Can You Pave the Plane
with Identical Tiles?
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Everybody knows that identical regular triangles or squares
can tile the whole plane. Many people know that identi-
cal regular hexagons can tile the plane properly as well. In
fact, even the bees know and use this fact! Is there any
other convex domain that can tile the Euclidean plane? Of
course, there is a long list of them! To find the list and
to show the completeness of the list is a unique drama
in mathematics which has lasted for more than one cen-
tury, and the completeness of the list has been mistakenly
announced more than once! Up to now, the list consists
of triangles, quadrilaterals, fifteen types of pentagons, and
three types of hexagons. In 2017, Michaél Rao announced
a computer proof for the completeness of the list. Mean-
while, Qi Yang and Chuanming Zong made a series of un-
expected discoveries in multiple tilings in the Euclidean
plane. For example, besides parallelograms and centrally
symmetric hexagons, there is no other convex domain that
can form any two-, three-, or fourfold translative tiling
in the plane. However, there are two types of octagons
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and one type of decagon that can form nontrivial fivefold
translative tilings. In fact, parallelograms, centrally sym-
metric hexagons, and these three types of polygons are
the only convex polygons that can form fivefold transla-
tive tilings. This paper reviews the dramatic progress.

Introduction

Tiling the plane is an ancient subject in our civilization. It
has been considered in the arts by craftsmen since antiq-
uity. According to Gardner [4], the ancient Greeks knew
that, among the regular polygons, only the triangle, the
square, and the hexagon can tile the plane. Aristotle ap-
parently knew this fact, since he made a similar claim in
the space: Among the five Platonic solids, only the tetrahedron
and the cube can tile the space. Unfortunately, he was wrong:
Identical regular tetrahedra cannot tile the whole space!

The first recorded scientific investigation into tilings was
made by Kepler. Assume that J is a tiling of the Euclidean
plane E? by regular convex polygons. If the polygons are
identical (congruent), the answer was already known to
the ancient Greeks. When different polygons are allowed,
the situation becomes more complicated and more inter-
esting. In particular, an edge-to-edge tiling J° by regular
polygons is said to be of type (n, n,,...,n,) if each ver-
tex v of J is surrounded by an n;-gon, an n,-gon, and
so on in a cyclic order, where edge-to-edge means that
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every pair of neighbors shares an entire common edge.
Usually, they are known as Archimedean tilings. In
1619, Kepler enumerated all such tilings as (3,3, 3,3, 3, 3),
(3,3,3,3,6), (3,3,3,4,4), (3,3,4,3,4), (3,4,6,4), (3, 6,3,6),
(3,12,12), (4,4,4,4), (4,6,12), (4,8,8), and (6, 6,6). Beau-
tiful illustrations of the Archimedean tilings can be found
in many references.

If a;, a,, ..., a, are n linearly independent vectors in the
n-dimensional Euclidean space E”, then the set

A= {Z z;a; .

is an n-dimensional lattice. Clearly, lattices are the most nat-
ural periodic discrete sets in the plane and space. There-
fore, many pioneering scientists like Kepler, Huygens,
Haiiy, and Seeber took lattice packings and lattice tilings
as the scientific foundation for crystals. In 1885, the fa-
mous crystallographer Fedorov [3] discovered that A con-
vex domain can form a lattice tiling of E2 if and only if it is a
parallelogram or a centrally symmetric hexagon; a convex body
can form a lattice tiling in E3 if and only if it is a parallelotope,
a hexagonal prism, a rhombic dodecahedron, an elongated oc-
tahedron, or a truncated octahedron.

Usually, tilings allow very general settings without re-
striction on the shapes of the tiles and the number of the
different shapes. However, to avoid complexity and confu-
sion, in this paper we deal only with the tilings by identical
convex polygon tiles. In other words, all the tiles are con-
gruent to one convex polygon. In particular, we call it a
translative tiling if all the tiles are translates of one another
and call it a lattice tiling if it is a translative tiling and all
the translative vectors together form a lattice.

In 1900, Hilbert [8] proposed a list of mathematical
problems in his ICM lecture in Paris. As a generalized in-
verse of Fedorov’s discovery, he wrote in the second part
of his 18th problem that a fundamental region of each group
of motions, together with the congruent regions arising from the
group, evidently fills up space completely. The question arises:
whether polyhedra also exist which do not appear as fundamen-
tal regions of groups of motions, by means of which nevertheless
by a suitable juxtaposition of congruent copies a complete filling
up of all space is possible. Here Hilbert did not restrict to
convex ones.

Hilbert proposed his problem in the space; perhaps he
believed that there is no such domain in the plane. When
Reinhardt started his doctoral thesis at Frankfurt am Main
in the 1910s, Bieberbach (see [14]) suggested that he de-
termine all the convex domains which can tile the whole plane
and to verify in this way that Hilbert’s problem indeed has
a positive answer in the plane. This is the origin of the
following natural problem:

Zl'EZ}

Bieberbach’s Problem. To determine all the two-dimen-
sional convex tiles.
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In 1917 Reinhardt was an assistant of Hilbert's at Gottin-
gen and likely discussed this problem with him. It is worth
mentioning that in 1911, Bieberbach himself solved the
first part of Hilbert's 18th problem: Is there in n-dimensional
Euclidean space also only a finite number of essentially different
kinds of groups of motions with a fundamental region?

Reinhardt’s List

In 1918, Reinhardt received his doctoral degree under the
supervision of Bieberbach at Frankfurt am Main with a the-
sis “On Partitioning the Plane into Polygons” (Uber die
Zerlegung der Ebene in Polygone). This is the first ap-
proach to characterizing all the convex domains that can
tile the whole plane. First, he studied the tiling networks
(the vertices, edges, and faces of the tilings) and obtained
an expression for the mean of the number of vertices over
faces. As a corollary of the formula, he obtained the fol-
lowing result.

Theorem 1 (Reinhardt [14]). A convex m-gon can tile the
whole plane E2 by identical copies only if

m < 6.

In fact, as Reinhardt and several other authors pointed
out (see [4, 10,12, 14]), this theorem can be easily deduced
by Euler’s formula

v—e+f=1, ®

where v, e, and f stand for the numbers of vertices, edges,
and faces of a polygonal division of a finite polygon.

Let 7 = {Ty, T, Ts, ...} be a tiling of E2 such that all tiles
T; are congruent to a convex m-gon B, and let H, be a
regular hexagon of edge length ¢ centered at the origin of
E?. Assume that H, contains f(¢) tiles Ty, T,..., Ty(g) of T
and the boundary of Hy intersects g(¢) tiles T{, T3, ..., Ty,
of 77, and let u; denote the number of vertices of the tiling
network on the boundary of T;. Clearly we have u; > m
and

. 8(0)
lim =< =0. 2
t=~o f(£) @
Applying Euler’s formula to I n H,, when ¢ is sufficiently

large we get

f<f@)+g@) s fe), (3)

£
EEDEES C! )

b))
EEDES B0} )
v—e+f5<1—%)f(€), (6)

and therefore

m < 6, (7
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where g(¢) < cf(€) means

lim@<c

=0 f(£) T

Figure 1. Two quadrilaterals make a centrally symmetric
hexagon.

Apparently, two identical triangles can make a parallelo-
gram and two identical quadrilaterals can make a centrally
symmetric hexagon (see Figure 1). Thus, by Fedorov’s the-
orem, identical triangles or quadrilaterals can always tile
the plane nicely. However, it is easy to see that identical
regular pentagons or some particular hexagons cannot tile
the plane. Then, Bieberbach’s problem can be reformu-
lated as:

What kind of convex pentagons or hexagons can tile the
plane?

Let B, denote a convex n-gon with vertices vy, v,, ..., Vv,
in an anti-clock order, let G; denote the edge with ends v;_;
and v;, where vy = v,,, let ¢; denote the length of G;, and
let a; denote the inner angle of B, at v;.

Reinhardt’s thesis obtained the following solution to
the hexagon case of Bieberbach’s problem.

Theorem 2 (Reinhardt [14]). A convex hexagon B, can tile
the whole plane E? by identical copies if and only if it satisfies
one of the three groups of conditions:

(1) ay+ay + a3 =27, and €; = €,.

(2) aq + a + Ay = 27, 6)1 = €4, and €3 = €5.
B)ag=a3=0as= gﬂ, €1 =46, €3 ="C4 and €5 = €.

The “if” part of this theorem is relatively simple. It is
illustrated by Figure 2. However, the “only if” part is much
more complicated. Reinhardt deduced the only if part by
considering six cases with respect to how many edges of the
considered hexagon are equal. His proof was very sketchy
and difficult to understand and check. It seems that he
considered only the edge-to-edge tilings.

Fortunately, this theorem has been verified by several
other authors. For example, without knowledge of Rein-
hardt’s thesis, in 1963 Bollobis made the following sur-
prising observation, which guarantees the sufficiency of
Reinhardt’s consideration.

Lemma 1 (Bollobas [2]). If T is a tiling of the plane by iden-
tical convex hexagons and € is any given positive number, there
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Figure 2. Reinhardt’s hexagonal tiles and their local tilings.

is a square of edge length € in which the tiling is edge-to-edge
and every vertex is surrounded by three hexagons.

Let S be a big square of edge length ¢ centered at the
origin of the plane and consider the network of N = 7' n
S. Let n; denote the number of vertices in N that appear
also in the relative interior of some edges, let n, denote
the number of vertices in N at which three hexagons join
properly at their vertices, and let n; denote the number of
all other vertices of N. Lemma 1 can be proved by studying
the quotients

2
ny +nj
for S and its subsquares for sufficiently large ¢. It is in-
teresting to notice that there are hexagon tilings in which
ns ?é 0.

For the pentagon tilings, by considering five cases with
respect to how many edges are equal, Reinhardt obtained
the following result.

Theorem 3 (Reinhardt [14]). A convex pentagon B can tile
the whole plane [E? by identical copies if it satisfies one of the
five groups of conditions:
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(1) a; +ay + az =27
(2) ay+ay +ay =27, and €1 = €,.
(3) ap =QA3 =0y = %77:, €1 =€2, Clnd€4 =€3 +€5

(4) 0(1 = 0(3 = iﬂ, €1 :€2, and€3 =€4.
(5) a; = %n, as = gn, €1 =€, and €5 = €,.

Figuring out the list is nontrivial. However, as shown
in Figure 3, it is easy to check that all the pentagons listed
in Theorem 3 indeed can tile the plane. Reinhardt him-
self did not claim the completeness of the pentagon tile
list. However, according to Gardner [4] it is quite clear that
Reinhardt and everyone else in the field thought that the Rein-
hardt pentagon list was probably complete.

As observed by Reinhardt [14], all triangles, quadrilat-
erals, the three types of hexagons listed in Theorem 2, and
the five classes of pentagons listed in Theorem 3 are indeed
fundamental domains of some groups of motions. Hilbert
and Bieberbach would have been happy to know this.

In 1928, Reinhardt discovered a (nonconvex) three-
dimensional polytope that can form a tiling in the space
but is not the fundamental domain of any group of mo-
tions! This is the first counterexample to the second part
of Hilbert’s 18th problem.

Inspired by Reinhardt’s discovery, in 1935 Heesch [7]
obtained a two-dimensional nonconvex counterexample
to Hilbert’s problem. In other words, there exists a non-
convex polygon that can tile the whole plane; however, it
is not the fundamental region of any group of motions.

Thirty years later, Heesch and Kienzle presented a
rather detailed treatment of plane tilings in a book enti-
tled FldchenschlufS: System der Formen liickenlos aneinander-
schliessender Flachteile, including nonconvex tiles. No new
convex tile was discovered. It was claimed that their treat-
ment was complete.

An End, or a New Start

In 1968, fifty years after Reinhardt’s pioneering thesis, Ker-
shner surprisingly discovered three new classes of pen-
tagons that can pave the whole plane without gaps or over-
lapping.

Theorem 4 (Kershner [10]). A convex pentagon B can tile
the whole plane [E? by identical copies if it satisfies one of the
three groups of conditions:

(6) ar+ay+oay =271, oy =203, €, =€, = €5, and €3 = €.
(7) 2y + a3 =204 + ) =27, and €1 = €, = €3 = €,.

(8) 21+ ay =2a4 +az =27, and €1 = €, = €3 = ¥,.

According to Kershner, having been intrigued by this prob-
lem for some 35 years, he finally discovered a method of classify-
ing the possibilities for pentagons in a more convenient way than
Reinhardt’s to yield an approach that was humanly possible to
carry to completion. Unfortunately, Kershner’s paper con-
tains no hint of his method. Of course, the three classes
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Figure 3. Reinhardt’s pentagonal tiles and their local tilings.

:

Figure 4. Heesch’s counterexample to Hilbert’s problem.

of new pentagon tiles were indeed surprising, though ver-
ifications are simple (see Figure 5).
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Figure 5. Kershner’s pentagonal tiles and their local tilings.

Remark 1. Kershner's discovery was unexpected. Even
more surprising was that all the pentagons of Types 6-8
are counterexamples to the second part of Hilbert's 18th
problem! In other words, they can tile the whole plane;
nevertheless they are not the fundamental regions of any
group of motions. Hilbert, Bieberbach, Reinhardt, Heesch,
and others would have been surprised by Kershner’s ele-
gant examples! Kershner himself did not mention this
fact in his papers. Perhaps he overlooked it. This fact
has been mentioned in many books and survey papers
(see [6]). Inductively, n-dimensional counterexamples to
Hilbert's problem can be constructed as cylinders over
(n — 1)-dimensional ones. For example, if D is a domain
of Type 6 and H is the cylinder of height one over D, then
H is a counterexample to the second part of Hilbert’s 18th
problem in E3.

In 1975, Reinhardt and Kershner’s discoveries were in-
troduced and popularized by Martin Gardner, a famous
scientific writer, in the “Mathematical Games” column of
the Scientific American magazine. Since then, the tiling
problem has stimulated many amateurs who went on to
make significant contributions to this problem.

Soon after Gardner’s popular paper, based on the
known Archimedean tiling (4,8,8) by octagons and
squares together, as shown in Figure 6, a computer scien-
tist, Richard James III, discovered a class of new tiles.
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Figure 6. The Archimedean tiling of (4,8, 8) type.

Theorem 5 (James [9]). A convex pentagon B can tile the
whole plane E2 by identical copies if it satisfies the following
group of conditions:

9) oc5=§, o +ay =m 200 —a, = 2as + oy = 7, and
€1=€2+€4=€5.

This result can be easily verified by argument based on
Figure 7. In principle, Lemma 1 guarantees that every
hexagon tiling is edge-to-edge. However, James's discovery
shows that this is no longer true in some pentagon tilings.
Theorem 5 also served to point out that Kershner had taken
edge-to-edge as a hidden assumption in his consideration.

Type 9.

Figure 7. James's pentagonal tile and its local tiling.

Meanwhile, mathematical amateur Marjorie Rice made
some truly astonishing discoveries that made the news.
She was a true amateur. According to Schattschneider [15],
Rice had no mathematical training beyond “the bare min-
imum they required...in high school over 35 years ago.”
Even so she was able to consider the problem with a sys-
tematic method based on the possible local structures of
the pentagon tilings at a given vertex. By dealing with more
than sixty cases, she discovered four types of new pentagon
tiles!

Theorem 6 (Rice [15]). A convex pentagon B can tile the
whole plane E? by identical copies if it satisfies one of the four
groups of conditions:

(10) a +20c5 =27, as +2CC4 = 2T, and€1 =€2 =€3 = €4.
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(1) o = %, az +as =m, 20, +az = 2m, and 261 + €3 =

€4 = €5.

(12) o1 = %, az+os =7, 20, +03 = 27, and 261 = €3+€5 =
s

(13) a, = a3 = %, 2@2 + Ay = 20(5 +0(4 = 27'[, €3 = €4, and
263 = €5.

It is routine to verify this theorem based on Figure 8.
Nevertheless, it is rather surprising to notice that the tilings
produced by the pentagons of Type 10 are edge-to-edge, a
fact that was missed by both Reinhardt and Kershner. It
is even more surprising that all the pentagons of Types 9-
13 are counterexamples to Hilbert’s problem as well (see
[6]). In other words, they can tile the whole plane; how-
ever, they are not the fundamental domains of any group
of motions.

Marjorie Rice died on July 2, 2017, at the age of 94. A
lobby floor of the Mathematical Association of America in
Washington is paved with one of Rice’s pentagon tiles in
her honor. On July 11, 2017, Quanta Magazine published
an article in her memory.

Rice’s method was systematic, in the sense that it was
based on a geometric principle. In any case, the method
was not strong enough to guarantee the completeness of
the list. In 1985, Rolf Stein reported another one.

Theorem 7 (Stein [16]). A convex pentagon B can tile the
whole plane E? by identical copies if it satisfies the following
conditions:

(14) oy = % 20 + a3 =27, az + as =, and 26, = 265 =

Fifteen, and Only Fifteen

Let 7 denote a tiling of F2 with congruent tiles. A symmetry
of 7 is an isometry of E? that maps the tiles of 7~ onto tiles
of 7, and the symmetry group G of T is the collection of all
such symmetries associated with isometry multiplications.
Two tiles, T} and T, of J, are said to be equivalent if there
is a symmetry o € G such that o(Ty) = T,. If all the tiles
of J are equivalent to one tile T, the tiling J is said to
be transitive (or isohedral) and T is called a transitive tile.
Then, the second part of Hilbert's 18th problem can be
reformulated as:

Is every polytope that can tile the whole space a transitive
tile?

A tiling J of E? by identical convex pentagons is called
an n-block transitive tiling if it has a block B consisting of n
(minimum) connected tiles such that 7" is a transitive tiling
of B. If a convex pentagon T can form an n-block transitive
tiling but not an m-block transitive tiling for any m < n,
then we call it an n-block transitive tile. Clearly, all the tiles
of Types 1-5 are one-block transitive. In other words, they
are transitive tiles. According to [12, 15], all the tiles of
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Figure 8. Rice's pentagonal tiles and their local tilings.
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Figure 9. Stein’s pentagonal tile and its local tiling.

Types 5-14 except Type 9 are two-block transitive, and the
tiles of Type 9 are three-block transitive.

From the intuitive point of view, it is reasonable to
believe that periodic structure is inevitable in pentagon
tilings and the period cannot be too large. Based on this
belief, Mann, McLoud-Mann, and Von Derau [12] devel-
oped an algorithm for enumerating all the n-block tran-
sitive pentagon tiles. When they checked the three-block
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case, surprisingly, they discovered a new type of pentagon
tiles.

Theorem 8 (Mann, McLoud-Mann, and Von Derau [12]).
A convex pentagon B can tile the whole plane E? by identical

copies if it satisfies the following conditions:

T 37 T T 57
(15) Q=g 4=, 0= oc4:—,ocs=?,and

12’ 2
€1 = 252 = 264 = 21/05

Type 15.

V3

V2

Figure 10. Mann, McLoud-Mann, and Von Derau’s pentagonal
tile and its local tiling.

Remark 2. It was shown by Mann, McLoud-Mann, and Von
Derau [12] that there is no other n-block transitive penta-
gon tile with n < 4. The completeness of the list emerges
again.

Since Hales’s computer proof for the Kepler conjecture,
more and more geometers have turned to computers for
help when their mathematical problems can be reduced
into a large number of cases. Characterizing all the penta-
gon tiles seems to be a perfect candidate for such purpose.

In 2017, one century after Bieberbach proposed the
characterization problem, Michaél Rao announced a com-
puter proof for the completeness of the known pentagon
tile list. Rao’s approach is based on a graph expression.
First he proved that if a pentagon tiles the plane, then it
can form a tiling such that every vertex type has positive
density. Clearly, this is a weak version of the periodic tiling.
Second, it was shown that there are only a finite number of
possible vertex types in the modified pentagon tiling. In
fact, he reduced them to 371 types. Then, by testing the
371 cases, Rao announced the following theorem.

Theorem 9 (Rao [13]). A convex pentagon B can tile the
whole plane E? by identical copies if and only if it belongs to
one of the fifteen types listed in Theorems 3-8.

Computer proofs are still not as acceptable as transpar-
ent logical proofs within the mathematical community.
However, we have to admit that the complexity of the
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mathematical problems ranges from zero to infinity, and
there indeed exist problems that have no transparent logi-
cal proofs.

In 1980, Griinbaum and Shephard [6] made the follow-
ing comment when they wrote about the tiling problems:
Current fashions in mathematics applaud abstraction for its own
sake, regarding it as the highest intellectual activity—whether
or not it is, in any sense, useful or related to other endeavors.
Mathematicians frequently regard it as demeaning to work on
problems related to “elementary geometry” in Euclidean space
of two or three dimensions. In fact, we believe that many are
unable, both by inclination and training, to make meaningful
contributions to this more “concrete” type of mathematics; yet
it is precisely these and similar considerations that include the
results and techniques needed by workers in other disciplines.
Clearly, the proof history of Bieberbach’s problem indeed
confirms their comment.

Multiple Tilings

Intuitively speaking, tiling the plane is to pave the whole
plane flat with identical tiles. As one can see from previous
sections, only a few types of polygons are qualified for the
job. However, if multiple layers are permitted, we will have
many more choices for the shape of the tile.

Let K denote an n-dimensional convex body with inte-
rior int(K) and boundary 9(K). In particular, let D denote
a two-dimensional convex domain.

Assume that ¥ = {K;,K;,Kj3,...} is a family of convex
bodies in E" and k is a positive integer. We call & a k-fold
tiling of E™ if every point x € E" belongs to at least k of
these convex bodies and every point x € E" belongs to
at most k of the int(K;). In other words, a k-fold tiling of
E" is both a k-fold packing and a k-fold covering in E". In
particular, we call a k-fold tiling of E" a k-fold congruent
tiling, a k-fold translative tiling, or a k-fold lattice tiling if all
K; are congruent to K;, all K; are translates of K;, or all
K; are translates of K; and the translative vectors form a
lattice in E”, respectively. In these particular cases, we call
K; a k-fold congruent tile, a k-fold translative tile, or a k-fold
lattice tile, respectively. Clearly, a k-fold translative tiling
of the plane E? is a nice pavement with identical copies.
In other words, it covers every point of the plane with the
same multiplicity, excepting the boundary points of the
tiles.

For a fixed convex body K, we define 7°(K) to be the
smallest integer k such that K can form a k-fold congru-
ent tiling in E", 7(K) to be the smallest integer k such that
K can form a k-fold translative tiling in E", and 7#(K) to
be the smallest integer k such that K can form a k-fold
lattice tiling in E". For convenience, if K cannot form
any multiple congruent tiling, translative tiling, or lattice
tiling, we will define 7°(K) = o0, T7(K) = o0, or 7%(K) = o0,

NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 641



respectively. Clearly, for every convex body K we have
' (K) < 7(K) < T(K). ®)

By looking at the separating hyperplanes between tangent
neighbors, it is obvious that a convex body can form a mul-
tiple tiling only if it is a polytope.

If o is a nonsingular affine linear transformation from
E" to E", then F = {K;,K;,Kj,...} forms a k-fold tiling of
E" if and only if ' = {0(K;), o(K;), 0(K3), ...} forms a k-
fold tiling of E". Consequently, for any n-dimensional
convex body K and any nonsingular affine linear transfor-
mation o we have both

7(a(K)) = 7(K) ©)
and
t*(0(K)) = 7*(K). (10)
Unfortunately, 7°(K) is not an invariant for the linear trans-
formation group.
Clearly, onefold tilings are the usual tilings.
plane, we have

In the

(D)=1t"D)=1 (11)
if and only if D is a parallelogram or a centrally symmetric
hexagon, and

(D)=1 12)
if and only if D is a triangle, a quadrilateral, a pentagon
belonging to one of the fifteen types listed in Theorems 3-
8, or a hexagon belonging to one of the three types listed
in Theorem 2.

Taking a usual tiling and stacking it on top of itself k
times forms a k-fold tiling. Similarly, by stacking j copies
of a k-fold tiling on top of each other, we get a jk-fold
tiling. However, we are interested in the nontrivial multi-
ple tilings.

Since 1936, multiple tilings have been studied by
P. Furtwingler, G. Hajés, R. M. Robinson, U. Bolle,
N. Gravin, M. N. Kolountzakis, S. Robins, D. Shiryaev, and
many others. Nevertheless, many natural problems are
still open. In the forthcoming sections we will introduce
some fascinating new results about multiple tilings in the
plane.

Multiple Lattice Tilings

In 1994, Bolle studied the two-dimensional lattice multi-
ple tilings. Let D be a convex domain, let A be a lattice,
and assume that D + A is a k-fold lattice tiling of E2. It is
easy to see that D must be a polygon. Let E be an edge of
D, let L be the straight line containing E, let H; and H, de-
note the two closed half-planes with L as their boundary,

and for a general point p € int(E) define
n(p)=Hg: geA D+geH;, pedD)+gl. (13)

By studying n,(p) and n,(p) for general p € int(E), Bolle
proved the following criterion:
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Lemma 2 (Bolle [1]). A convex polygon D is a k-fold lattice
tile for a lattice A and some positive integer k if and only if the
following conditions are satisfied:
(1) It is centrally symmetric.
(2) When D is centered at the origin, the relative interior
of each edge G of D contains a point of %A.
(3) If the midpoint of G is not in %A, then G is a lattice
vector of A.
Based on Bolle’s criterion, Gravin, Robins, and Shiryaev
[5] discovered the following example.

Example 1. Let A denote the two-dimensional integer
lattice Z? and let B, denote the octagon with vertices v; =

1 3 3 1 31 13
(5,—5)/ Va2 = (5,—5)/ V3 = (5’5)’ Vg4 = (E’E)" Vs‘ = —Vi,
Vg = —V,, V; = —Vv3, and vg = —v,, as shown in Figure 11.

Then R, + A is a sevenfold lattice tiling of E2.

Vg

Figure 11. Gravin, Robins, and Shiryaev's octagonal sevenfold
lattice tile.

Let D denote the family of all two-dimensional convex
domains and let B, denote the family of all centrally sym-
metric convex 2m-gons. Since the octagon of Example 1 is
the simplest centrally symmetric polygon (except parallel-
ograms and hexagons) satisfying the criterion of Lemma 2,
one may conjecture that

min (D) > 7.
DeD\{Bu%k}
However, based on the known results on multiple lattice
packings by V. C. Dumir, R. J. Hans-Gill, and G. Fejes T6th
(see Zong [19]), in 2017 Yang and Zong discovered the fol-
lowing unexpected result.

Theorem 10 (Yang and Zong [17]). If D is a two-
dimensional convex domain that is neither a parallelogram nor
a centrally symmetric hexagon, then we have

(D) > 5,

where the equality holds at some particular decagons.
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Figure 12. Yang and Zong’s decagonal fivefold lattice tile.

Let A be the integer lattice Z> and let B, denote a
decagon whose edge midpoints are u; = (0,—1), u, =
L= us = G0,y = (5,3, us = (L), us = —uy,
u; = —u,, ug = —uU3, Uy = —uy, and u;, = —u;, as shown
in Figure 12. By Lemma 2, it can be easily verified that
B + A is indeed a fivefold lattice tiling of E2.

Even more unexpected, by studying lattice polygons, all
the fivefold lattice tiles can be nicely characterized. There
are two classes of octagons and one class of decagons
besides the parallelograms and the centrally symmetric
hexagons.

Theorem 11 (Zong [20]). A convex domain D can form a
fivefold lattice tiling of the Euclidean plane if and only if D is
a parallelogram or centrally symmetric hexagon or, up to affine
linear transformation, D is a centrally symmetric octagon with

. 3 3 1
vertices vy = (_ai_g)l V) = (1 - a’_g)l V3 = (1 + Cf,_;)/

1

vy, = (1 - oc,z), Vs = —Vy, Vg = —V,, V; = —V3, and
1 ) .

vy = —vy, where 0 < a < o with vertices v, = (8,—2),

vy =(1+B,-2),v3=010-40), vy = <61’ 1), vs = —vy,

Vg = —Vy, V7 = —V3, Vg = —V,, where ;< B < 3o

a centrally symmetric decagon whose edge midpoints are u; =
1 3 31

(07_1)1 u, = (17_5)/ u; = (E’O)/ uy = (E’ 5)’ Us; = (1’1)/

Ug = —U;, U; = —U,, Ug = —U3, Ug = —Uy, and Uy = —Us.

Let B, be a centrally symmetric convex 2m-gon cen-
tered at the origin o of E2. It is reasonable to believe that
7*(By,) is big when m is sufficiently large. In fact, by study-
ing the local structure of a multiple tiling (see next section),
Yang and Zong [18] proved that

if m is even,
if m is odd.

m—1

m—2 (14)

T (Bm) 2 {

Furthermore, by detailed geometric analysis based on
Lemma 2, Lemma 4, and Pick’s theorem, Zong [20] proved
that

T'(R4) 2 6, (15)
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T'(R2) 2 6, (16)

*(Ro) 2 5, (17)

where equality in (17) holds if and only if (after a suit-
able affine linear transformation) B, is a centrally sym-
metric decagon whose edge midpoints are u; = (0,—1),

1 3 31
u = (1’_5)/ u; = (E,O)f u = (E’ E)' us = (1,1),
Ug = —U;, U; = —U,, Ug = —U3, Ug = —U,, and u;y = —u,
(as shown by Figure 12), and

™(R) > 5, (18)

where the equality holds if and only if (after a suitable
affine linear transformation) R is either a centrally sym-
metric octagon R(«) (see Figure 13, top) with vertices v; =
(a=) v =(-a—), v =1+a—2), v = (1-a?),
Vs = —Vy, Vg = —V,, V; = —V3, and vg = —v,, where
0<a< i, or a centrally symmetric octagon R(S) (see Fig-
ure 13, bottom) with vertices v; = (8, —2), v, = (1+,-2),
V3 =(1-p,0), vy =(B,1), Vs = =Vy, Vg = =V, V; = —V3,
vg = —Vv,, where i < B < § Let A be the integer lattice
72; it can be verified that both B(«) + A and B(B) + A are
indeed fivefold lattice tilings of E2.

A
L] L] L L] L]
Vg Vs
] ° ] o
V7 V4
Py(a) o

V.

Vg 3
L] L] L L]

Vi Vo

L] L] L L] L]

L] L] L]

L] L] L]

L] L] L] [ L]
Vg

L] L] L] L] L]

Vi Vo

Figure 13. Zong's octagonal fivefold lattice tiles.
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Clearly, Theorem 11 follows from (14)-(18). The
proofs of these inequalities are complicated, in particular
(17) and (18). Their proofs rely on carefully designed area
estimations by dealing with many cases. Nevertheless, un-
like Rao’s proof for Theorem 9, computer checking is not
necessary here.

To describe the structure of the decagon in Theorem 11
more explicitly we have the following theorem.

Theorem 12 (Zong [20]). Let W denote the quadrilateral

13 2 2
W =03

33 ;
and wy = (_Z’ Z)' A centrally symmetric convex decagon can

1 3 31
take u; = (09_1)/ u; = (1’_5)/ u; = (E’O)/ u = (E’;)I
us = (1,1), ug = —u;, u; = —u,, Ug = —Uz, Uy = —Uy,, and
u;o = —Us as the middle points of its edges if and only if one
of its vertices is an interior point of W.

. . 1
with vertices w; = (—5,1), w, = (—

Similarly, the sixfold lattice tiles can be characterized as
follows:

Theorem 13 (Zong [20]). A convex domain D can form a
sixfold lattice tiling of the Euclidean plane if and only if D is
a parallelogram or centrally symmetric hexagon or, up to affine
linear transformation, D is a centrally symmetric octagon with
vertices vi = (a — 1,2), v, = (a,2), v3 = (1 — ,0), v4 =
Q14+ a,—-1), vs = =V, Vg = —V,, V; = —V3, and Vg = —Vy,
1 .
where 0 < a < o a centrally symmetric decagon whose edge
S 1 1 3
midpoints are u; = (—1,5), u, = (5,1), u; = (5,1), u, =
1
(2,20) us = (2,0), ug = —uy, u; = —Wy, Ug = —U3, Uy =
—uy, and uyg = —us, or a centrally symmetric decagon whose
o 1 1 31
edge midpoints are w, = (—5,1), u, = (5,1), u; = (5,5),
301

uy =(2,0) us = (5,—3), Ug = —uy, Uy = —uy, Uz = —u,
Uy = —Uy, and u;y = —Us.

Theorem 14 (Zong[20]). Let Q denote the quadrilateral with
vertices gy = (0,1), g, = (0,2), @ = (=, 3), and q; =
(—%, 2). A centrally symmetric convex decagon B can take
1 1 3 1

u = (_1’5)1 u, = (5,1)/ u; = (5,1)1 u = (2,5)1 us; =
(2,0), ug = —u;, u; = —u,, ug = —U3, Uy = —Uy, and
w,o = —us as the middle points of its edges if and only if one
of its vertices is an interior point of Q.

Let Q* denote the quadrilateral with vertices q; = (0, %),

q = (%’%)' q; = (0,1), and q4 = (—é,%). A centrally
symmetric convex decagon B can take u; = (%,—1), u, =

31 31 1
(57_5)/ Uz = (2,0), uy = (E’E)r Us = (Efl)r Ug = —uy,
u; = —uy, Ug = —Uz, Uy = —Uy, and u;y, = —us as the
middle points of their edges if and only if one of its vertices is

an interior point of Q*.
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Figure 14. Zong’s sixfold lattice tiles, one class of octagons
and two classes of decagons.

Multiple Translative Tilings

In 2012, Gravin, Robins, and Shiryaev [5] proved that an n-
dimensional convex body can form a multiple translative
tiling of the space only if it is a centrally symmetric poly-
tope with centrally symmetric facets. Therefore, to study
multiple translative tilings in the plane, we need to deal
only with the centrally symmetric polygons.

Let B, denote a centrally symmetric convex 2m-gon
centered at the origin, with vertices vy, v,, ..., v, enumer-
ated in the clock-order, and write V = {v;,V,, ..., Vo,,}. As-
sume that B,,, + X is a 7(B,,)-fold translative tiling in E?,
where X = {x;,X,, X3, ...} is a discrete multiset with x; = o.
By studying the local structure of B, + X at the vertices
v € V + X, Yang and Zong [18] discovered some fascinat-
ing results.
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Theorem 15 (Yang and Zong [18]). If D is a two-
dimensional convex domain that is neither a parallelogram nor
a centrally symmetric hexagon, then we have

(D) > 5,

where the equality holds if D is some particular centrally sym-
metric octagon or some particular centrally symmetric decagon.

Remark 3. It is known that
(D) < (D)

holds for every convex domain D. Therefore, Theorem 15
implies Theorem 10.

At this point, it is natural to ask for a characterization of
all fivefold translative tiles and in particular to determine
if these are just the known fivefold lattice tiles.

Theorem 16 (Yang and Zong [18]). A convex domain D can
form a fivefold translative tiling of the Euclidean plane if and
only if D is a parallelogram or centrally symmetric hexagon or,
up to affine linear transformation, D is a centrally symmetric

. . 3 5 1 s
octagon with vertices v, = (— - Ta, —2), Vv, = (—5 - Ta, —2),

V—(a 30)V—<“ 3l)v—vv—v
3=\ Y e =133 Vvs = 17 Vg = 2
2 . .
V; = —V3, and vg = —v,, where 0 < o < > or with vertices
vy = (2_;8’ _3)’V2 = (_;39_3)’ V3 = (_2’ _1)’ Vg = (_2s 1)’
V5 = —Vy, Vg = —V,, V; = —V3, and vg = —v,, where 0 <

B <1, or a centrally symmetric decagon whose edge midpoints

1 3 31
areu; = (0,-1), u, = (1,—2)/ uz = (E,O)l u = (E’E)'
us; =(1,1), ug = —uy, Uy = —uy, Ug = —Us3, Uy = —Uy, and

ulo = —u5.

The proofs for Theorems 15 and 16 are extremely com-
plicated. They consist of a series of lemmas showing that

a0
(By4) > 6, (20)
7(B2) 2 6, (21)
7(Ro) 2 5, (22)

where in (22) equality holds if and only if B, is a centrally
symmetric decagon that can form a fivefold lattice tiling of
E?, and

(R) = 5, (23)
where the equality holds if and only if (after a suitable
affine linear transformation) R is either a centrally sym-
metric octagon B(«) (see Figure 15, top) with vertices

N )

2 4 4 2
a 3
vy = 1_5’1 , Vs = —Vj, Vg = —V,, V; = —V3, and
2
vy = —Vv4, where 0 < a < ora centrally symmet-

ric octagon E/() (see Figure 15, bottom) with vertices
vy =(2-6,-3),v; =(=f,-3),v3 = (=2,-1),v4 = (-2, 1),
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Figure 15. Yang and Zong’s octagonal fivefold translative tiles.

Vs = —Vy, Vg = —V,, V; = —V3, and vg = —v,, where
0<p<1.

Clearly, Theorems 15 and 16 follow by (19)-(23) and
(17).

Though the statements (19)-(23) are more or less iden-
tical to (14)-(18), their proofs are very different. While
the lattice case was based on lattice polygon checking, the
translative case is based on combinatorial analysis.

In fact, the two classes B(a) and B () shown in Figures
13 and 15, respectively, are equivalent under suitable lin-
ear transformations, as well as the two classes B(8) and
B/(a). Therefore, we have the following theorem.

Theorem 17 (Yang and Zong [18]). A convex domain can
form a fivefold translative tiling of the Euclidean plane if and
only if it can form a fivefold lattice tiling in [E2.

Open Problems

To end this paper, let us list three open problems about
multiple tilings that are closely related to the known re-
sults.

Problem 1. Is there a two-dimensional convex domain D
satisfying 7(D) # t*(D)?

In 2000, Kolountzakis [11] proved that if a convex
polygon that is not a parallelogram can form a multiple
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translative tiling of the plane, then the translative set must
be a finite union of translated lattices. To improve this
result and to answer a question of Gravin, Robins, and
Shiryaev [5], B. Liu and Q. Yang independently proved that
if a convex domain D can form a multiple translative tiling
of the plane, then it also can form a multiple lattice tiling
of the plane. However, we do not know if 7(D) = t*(D)
holds for every convex domain D.

Problem 2. Is there an integer k > 6 such that (D) # k
(or (D) # k) holds for all the two-dimensional convex
domains D?

As noticed by Yang and Zong [17], based on the two-
dimensional examples, for any n > 3 one can construct

n-dimensional centrally symmetric polytopes P satisfying
2<t*(P)<5

and
2<1t(P)<5.

Then, we have the following natural problem.

Problem 3. Assume that k = 2, 3, or4, and n > 3. Is
there an n-dimensional polytope P satisfying 7(P) = k (or
*(P) = k)?

Besides these results and open problems for 7*(P) and
7(P), analogous problems for 7°(P) are interesting and
worth studying as well.
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