Correction Série 4

March 24, 2020

Exercice 1

- (1) On peut différencier les trois cas selon la dimension de span(Γ') comme sous espace vectoriel de \mathbb{R}^2 .
 - 1. Si la dimension est 0 alors $\mathrm{span}(\Gamma')=\{0\}$ et donc $\Gamma'=\{0\}.$
 - 2. Si la dimension est 1 alors il existe un élément \vec{u} de Γ' tel que $\mathrm{span}(\Gamma') = \mathrm{span}(\vec{u})$. On prend un disque D(0,R) tel que $\vec{u} \in D(0,R)$ et l'on choisi \vec{u}_0 un élément de norme minimale dans $\Gamma' \cap D(0,R)$ (l'ensemble $\Gamma' \cap D(0,R)$ est fini car il est contenu dans l'ensemble fini $\Gamma \cap D(0,R)$ par le cours). Démontrons par contradiction que $\Gamma' = \vec{u}_0 \mathbb{Z}$: supposons qu'il éxiste un élement $\vec{u} \in \Gamma'$ tel que $\vec{u} \notin \vec{u}_0 \mathbb{Z}$ ce qui implique que $\vec{u} = \alpha \vec{u}_0$ pour $\alpha \in \mathbb{R} \setminus \mathbb{Z}$ (on peut supposer $\alpha > 0$), alors $(\alpha \{\alpha\})\vec{u}_0 \in \Gamma' \cap D(0,R)$ mais $|(\alpha \{\alpha\})\vec{u}_0| = (\alpha \{\alpha\})|\vec{u}_0| < |\vec{u}_0|$ ce qui contredit le fait que \vec{u}_0 est de norme minimale.
 - 3. Si la dimension est 2 alors il existe deux élements $\vec{u}, \vec{v} \in \Gamma'$ tels que $\operatorname{span}(\Gamma') = \operatorname{span}(\vec{u}, \vec{v})$. On prend un disque D(0, R) tel que $\vec{u}, \vec{v} \in D(0, R)$ et l'on choisit \vec{u}_0 de norme minimale dans $\Gamma' \cap D(0, R)$ et \vec{u}_1 de norme minimale dans $\Gamma' \cap D(0, R) \setminus \vec{u}_0 \mathbb{R}$, nous allons montrer que $\Gamma' = \Gamma_0 := \vec{u}_0 \mathbb{Z} + \vec{u}_1 \mathbb{Z}$. Comme dans le cours, on a la tuile $P_0 = \vec{u}_0[-1/2, 1/2[+\vec{u}_1[-1/2, 1/2[$ qui est un domaine fondamental pour l'action par translation du groupe Γ_0 . Tout $\vec{v} \in \Gamma'$ peut donc s'écrire comme $\vec{v} = \vec{v}_0 + (\vec{v} \vec{v}_0)$ pour $\vec{v}_0 \in \Gamma_0$ et $(\vec{v} \vec{v}_0) \in P_0 \cap \Gamma'$. Il suffit de démontrer que $P_0 \cap \Gamma' = \{0\}$. Prenons $\vec{v} = s\vec{u}_0 + t\vec{u}_1 \in P_0 \cap \Gamma'$ (donc $s, t \in [-1/2, 1/2[)$), on a

$$|\vec{v}| \leq |s\vec{u}_0| + |t\vec{u}_1| \leq \frac{|\vec{u}_0| + |\vec{u}_1|}{2} \leq |\vec{u}_1| \,.$$

Si l'inégalité est stricte alors $\vec{v} \in \vec{u}_0 \mathbb{R}$. On a alors t = 0, et $|\vec{v}| = |s| |\vec{u}_0| \le \frac{|\vec{u}_0|}{2}$ et donc $\vec{v} = 0$.

Si l'inégalité est exacte alors $|\vec{u}_0| = |\vec{u}_1|$ et s = t = -1/2, mais comme \vec{u}_0 et \vec{u}_1 ne sont pas colinéairs, on a $|\vec{v}| = \left|-\frac{\vec{u}_0}{2} - \frac{\vec{u}_1}{2}\right| < \left|\frac{\vec{u}_0}{2}\right| + \left|\frac{\vec{u}_1}{2}\right| = |\vec{u}_0|$ et donc $\vec{v} = 0$.

- (2) On a $\vec{u}' = a\vec{u} + c\vec{v}$ et $\vec{v}' = b\vec{u} + d\vec{v}$ pour $a,b,c,d \in \mathbb{Z}$. On représente la base \vec{u},\vec{v} de Γ par la matrice $B = \begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \end{pmatrix}$ et la base \vec{u}',\vec{v}' par $B' = \begin{pmatrix} u_1' & v_1' \\ u_2' & v_2' \end{pmatrix}$ on a alors B' = BA pour la matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ qui est invertible (sinon \vec{u}' et \vec{v}' serait colinéairs). On en déduit que $B = B'A^{-1} = B'\frac{1}{\det A}\begin{pmatrix} a & -c \\ -b & d \end{pmatrix}$ et les entrées de la matrice A^{-1} sont fractionnelles car $a,b,c,d \in \mathbb{Z}$ et $\det A \in \mathbb{Z} \setminus \{0\}$. De plus on peut choisir $n = \det A$ et alors $n.\Gamma \subset \Gamma'$ car la base $n.\vec{u},n.\vec{v}$ de $(\det A)\Gamma$ est dans Γ' : en effet $(\det A)\vec{u} = a\vec{u}' b\vec{v}' \in \Gamma'$ et $(\det A)\vec{v} = -c\vec{u}' + d\vec{v}' \in \Gamma'$.
- (3) On a $n.\Gamma \subset \Gamma' \subset \Gamma$ et l'on suppose que n>1 (sinon $\Gamma = \Gamma'$ et Γ/Γ' est le groupe unitaire d'ordre $1 \leq n^2 = 1$). Il existe un morphisme $\Phi : \Gamma/n.\Gamma \to \Gamma/\Gamma'$ qui envoie une classe $\gamma + n.\Gamma$ vers la classe $\gamma + \Gamma'$, qui est surjectif: pour toute classe $\gamma + \Gamma' \in \Gamma/\Gamma'$, on a $\Phi(\gamma + n.\Gamma) = \gamma + \Gamma'$. Il nous suffit donc de démontrer qu'il y a au plus n^2 classes dans $\Gamma/n.\Gamma$. Considérons les n^2 classes $k\vec{u} + m\vec{v} + n.\Gamma$ pour $k, m \in \{0, ..., n-1\}$, tout élément $\gamma = k'\vec{u} + m'\vec{v}$ pour $k', m' \in \mathbb{Z}$ est contenu dans la classe $\left(k' n\left\{\frac{k'}{n}\right\}\right)\vec{u} + \left(m' n\left\{\frac{m'}{n}\right\}\right)\vec{v} + n.\Gamma$ qui est l'une des n^2 classes considérées car $\left(k' n\left\{\frac{k'}{n}\right\}\right), \left(m' n\left\{\frac{m'}{n}\right\}\right) \in \{0, ..., n-1\}$.

Exercice 2

- (1) Il nous faut montrer une bijection Ψ entre $\operatorname{End}_{\mathcal{L}_2}(\Gamma)$ et $M_2(\mathbb{Z})$. Tout endomorphism ϕ de Γ est déterminé par les valeurs $\phi(\vec{u}) = a\vec{u} + c\vec{v}$ et $\phi(\vec{v}) = b\vec{u} + d\vec{v}$ avec $a,b,c,d\in\mathbb{Z}$. On envoie tout ϕ vers la matrice $\Psi(\phi) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et inversément toute matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ vers l'unique endomorphisme $\phi = \Psi^{-1}(A)$ tel que $\phi(\vec{u}) = a\vec{u} + c\vec{v}$ et $\phi(\vec{v}) = b\vec{u} + d\vec{v}$. Ψ est clairement une bijection. En prenant \vec{u} et \vec{v} comme base de \mathbb{R}^2 , les matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ correspondent à des fonctions linéaires $f: \mathbb{R}^2 \to \mathbb{R}^2$ telle que $f(\vec{u}) = a\vec{u} + c\vec{v}$ et $f(\vec{v}) = b\vec{u} + d\vec{v}$ on voit donc que les endomorphismes ϕ sont simplement des restrictions à Γ de ces fonctions linéaires.
- (2) Pour chaque paire de matrices $A, B \in \operatorname{GL}_2(\mathbb{Z})$ le produit C = AB appartient à $\operatorname{GL}_2(\mathbb{Z})$ car les entrées de C sont dans \mathbb{Z} et son determinant satisfait $\det(C) = \det(AB) = \det(A)\det(B) \in \{+1, -1\}$. L'élément unitaire est la matrice $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et pour toute matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ son inverse est

$$\frac{1}{\det\begin{pmatrix} a & b \\ c & d \end{pmatrix}} \begin{pmatrix} a & -c \\ -b & d \end{pmatrix}$$

qui est dans $\operatorname{GL}_2(\mathbb{Z})$ car $\operatorname{det} \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \{+1, -1\}.$

(3) Pour tout automorphisme $\phi \in \operatorname{Aut}_{\mathcal{L}_2}(\mathbb{Z})$ on pose $A = \Psi(\phi)$ et il nous faut montrer que $\det A \in \{+1, -1\}$. Comme la bijection Ψ enoive la composition de deux endomorphismes vers le produit des matrices, on a

$$\Psi(\phi)\Psi(\phi^{-1}) = \Psi(\phi \circ \phi^{-1}) = \Psi(id) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

ce qui implique que $\Psi(\phi^{-1}) = A^{-1}$. Par contradiction, supposons que $\det A \in \mathbb{Z} \setminus \{+1,-1\}$, alors $\det A^{-1} = \frac{1}{\det A} \notin \mathbb{Z}$ mais la matrice A^{-1} est une matrice avec entrée en \mathbb{Z} qui doit avoir un determinant en \mathbb{Z} . Ceci implique que pour tout automorphisme ϕ son image $\Psi(\phi)$ appartient à $\operatorname{GL}_2(\mathbb{Z})$.

Dans l'autre sens, toute matrice $A \in \operatorname{GL}_2(\mathbb{Z})$ est envoyée par Ψ^{-1} vers un automorphisme $\phi = \Psi^{-1}(A)$ avec comme inverse $\Psi^{-1}(A^{-1})$. La fonction Ψ restreinte à $\operatorname{Aut}_{\mathcal{L}_2}(\mathbb{Z})$ définit donc une bijection entre $\operatorname{Aut}_{\mathcal{L}_2}(\mathbb{Z})$ et $\operatorname{GL}_2(\mathbb{Z})$.

(4) Pour toute base (\vec{u}', \vec{v}') , on considère l'automorphisme $\phi(x\vec{u} + y\vec{v}) = x\vec{u}' + y\vec{v}'$ avec inverse $\phi^{-1}(x\vec{u}' + y\vec{v}') = x\vec{u} + y\vec{v}$ (comme (\vec{u}, \vec{v}) et (\vec{u}', \vec{v}') sont des bases de Γ ces deux morphismes sont bien définis). Comme $\phi(\vec{u}) = \vec{u}' = a\vec{u} + c\vec{v}$ et $\phi(\vec{v}) = \vec{v}' = b\vec{u} + d\vec{v}$, on a $\Psi(\phi) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et comme $\phi \in \operatorname{Aut}_{\mathcal{L}_2}(\mathbb{Z})$ on a que $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{Z})$ et donc

$$\pm 1 = \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

(5) Pour $\vec{u} = (u_1, u_2)^T$ et $\vec{v} = (v_1, v_2)^T$, on prend $||\vec{u}||$ comme la longeur de la base du parallelograme (le long de \vec{u}) et sa hauteur est donnée par $\frac{|u_2v_1-u_1v_2|}{||\vec{u}||}$ (c'est la longeur de la projection $P\vec{v}$ du vecteur \vec{v} le long du vecteur unitaire $\frac{1}{||\vec{u}||}(u_2, -u_1)$ perpendiculaire à \vec{u}), l'aire du parallelograme est donc le produit $||\vec{v}|| \frac{|u_2v_1-u_1v_2|}{||\vec{v}||} = |u_2v_1-u_1v_2| = |\det\begin{pmatrix} u_1 & v_1 \\ ||\vec{u}|| & v_1 \end{pmatrix}$

 $\|\vec{u}\| \frac{|u_2v_1-u_1v_2|}{\|\vec{u}\|} = |u_2v_1-u_1v_2| = \left| \det \left(\begin{array}{c} u_1 & v_1 \\ u_2 & v_2 \end{array} \right) \right|.$ Par le point (4), toute autre base est de la forme $(\vec{u}', \vec{v}') = (a\vec{u} + c\vec{v}, b\vec{u} + d\vec{v})$ avec $ad - bc = \pm 1$. La matrice des coordonées de la nouvelle base $\left(\begin{array}{c} u_1' & v_1' \\ u_2' & v_2' \end{array} \right)$ est donc égale au produit $\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \left(\begin{array}{cc} u_1 & v_1 \\ u_2 & v_2 \end{array} \right)$ et on a donc

$$\left| \det \left(\begin{array}{cc} u_1' & v_1' \\ u_2' & v_2' \end{array} \right) \right| = \left| \det \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \left(\begin{array}{cc} u_1 & v_1 \\ u_2 & v_2 \end{array} \right) \right| = \left| ad - bc \right| \left| \det \left(\begin{array}{cc} u_1 & v_1 \\ u_2 & v_2 \end{array} \right) \right|$$

qui ne dépends pas de la base car |ad - bc| = 1.

Exercice 3

- (1) Un réseau $L=\vec{u}\mathbb{Z}+\vec{v}\mathbb{Z}$ peut être décrit par la matrice des coordonées de la base $B=\begin{pmatrix}u_1&v_1\\u_2&v_2\end{pmatrix}$ deux matrices de bases B_1,B_2 génère le même réseau L s'il éxiste une matrice dans $T\in \mathrm{GL}_2(\mathbb{Z})$ telle que $B_1=B_2T$. Pour toute matrice $g\in \mathrm{GL}_2(\mathbb{R})$ l'action de g est la multiplication de la base $B\mapsto gB$, on a clairement la commutativité, les inverses (en prenant la matrice inverse g^{-1}) et l'invariance au choix de base.
- (2) Pour deux réseaux L_1 et L_2 de bases B_1 et B_2 . Les deux bases sont invertibles $(B_1, B_2 \in g \in GL_2(\mathbb{R}))$ on peut donc prendre $g = B_2B_1^{-1}$ de telle façon à ce que la base de $g.L_1$ soit $gB_1 = B_2B_1^{-1}B_1 = B_2$ ce qui implique que $g.L_1 = L_2$.
- (3) Les stabilisateurs sont en bijection avec $\operatorname{GL}_2(\mathbb{Z})$: pour tout $T \in \operatorname{GL}_2(\mathbb{Z})$, alors $g = BTB^{-1}$ et un stabilisateur du réseau L avec base B, inversement tout stabilisateur g doit satisfaire gB = BT pour un $T = B^{-1}gB \in \operatorname{GL}_2(\mathbb{Z})$. On peut identifier les réseaux de \mathcal{L}_2 par les matrices de bases $B \in \operatorname{GL}_2(\mathbb{R})$ modulo la multiplication par la droite par un $T \in \operatorname{GL}_2(\mathbb{Z})$.
- (4) Pour un réseau L avec base B on a vol(L) = |det B| et donc Vol(g.L) = |det gB| = |det g| Vol(L).

Exercice 4

- (1) Si $\gamma + \mathbf{P}$ intersecte C(0, R), alors $\gamma + B(0, r_0)$ intersecte aussi C(0, R) et $\gamma + B(0, r_0)$ est contenu dans l'anneau de petit radius $R 2r_0$ et grand radius $R + r_0$ qui est contenu dans $B(0, R + 2r_0)$ et n'intersecte pas $B(0, R 3r_0)$.
- (2) L'union U de toute les translates $\gamma + P$ qui sont contenus dans B(0,R) est contenue dans B(0,R) et contient $B(0,R-3r_0)$, on a donc

$$\pi (R - 3r_0)^2 \le \text{Aire}(U) \le \pi R^2$$

or $\operatorname{Aire}(U) = n\operatorname{Aire}(\mathbf{P}) = n\operatorname{Vol}(\Gamma)$ où n est le nombre de translates contenus dans B(0,R). Donc $n = \frac{\pi R^2}{\operatorname{Vol}(\Gamma)} + O_{\Gamma}(R)$.

(3) On a $n_0\pi r^2 \leq \mathrm{Aire}(B(0,R)\cap\Gamma(r)) \leq n_1\pi r^2$

ou n_1 est le nombre de boules $\gamma + B(0,r)$ contenues dans B(0,R) et n_1 le nombre

qui intersectent B(0,R). Par argument similaire à (2), on a que

$$n_1 = \frac{\pi R^2}{\text{Vol}(\Gamma)} + O_{\Gamma}(R)$$
$$n_2 = \frac{\pi R^2}{\text{Vol}(\Gamma)} + O_{\Gamma}(R)$$

et donc que

$$\frac{\operatorname{Aire}(B(0,R)\cap\Gamma(r))}{\pi R^2} = \frac{\pi r^2}{\operatorname{Vol}\left(\Gamma\right)} + O_{\Gamma}\left(\frac{1}{R}\right)$$

qui converge vers $\delta(\Gamma, r) = \frac{\pi r^2}{\text{Vol}(\Gamma)}$.

- (4) Il est clairement nécessaire que $r \leq \frac{|\gamma_0|}{2}$ et comme γ_0 est le point du réseau le plus proche, tous les autres points sont à distance $\geq \frac{|\gamma_0|}{2}$ et il n'y a pas d'intersections.
- (5) Le volume $\operatorname{Vol}(\Gamma)$ et radius optimal sont invariant sous rotation. Une homothetie envoie $\Gamma = \vec{u}\mathbb{Z} + \vec{v}\mathbb{Z}$ vers $\alpha\Gamma = \alpha\vec{u}\mathbb{Z} + \alpha\vec{v}\mathbb{Z}$ et le volume vers $\alpha^2\operatorname{Vol}(\Gamma)$ alors r_{Γ} devient αr_{Γ} et donc $\delta(\alpha\Gamma) = \frac{\pi\alpha^2r_{\Gamma}^2}{\alpha^2\operatorname{Vol}(\Gamma)} = \delta(\Gamma)$.
- (6) Le radius $r_{\Gamma} = \frac{1}{2}$ est fixe pour maximiser $\delta(\Gamma)$ il faut donc minimiser $\operatorname{Vol}(\Gamma) = \left| \det \begin{pmatrix} 1 & \operatorname{Re}z \\ 0 & \operatorname{Im}z \end{pmatrix} \right| = |\operatorname{Im}z|$. On a $\mathcal{D}_{\operatorname{SL}(\mathbb{Z})} = \{z : -\frac{1}{2} \leq \operatorname{Re}z < \frac{1}{2}, |z| > 1\} \cup \{z : -\frac{1}{2} \leq \operatorname{Re}z < 0, |z| = 1\}$ qui est minimal en $z = \omega_3 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$.

Exercice 5

- (A) $G^+ = \{1\}$ et $G = G^+$.
 - (B) $G^+ = \{\pm 1\}$ et $G = G^+$.
 - (C) $G^+ = \{\pm 1\}$ et $G \neq G^+$ il existe aussi la symmetrie dans l'axe du cafard.
 - (D) $G^+ = p6$ et $G = G^+$.
 - (E) $G^+ = p3$ et $G = G^+$.
 - (F) $G^+ = p4 = \{\pm 1, \pm i\}$ et $G = G^+$.
 - (G) $G^+ = \{\pm 1\}$ et $G \neq G^+$ il existe aussi la symmetrie dans l'axe du crabe.
 - (H) $G^+ = p3$ et $G \neq G^+$ il existe aussi la symmetrie dans l'axe du cafard.
- (I) $G^+ = p4 = \{\pm 1, \pm i\}$ et $G \neq G^+$ il existe aussi la symmetrie dans l'axe de l'humain.