Geothermal energy

Learning outcomes of todays lecture

- Geothermal energy:
 - Know the intrinsic geothermal heat flux and average geothermal heat gradient
 - Explain the 'renewable' character of geothermal heat
 - Know different geothermal systems (for power)
 (dry vs. hydro-reservoirs; dry steam flash process binary cycle)
 - Explain and calculate 1st law (energy) and 2nd law (exergy) efficiency for geothermal systems
 - Know different geothermal systems for heat applications

Earth's subsurface temperatures

Zone	Distance from surface [k	m]	Temperature [°C]	Density [kg/dm3]
Ground	0			
Crust (bottom)	35		1100	3.3
Mantle (bottom)	2900	7	3700 to 4500	5.7 to 10.2
Liquid (iron) core	5100		4300 to 6000	11.5
Solid inner (iron) core	6350		4500 to 6600	11.5
2000 Geothermal Education Office				

average gradient 30 K/km

EPFL

Temperature gradient in the Earth's crust (K/km)

→ the sustainable intrinsic geothermal heat flux is very low !

Geothermal potential (world)

- The average geothermal heat flux is approximately **50 60 mW/m²**, from 2 factors:
 - 1. The flux from the hot Earth interior
 - (= residual heat from the Earth's origin; tidal friction)
 - 2. In the crust (0 to 50 km), radioactive decay (⁴⁰K, U, Th)

For illustration: the <u>range</u> over the whole USA subcontinent is 25–150 mW/m²

• Worldwide: 50 mW/m²

→ multiplied with the area of the 5 continents (135 Mkm²) => 6.75 TW_{heat} Assuming 20% electrical efficiency and 8000 h load:

=> 1.35 TW_{el} and 11' 000 TWh_{el}

= 50% of current world electrical production

(exploiting every square meter of land on the planet!)

 \Rightarrow Geothermal energy can only deliver a small contribution worldwide (on the order of \approx 1 %), and it has to come from the <u>local anomalies</u>

EPFL

Geothermal heat flux

USA / Europe • SMU Geothermal Laboratory Heat Flow Map of the Conterminous United States, 2011 mW/m² 150 120 110 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 SMU, GEOTHERMAL 25 20 15

Reference: Blackwell, D.D., Richards, M.C., Frone, Z.S., Batir, J.F., Williams, M.A., Ruzo, A.A., and Dingwall, R.K., 2011, "SMU Geothermal Laboratory Heat Flow Map of the Conterminous United States, 2011". Supported by Google.org. Available at http://www.smu.edu/geothermal.

Switzerland

Gootternal hind how

> mW/m² 40-60 60-80 80-100 100-120 120-140

Geothermal Heat-Flow Density >150 mW/m² 80 - 150 50 - 80 30 - 50

Geothermal potential (Switzerland)

For Switzerland: 65 mW/m² \rightarrow with area 41'000 km² => 2.67 GW_{heat} or 84 PJ

- assuming 20% electrical efficiency and 8000 h/yr load, this could max.
 deliver 4 TWh_{el} from 500 MW_{el},
 (again when collecting this heat flux *from every square meter*!)
- this compares to the yearly Swiss electrical need of 60 TWh_{el} from ca.
 25 GW_{el} installed power, or to the yearly present heating needs of ca.
 430 PJ
- taking population density of 200 people / km², which is 5000 m² per person, it follows that 65 mW/m² * 5000 m² = 325 W_{heat} / person → 65 W_{el} per person (20%)
 (compare to total electrical end-consumption = 850 W_{el} per person, and 1300 W_{thermal} end-use per person for space heating + hot water)
- \Rightarrow the intrinsic geothermal heat flux is too low
- ⇒ we can extract much more heat from the underground, but then we are not operating in a sustainable fashion

Geothermal reality - 2013

- 11 GW_{el} and 16 GW_{thermal} supplied worldwide
- Indonesia could install up to 12 GW_{el}, Japan up to 80 GW_{el}
- Iceland gets 30% of its electricity (580 MW_{el}) and 87% of its heat from geosources, but has only 300'000 inhabitants
- The USA is number 1 and has 3 GW_{el} installed geopower, which produces 15 TWh_{el}, but this is only 0.3% of the USA electricity
- Countries around the Pacific 'Ring of Fire' can provide a significant share of their needs from geoenergy

Country	Power GW	% of elec.
USA	3.1	0.3
Philippines	1.9	27
Indonesia	1.2	3.7
Mexico	1	3
Italy	0.84	1.5
NZ	0.63	10
Iceland	0.58	30
Japan	0.54	0.1
El Salvador	0.2	25
Kenya	0.17	11
Costa Rica	0.17	14
Nicaragua	0.1	10
World	11	0.3
	> 60 TWh	

World Cumulative Installed Geothermal Electricity-Generating Capacity, 1950-2013

Occurrence – Locations – the 'Ring of Fire'

Distribution of geothermal plants

Italy (Tuscany) as pioneer

- 1st plant worldwide, 1911, in Larderello
 - 200°C at 1 km depth; max 437°C at 3.2 km
 - 1 W/m² heat flux; ca. 200 km² active area
 - 160-250°C, superheated steam 4-20 bar
 - avgerage flux 25 t/h (7 kg/s), max 350 t/h
 - 790 MW_{el}, >5.5 TWh_{el}; 10% of <u>world</u>'s geopower

Some general features of geothermal power

Unsustainable !

- heat extraction rate >> geothermal heat flux => the soil is cooled down (v.v. slowly)
- power production must last min. 25 years (and can last up to centuries) so as to justify the investment
- Time lapse from discovery to production can be long too
 - e.g. Miravalles (Costa Rica) discovered in 1976 but first power generated in 1994
- **Baseload power** (renewable; independent from season or climate)
- Geothermal water/steam = 'free fuel'
- Borehole drilling is very **expensive**
 - the technology exists from hydrocarbon reservoirs exploration (oil, gas), which can afford a few failed drillings, as the reward from fossil fuel (unlike geothermal 'fuel') is very high!

Classification of geothermal systems

They are related to young **igneous rock*** intrusions in the upper earth crust

- Magma
- Hot <u>dry</u>rock (HDR)
- Convective <u>hydrothermal</u> reservoirs ('<u>wet</u>')
 - vapor dominated
 - liquid dominated

exploitation in geothermal power plants

* Igneous rock is one of the 3 main rock types, formed through the cooling and solidification of magma or lava. (The other 2 are sedimentary and metamorphic rock.)

Hydrothermal reservoirs

Characteristic	Temperature	Depth - Location	Plant type
'low-T' water	100°C-150°C	< 3 km 50 K / km selected sites	Binary, ORC
'high-T' water	150°C – 370°C	< 2 km >100 K / km anomalous sites	Flash
vapor	>200°C	< 2 km Larderello,	Dry steam

Different forms

Temperature level usage

Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st century, MIT technical report, 2006

Leda	Gerber,	LENI
------	---------	------

18/55

		180-	Evaporation of highly concentrated solutions	
	Enhanced		Refrigeration by ammonia absorption Digestion in paper pulp, kraft	
	Geothermal	170 -	Heavy water via hydrogen sulphide process Drying of diatomaceous earth	Conventional Electric
	Systems	160 -	Drying of fish meal Drying of timber	Generation
		150-	Alumina via Bayer's process	
Electricity generation Heat (industry buildings)	EGS :	140-	Drying farm products at high rates	
Cogeneration	3'000 -	130-	Evaporation in sugar refining Extraction of salts by evaporation and crystalisation	Binary fluid Electric
	10'000m*	120-	Fresh water by distillation Most multiple effect evaporations, concentration of saline	Generation solution
	90 - 350°C	110-	Drying and curing of light aggregate cement slabs	
http://www.youtube.co	om/watch?v=vhSGKIrlVuw	100 –	Drying of organic materials, seaweeds, grass, vegetables, e Washing and drying of wool	tc
		90 –	Drying of stock fish Intense de-icing operations	
Direct heat use		80 –	Space heating Greenhouses by space heating	
		70 –	Refrigeration (lower temperature limit)	
		60 –	Animal husbandry Greenhouses by combined space and hotbed heating	·
Heat numps for		50 –	Mushroom growing Balneological baths	
building heating		40 -	Soil warming	Space heating with heat pumps
		30 –	Swimming pools, biodegradation, fermentations Warm water for year-round mining in cold climates De-icing	
•J. Tester et al. The Future of Geothe	- rmal Energy –	20 –	Hatching of fish, fish-farming	

RE, Haussener | April, 2020

•c Geothermal source temperature

Electricity production potential

Thermodynamics :

- Hot source (geothermal resource)
- Cold source (river or ambient air)

 T_0

Maximum available power (exergy):

Determination of the hot source 'average' temperature

- 'Logarithmic mean temperature' *difference*' of heat *exchange* (HEX)
- Heat exchange between a hot fluid, cooling from $T_{h,in}$ to $T_{h,out}$, and a cold fluid, warming from $T_{c,in}$ to $T_{c,out}$, learns us that

$$LMTD = \frac{(T_{h,1} - T_{c,1}) - (T_{h,2} - T_{c,2})}{\ln \left[\frac{T_{h,1} - T_{c,1}}{T_{h,2} - T_{c,2}}\right]} \text{ and the transferred heat:} \qquad Q = U \cdot A \cdot LMTD$$

with U = heat transfer coefficient (W/m²·K) and A = HEX area (m²)

• The geothermal reservoir is **not a constant** temperature hot source; heat is extracted at $T_{h,in}$ and reinjected at $T_{h,out}$; the average hot source temperature T_h is then determined from its logarithmic mean : $LMT = \frac{\left(T_{h,in} - T_{h,out}\right)}{\ln \left(\frac{T_{h,in}}{T}\right)}$

Logarithmic mean temperature

Electricity production: energy vs exergy efficiency

Geothermal power plant of Soultz-sous-Forêts (Alsace, F): Pilot project for electricity from EGS exploitation at 5000m

- Gross electricity production: 2.1 MW_{el}
- Parasitic losses: 0.6 MW_{el}
- Net electricity production: 1.5 MW_{el}

Carnot factor

$$= 1 - (T_a/LMT) = 1 - 288/393 = 0.28$$

• T at well: 175° C $(=T_{h,in})$ $(LMT_{h}=120^{\circ}$ C) • T reinjection: 70° C $(=T_{h,out})$ • Flow rate: **35 l/s** (take T_a as 15° C)

⇒ Heat flux Q = massflow * Cp * Δ T = 35 (kg/s) * 4184 (J/kg.K) * 105 (K) = $\dot{Q}_{in} \approx 15.4 M W_{th}$

$$\eta = \frac{\dot{W}_{cycle}}{\dot{Q}_{in}} = 10\%$$

1st Law: low efficiency!

 $\varepsilon = \frac{\dot{W}_{cycle}}{\left(1 - \frac{T_0}{T_h}\right)\dot{Q}_{in}} = 35\%$

Leda Gerber, LENI

2nd Law: comparable to thermal power plants

Importance of T-level

2 liquid resources with 50 kg/s, $T_a = 10 \circ C$, same $\Delta T = 50$ K:

Leda Gerber, LENI

Electricity production potential as f(T)

Leda Gerber, LENI

Geothermal plant, aerial view

Geothermal plant, closer view

Wellhead view

Turbine rotor (110 MW)

Hatchobaru plant, Japan

Cerro Prieto (720 MW), Baja California (Mexico)

Dry steam power plant

2000 Geothermal Education Office

Steam (no water) shoots up the wells directly into a turbine. Dry steam fields are *rare*.

EPFL

Dry steam power plant

The Geysers dry steam field, northern California, the 1st USA geothermal power plant (1962) and still the world's largest (1 GW_{el} average).

EPFL

Dry steam power plant

Flash steam plant

Flash technology was invented in New Zealand. Flash steam plants are the most common, since most reservoirs are hot (pressurized) water reservoirs.

Flash steam power plant

2000 Geothermal Education Office

As hot water is released from the high pressure of the deep reservoir in a flash tank, some of it (30-40%) flashes explosively to steam.

EPFL

- Direct use of the geofluid (=liquid, or mixture of gas and liquid)
- Separation between liquid and gas (power from steam turbine)
- Temperature lower limit: 150-180°C
- Quality of the geofluid is critical (dissolved minerals!)

Single-flash system

Double-flash system Additional power generation More expensive

Single-flash schematics

Double-flash schematics

Example of turbine for two-phase expansion

EPFL

Total flow expander

EPFL

Flash Binary Plant, Upper Mahiao (125 MWe)

Binary cycle power plant

 Heat from the geothermal water is used to vaporize a working fluid in a 2nd network. This vapor powers the turbine.

2000 Geothermal Education Office

- Heat transfer occurs between the geofluid and a secondary fluid
- Use of organic fluids (Organic Rankine cycles ORC) or mixture of water and ammonia (Kalina cycles)
- Temperature lower limit: 70-90°C (uses exist up to 200°C)
- No emissions of geofluid to atmosphere

Combined conversion cycles

To increase the electrical efficiency

- Flash system with bottoming ORC

Leda Gerber, LENI

Cogeneration with conversion cycles

Effects on energy and exergy efficiency

- Increase due to the **use of waste heat** (flash systems)
- Trade-off between electricity and heat production (binary cycles)

EPFL

Hot <u>dry</u> rock (HDR) – or Deep Heat <u>Mining</u> (DHM)

1. Injection well

unsustainable

- 2. Fissured rock
- 3. Production well
- 4. Control wells
- 5. Pump
- 6. HEX
- 7. Plant
- 8. District heat

HDR, Hijiori, Japan

Temperature lev	/el usage	°C	Geothermal source temperature	Leda Gerber, L	
	Enhanced	180-	Evaporation of highly concentrated solutions Refrigeration by ammonia absorption Digestion in paper pulp, kraft		
	Geothermal	170-	Heavy water via hydrogen sulphide process Drying of diatomaceous earth	Conventional Electric	
	Systems	160-	Drying of fish meal Drying of timber	Generation	
		150-	Alumina via Bayer's process		
Electricity generation	EGS :	140-	Drying farm products at high rates		
Cogeneration	3'000 -	130-	Evaporation in sugar refining Extraction of salts by evaporation and crystalisation	Binary flui Electric	
	10'000m*	120-	 Fresh water by distillation Most multiple effect evaporations, concentration of saline 	Generation solution	
	90 - 350°C	110-	Drying and curing of light aggregate cement slabs		
http://www.youtube.	com/watch?v=vhSGKIrlVuv	100-	Drying of organic materials, seaweeds, grass, vegetables, e Washing and drying of wool	etc	
		90 –	Drying of stock fish Intense de-icing operations		
Direct heat use		80 –	Space heating Greenhouses by space heating		
		70 -	Refrigeration (lower temperature limit)		
		60 –	Animal husbandry Greenhouses by combined space and hotbed heating		
leat numps for		50 -	Mushroom growing Balneological baths		
ouilding heating		40 -	Soil warming	Space heating with heat pumps	
		30 -	Swimming pools, biodegradation, fermentations Warm water for year-round mining in cold climates De-icing		
		20 -	Hatching of fish, fish-farming		

•J. Tester et al, *The Future of Geothermal Energy – Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st century*, MIT technical report, 2006

Different forms

Close to surface

• Residential application with heat pump (80% of Swiss geothermal energy use):

Geothermal heat probe

- Heat pump
- 6 Floor heating
- E Heat exchanger (double U-tube)
- Bore hole (<20 cm diameter)</p>

Geothermal heat basket

- Heat pump
- 6 Floor heating
- 6 Geothermal baskets

Depth:

1.5 to 4 m for geothermal baskets 50 to 250 m for heat probe

Temperature: 5-20°C

EPFL

Heat pump systems

• Vapor-compression heat pumps:

Close to surface

Intermediate depths

From:

- Thermal springs (natural springs)
- Tunnels (groundwater)
- Hydrothermal (aquifers), depth 0.5-3 km

Temperature range: 20-100 °C

the tropical house in Frutigen (BE) uses the warm water from the Lötschberg tunnel for breeding sturgeons and cultivating exotic fruits

Use:

- Thermal baths, swimming pools
- Industry: drying, evaporation of concentrated solutions, chemical extraction, deicing (streets)
- Agriculture: drying, green hoses, fish farms

In 2015: 75 TWh thermal energy used in direct applications

Klamath Falls, Oregon, a geothermal district-heating system keeps the sidewalks clear and dry at the Basin Transit station after a snowfall

Geothermally powered greenhouses at Gufudalur, Hveragerði

Summary

- Geothermal power plants are clean, reliable and provide **baseload** for decades or centuries, on sites with *thermal anomalies* (volcanic, tectonic).
- Elsewhere, smaller individual plants may be used (**1-5 MWe**)
- Usually, steam cycles are employed; to exploit <u>low temperature</u> reservoirs for electricity generation, ORCs can be used
- 1st law efficiency is rather poor (<20%) but 2nd law efficiency high (>50%)
- Exploitation for thermal energy interesting and more widely used

