \longrightarrow & \Gamma(M) \\ & (X,Y) & \longmapsto & \nabla_X Y - \nabla_Y X - [X,Y] \end{array}$$

est un tenseur sur M, c'est-à-dire qu'elle bilinéaire sur l'anneau $\mathcal{C}^{\infty}(M)$.

- **4.2**. (a) Calculer les symboles de Christoffel en chaque point de la métrique euclidienne en coordonnées polaires.
 - (b) On considère le demi-plan

$$\mathbb{H}^2 = \{ (x, y) | y > 0 \}$$

muni de la métrique hyperbolique

$$g = \frac{dx^2 + dy^2}{y^2}.$$

Calculer les symboles de Christoffel.

Solution. Les coefficients de la métrique sont $g_{xx} = g_{yy} = \frac{1}{y^2}$ et $g_{xy} = g_{yx} = 0$, et leurs derivées non nules sont $\partial y g_{xx} = \partial y g_{yy} = -\frac{2}{y}$. Alors on peut calculer les symboles de Christoffel $\Gamma_{ijk} = \frac{1}{2}(\partial_i g_{jk} + \partial_j g_{ik} - \partial_k g_{i,j})$. On obtient

$$\Gamma_{xxx} = \Gamma_{xyy} = \Gamma_{yxy} = \Gamma_{yyx} = 0$$

$$\Gamma_{xxy} = -\Gamma_{xyx} = -\Gamma_{yxx} = -\Gamma_{yyy} = \frac{1}{y}.$$

Pour calculer les symboles de Christoffel de deuxième espèce $\Gamma_{ij}^l = \Gamma_{ijk}g^{kl}$ on utilise les coefficients de la la métrique inversée $g^{xx} = g^{yy} = y^2$ et $g^{xy} = g^{yx} = 0$. On obtient

$$\Gamma_{xx}^x = \Gamma_{xy}^y = \Gamma_{yx}^y = \Gamma_{yy}^x = 0$$

$$\Gamma_{xx}^y = -\Gamma_{xy}^x = -\Gamma_{yx}^x = -\Gamma_{yy}^y = y.$$

- **4.3**. Soit (M,g) une variété riemannienne et $\gamma:[0,1]\to M$ une courbe lisse quelconque.
 - (a) Montrer que si ∇ est la connexion de Levi-Civita associée à g alors, pour tout couple de champs parallèles $X,Y\in\Gamma_{\gamma},\,g(X,Y)$ est constant le long de γ .

Solution. On utilise le fait que la dérivée covariante est compatible avec la métrique :

$$\frac{\mathrm{d}}{\mathrm{d}t}g(x,y) = g(\nabla_t X, Y) + g(X, \nabla_t Y) = g(0, Y) + g(X, 0) = 0.$$

(b) En déduire que P_t est une isométrie de $T_{\gamma(0)}M$ sur $T_{\gamma(t)}M$ puis qu'il existe des champs de vecteurs qui forment une base orthonormée en tout point et qui sont parallèle le long de γ .

Solution. L'operateur de transport parallèle est une isométrie car il préserve le produit scalaire entre vecteurs. Pour trouver les champs souhaités on commence avec une base orthonormée $(E_i)_i$ de l'espace $T\gamma(0)$, puis on fait le transport paralléle de chaque E_i le long de γ . Ainsi on obtient des champs $E_i(t)$ qui donnent une base orthonormée de chaque espace tangent $T_{\gamma(t)}M$ car $\langle E_i(t), E_j(t) \rangle = \langle E_i(0), E_j(0) \rangle = \delta_{i,j}$.

(c) Soit X un champs parallèle le long de γ . Montrer que ses coordonnées dans un repère du type précédent sont constantes.

Solution. Les coordonnées $X^i(t)$ du vecteur X(t) dans la base orthonormée $(E_i)_i$ sont les produits scalaires $X^i(t) = \langle X(t), E_i(t) \rangle$, donc elles sont constantes.

(d) Montrer que γ est une géodésique si et seulement si $\|\gamma'\|$ et $\angle(X, \gamma')$ sont constants le long de γ pour tout champ parallèle X.

Solution. Si γ est géodésique, alors $\gamma'(t)$ est parallèle, donc $\|\gamma'(t)\|$ est constante et l'angle $\angle(X,\gamma')=\arccos\frac{\langle X,\gamma'}{\|X\|\|\gamma'\|}$ est constant aussi car il est exprimé en termes de produits scalaires entre champs parallèles.

4.4. Soit ∇ une connexion (quelconque) dans une variété M et soit P_t l'application de transport parallèle associée, le long d'une courbe $\gamma:[0,1]\to M$. Montrer que

$$\nabla_t V|_{t=0} = \lim_{t \to 0} \frac{P_t^{-1} V(t) - V(0)}{t}.$$

Interpréter cette formule.

Solution. Soit $(E_i)_i$ une base de champs parallèles le long de la curve γ . Cela permet de décomomposer le vecteur V(t) selon la formule $V(t) = V^i(t) E_i(t)$ et obtenir une première formule pour sa dérivée covariante,

$$\nabla_t V = (V^i)'(t) E_i(t).$$

D'autre part on a déjà montré que le transport paralléle préserve les coordonnées dans la base E_i , donc $P_t^-V(t) = V^i(t) E_i(0)$, et cela permet d'obtenir la deuxième formule

$$\lim_{t \to 0} \frac{P_t^{-1}V(t) - V(0)}{t} = \lim_{t \to 0} \frac{V^i(t) E_i(0) - V^i(0) E(0)}{t}$$
$$= \lim_{t \to 0} \frac{V^i(t) - V^i(0)}{t} E_i(0) = (V^i)'(0) E_i(0) = \nabla_t V|_0$$

4.5. Soit (M, g) une variété riemannienne connexe et soit H_p l'ensemble des endomorphisme de T_pM donnés par des transports parallèles le long de courbes $c:[0,1] \to M$ de classe \mathcal{C}^1 par morceaux telles que c(0) = c(1). Montrer que H_p est un sous groupe de $O_n(\mathbb{R})$ et que H_p et H_q sont isomorphes.

Solution. La clé de cet exercice est le fait que l'operateur P_{γ} de transport parallèle le long d'une courbe γ dépend fonctoriellement de la courbe γ , ça veut dire, on a $P_{\gamma*\beta} = P_{\beta} \circ P_{\gamma}$. (Ici on dénote $\gamma*\beta$ la concatenation de deux courbes γ et β .)

4.6. Soit Ω un ouvert de \mathbb{R}^k et soit

$$\psi:\Omega\to\mathbb{R}^n$$

un plongement lisse. On munit la sous-variété $M=\psi(\Omega)\subset\mathbb{R}^n$ de la métrique riemannienne induite par la métrique usuelle de \mathbb{R}^n . On note u^1,\ldots,u^k les coordonnées sur M associées à la carte ψ^{-1} . On peut alors représenter la base associée de l'espace tangent en un point $p=\psi(u)$ de M par les vecteurs "concret"

$$\xi_i = \psi_* \left(\frac{\partial}{\partial u^i} \right) = \frac{\partial \psi}{\partial u^i} \quad (i = 1, \dots, k)$$

Montrer que les symboles de Christoffel de la connexion de Levi-Civita associée sont reliés aux composantes tangentielles des dérivées seconde de ψ de la manière suivante :

$$\left(\frac{\partial^2 \psi}{\partial u_i \partial u_j}\right)^{\top} = \sum_k \Gamma_{i,j}^k \xi_k.$$

Solution. Selon la définition des symboles de Christoffel, on a $\nabla_{\xi_i} \xi_j = \sum_k \Gamma_{i,j}^k \xi_k$, donc on doit montrer que

$$\nabla_{\xi_i} \xi_j = \left(\frac{\partial^2 \psi}{\partial u_i \partial u_j} \right)^\top.$$

D'autre part, on a

$$\frac{\partial^2 \psi}{\partial u_i \partial u_j} = \frac{\partial}{\partial u_i} \frac{\partial \psi}{\partial u_j} = \partial_{\xi_i} \xi_j,$$

où ∂_{ξ_i} denote la dérivée habituel en \mathbb{R}^n dans la direction ξ_i . Alors l'équation à montrer devient

$$\nabla_{\xi_i} \xi_j = \left(\partial_{\xi_i} \xi_j \right)^\top.$$

On fait, on peut montrer pour tout champs tangent X et pour tout vecteur tangent V que

$$\nabla_V X = (\partial_V X)^\top.$$

On va faire ça dans l'exercice 5.2...