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Abstract 
 
Applied economic- environment- energy modeling is becoming increasingly important in 
assessing diverse policy strategy quantitative impacts and in anticipating and simulating 
potential future economic performances under environmental and energy constraints. The aim of 
this paper is to shed light on different modeling approaches, compare methodologies and 
theories and classify existing modeling approaches. The creation of an economic- environment- 
energy modeling approach is primarily influenced by the purpose of modeling and merit of 
explanation. The quality of a model can be accurately evaluated only when both targets are 
explicated and unambiguously reached.  
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1 Introduction 
Due to the complexity and solidity of economic interactions, modelers try to portray a simplified 
picture of reality: they create a model using methods of reduced abstraction through an improved 
description of sincerity. The quality of a model is predominantly appraised through distinguished 
explanation value. The demand for economic modeling is derived from three central economic 
targets. The explanation target is defined as the aim of economists to understand and illuminate 
economic interrelations such as economic consequences of individual behavior, direct and 
feedback effects of key economic interactions, and allocation and distribution of scarce goods 
and resources. Through knowledge of verified economic interrelations and connections the 
prediction target’s goal is anticipating future economic performances. Furthermore, in assessing 
economic impacts of alternative policy strategies and games or distinct institutional 
implementations the simulation target recently revealed itself as the most prominent factor in 
economic modeling. 
Concern about fossil fuel resource depletion has led to an increase in applied pure economic 
models with a detailed representation of the energy market. Pioneering energy – economic 
modeling efforts focused primarily on the representation of scarce resources like oil and its 
impact on world economies. More recently, not only the scarcity of energy resources, but also 
other natural resources and the environment and climate played a major role in economic-
environment- energy modeling. The complexity of models has increased considerably, notably 
regarding global environmental issues such as acid rain, ozone depletion and climate change. 
Climatic changes induced by human activities (e.g. increased greenhouse gas emissions) are 
largely caused by energy related activities such as fossil fuel consumption. One important source 
of climate change is anthropogenic greenhouse gas emissions. Increasing atmospheric 
concentrations of greenhouse gases have a substantial impact on global temperature and sea 
level which creates extensive economic, ecological and climatic impacts. The threat of climate 
change makes designing economic development strategies and energy and environmental 
policies increasingly important. Recent developments in sophisticated economic- environment- 
energy modeling intend to integrate climate, ecosystem and economic impacts within a so-called 
Integrated Assessment Modeling approach (IAM).1 
Existing literature focuses mainly on a comparison of modeling results, see Weyant (1999), 
Bosello et. al (1998), Springer (2003) and Hourcade et al. (2001). Grubb (1993) and Hourcade 
et. al. (1996) summarize a representation of some modeling approaches and classifications. 
The aim of this paper is providing an overview of different approaches of economic-
environment-energy modeling, as well as their methodologies, theories and general 
interrelations. The first part of the paper explains the theories and general methodologies of 
economic models. It summarizes the different approaches of economic-environment-energy 
modeling, differentiates their purposes, scales and mathematical approaches and describes 
corresponding data requirements. Furthermore, the substitutability and the role of endogenisation 
as major driving factors in economic-environment-energy modeling is briefly discussed; some 
examples of these modeling approaches are subsequently compared. The last chapter concludes. 
 

2 Methodologies- Some General Remarks 
The procedure for gaining scientific findings is determined by the principal methodology and 
concepts. Scientific theory necessitates methodologies analyzing techniques and contemplation 

                                                 
1 Edmonds (1998) gives an overview of the newest modeling approaches. Previous overviews can be found in 
Dowlatabadi (1993), Dowlatabadi, and Rotmans (1998) and Toth (1995).  
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modes. The concept of equilibria, static or dynamic investigation, and partial and total analyses 
remain the most important base perceptions of modeling. 
 

2.1 Stability of Equilibria 
The determination of an equilibrium is crucial in economic modeling. However, the concept of 
finding equilibria is not standardized in scientific theories. The methodological term of an 
equilibrium is more often used in natural sciences as a continual steady state over time. 
Therefore, an economic system is situated in an equilibrium if all endogenous variables do not 
change over time and all other exogenous variables are constant. Because of the universal 
character of the above equilibrium determination, this concept can be applied to different 
economic areas such as market, balance of payment or growth equilibrium. The growth 
equilibrium can also be classified as dynamic equilibrium because all equilibrium values change 
over time. Nevertheless, a dynamic equilibrium is a temporary steady state because the rate of 
changes are stable. 
The equilibrium concept in economic theory is usually meant as market equilibrium or market 
clearance by the balance of supply and demand. An equilibrium is ex definitione stable over 
time, whereas disequilibria are only temporarily constant. Therefore, economies tend towards a 
equalized state (which acts as reference position). 
A stable equilibrium is characterized by an obligatory return to the base equilibrium after 
external shocks. If this cannot be reached, the equilibrium is indifferent or unstable if the 
reaction induces an equilibrium position remote from the reference and base equilibrium 
situation. In economic theory only stable equilibria are considered. All equilibria analysis need 
to incorporate a stability investigation to determine the conditions of a stable equilibrium. 
 

2.2 Static, Comparative Static and Dynamic 
In economic modeling, time can be treated as a constant (static), a parameter (comparative static) 
or a variable (dynamic). In static analysis, all variables are related to the same time reference 
location. An example for a static investigation is determining a market clearance price by the 
balance of supply and demand at a specific time position. The comparative static analysis 
investigates and contrasts the variables of different time scales. A comparative static analysis 
does not explain adjustment processes like direct economic reactions and feedback effects . The 
dynamic analysis does include these effects; the adaptation processes can be simulated and 
evaluated. The stability conditions determine the convergence towards an equilibrium. 
 

2.3 Partial Versus Total Analyses 
In order to separate particular economic relations and reactions, not all markets and interrelations 
are modeled simultaneously. Instead, specific sections of the economy are detached and 
reflected. The total analysis investigates all economic reactions and interrelations whereas the 
research of economy sections is named partial analysis. Sensitivity analyses use mostly the so- 
called ceteris paribus stipulation: in order to assess the impacts of one or several influence 
factors, only one is modified whereas all others remain fixed. Both partial or total analyses use 
the ceteris paribus clause to investigate the sensitivity of a model through assumption variations. 
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3 Economic Theories 
Economists usually distinguish between two major economic theories: neo classical and the neo 
Keynesian theory. The neo classical economic theory covers the microeconomic decisions of 
individuals and investigates the distribution and allocation of scarce resources towards 
alternative utility purposes in order to reach market clearance situations. Consumers maximize 
their utility under budget constraints, firms maximize their profits under costs constraints. 
Optimally, the marginal utility and product of input factors is equal to its relative price. 
Substitution processes are induced by an change in relative price. Market clearance of all 
markets is reached by the adjustment of market prices, known as general equilibrium theory. 
Therefore, the general equilibrium microeconomic theory is primarily concerned with the 
allocation and distribution of scarce goods and resources against the background of alternative 
usability potentials. From a more macroeconomic perspective, the neoclassical model covers 
four markets which ought to be cleared: goods, labor, capital and money. Both labor supply and 
demand are influenced by real wages; full employment is determined by the balance of supply 
and demand. Capital demand is revealed by the investment decisions of firms, supply by the 
savings of households. The market clearance price on the capital market is represented by the 
market interest rate. The equilibrium of money supply and demand is reached by the market 
clearance price in which money supply is assumed to be exogenous. The general equilibrium is 
always reached on all markets without any policy intervention due to the so-called “invisible 
hand of the markets” and Says´ law stating that each supply creates the demand and leads 
necessarily to the equalization of demand and supply. 
The Neo- Keynesianian macroeconomic theory also includes the equilibrium concept to 
determine the market clearance of all markets. However, on the labor market this equilibrium 
does not necessarily cause full employment. In contrast to the neoclassical theory, nominal 
wages, not real wages determine labor supply which are not as flexible as assumed; they are 
rigid and on the down scale. Due to this, a market equilibrium where unemployment occurs is 
feasible. Furthermore, investment decisions are not only determined by the interest rate but also 
by expectations and uncertainties. Private savings are not only influenced by the market interest 
rate but also by real income changes. Therefore, consumption augments with real income 
growth. The main economic driving factor is the effective demand which increases the real GNP 
to a large extent. For that reason, the Says´ law is reversed and the market cannot clear itself  
autonomously. It can be said that neoclassical economic theory focuses on allocation whereas 
the neo Keynesian economic theory draws its attention principally to the employment theme to 
investigate the facility degree of non employed production factors. Further developments of 
economic theories include ideas of both concepts, like the Monetarian economic theory which 
principally intends to explain the driving factors of inflation or the theory of rational 
expectations which concentrates on the employment and inflation processes. 
Economic modeling approaches can be based on neoclassical theories (e.g. general equilibrium 
models), neo Keynesian theoretic approaches (e.g. most of the econometric modeling efforts) or 
a combination of both. More frequently, neoclassical modeling methods start from the 
benchmark of optimizing individual behavior in perfectly competitive markets. Optimal growth 
models under conditions of certainty and under the assumption of infinite consumers as 
homogenous agents, along with competitive markets and constant returns to scale in production 
typically imply that the allocation of resources achieved by a decentralized economy will be the 
same as that chosen by a central planer maximizing the utility of the representative economic 
agent. This modeling concept is known as the Ramsey infinite horizon optimization model 
which derives the intertemporal conditions needed to satisfy the optimal growth path chosen by a 
central planner. Applied general equilibrium models include microeconomic and individual 
based optimization behavior and a macroeconomic optimal growth Ramsey agent to determine 
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intertemporal equilibrium conditions. In contrast to the infinite horizon maximizers of the 
Ramsey model, overlapping generation models incorporate individuals of different generations. 
These various generations can trade with one another: each generation trades with different 
generations in distinct periods of time, and generations not yet born with unknown preferences 
and unregistered in current market transactions exist as well. The model provides an example of 
an economy where competitive equilibrium is not necessarily the same that would have been 
chosen by a central planner. Therefore, it is not automatically optimally Pareto. Life cycle savers 
may overaccumulate capital, leading to a situation in which everyone could be better off by 
consuming part of the capital stock. 
Most simulation models start with the neoclassical economic theory benchmark being enlarged 
by assumptions of incomplete markets and imperfect competition or non-neoclassical constructs 
as bounded rationality and interdependent utility functions in order to understand important 
aspects of financial and labor markets. Applied general equilibrium models can also be used to 
investigate impacts of negotiation games. General equilibrium models are suited for game 
theoretic investigations due to equivalent phenomena of the correspondence of the Walras’ 
equilibrium and the core of expected negotiation results. More generally, game theory studies 
decision processes of several competitive individuals intending to reach the same target.  It 
focuses therefore on conflict and cooperation solutions. The game theory investigates strategic 
actions, coalition formation and market power of individuals and coalitions by the determination 
of stable, fair, optimal or equitable distribution of utility. A Nash equilibrium determines a set of 
strategies of all players which is stable and cannot be improved by payoffs.  
Economic modeling concepts are based on different theoretical concepts for the purpose of 
explanation, prediction or simulation within a time, geographic or sectoral scale. The following 
chapter explains the different purposes of modeling and their approaches. 
 

4 Economic – Environment- Energy Modeling 
To avoid significant misinterpretations of modeling results by incorrect applications, models 
must be classified and evaluated against the background of the purpose they were designed for. 
Pure scientific objectives may focus on either an improvement in real economic theory 
descriptions or on a model application evaluating or simulating economic market reactions and 
assessing policy strategies. If the main purpose of a model creation is to use it as a decision 
support tool, two main issues need to be clarified: a. which policy is to be investigated: 
environmental, energy or climate policy and which geographical and time scale should be 
covered? b. Is the main target the evaluation or optimization of policy strategies?  
For example, detailed information regarding the costs and benefits of regional and local 
environmental programs must be studied by highly disaggregated cost-benefit environmental 
assessment models. In contrast, impacts of global climate change policy strategies require an 
investigation by aggregated worldwide economic simulation models covering the main 
interlinkages of economic actors. Moreover, the time horizon plays a crucial role through which 
a specific policy option is explored. The purpose, time and geographical scale determine the 
nature of each economic modeling instrument. 
 

4.1 Purpose of Modeling 
The purpose of modeling is principally determined by the intention to forecast and anticipate 
future economic performances or to simulate economic reactions of scenario analysis. Hourcade 
et al. add a third purpose of modeling: the “backcasting” target that attempts to look back from 
the future to the present in order to construct visions of desired futures by interviewing experts. 
Forecasting models must be based on historical time data to extrapolate potential future trends. 
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Therefore, they are usually applied only for analyzing short to medium term impacts of action. 
This approach requires an endogenous representation of economic behavior and general growth 
patterns and is principally found in short-term, econometrically driven economic models. 
Simulation models are widely used to study “if-then” questions by scenario analysis in which a 
specific number of policy or intervention scenarios is compared against a so-called “business as 
usual” reference scenario. Depending on the time scale, simulation purposes principally aim at 
an exploration of the future by scenario analysis. Because of that, main economic driving factors 
must be given exogenously so that general assumptions must be made about population growth, 
economic behavior, physical resources, substitution options and ordinary technical progress. 
Specific purposes arise from the area of interests. Energy models could focus on concrete 
notions of energy demand, supply, specific impacts or evaluation. Environmental and climate 
models could also focus on specific areas or on the overall phenomenon in general. More 
frequently, modelers integrate subjects of different disciplines as a means to combine several 
specific purposes. In order to investigate economic-environment-energy interactions, an 
integrative modeling approach is indispensable.  
 

4.2 Time Dimension and Geographical Scale 
Both time horizon and the geographical scale within applied modelling concepts crucially 
depend  on investigation purpose. If long term global climatic impacts are to be evaluated and 
simulated, the time horizon of the model needs to cover at least the next 50 years. Grubb et al. 
(1993) classify time scales into a short term period of five years or less, a medium term period 
covering between three and fifteen years and a long term time period of ten years or more. 
Economic forecast purposes are based primarily on an extrapolation of past reactions into the 
short to medium future time period. 
The geographical coverage reflects the level at which the analysis takes place. Global models 
comprise international regions and nations and simulate economic relations and reactions on a 
highly aggregated level. Regional analysis focus primarily on a specific region like Europe or 
Asia, while local models replicate specific interrelations of market actors and systems within a 
region of a country. National models cover only one country and represent economic behaviour 
within this country. Depending on the size and market power of respective countries, national 
models consider the impact of trade relations on other countries in a different manner. Usually, 
small countries cannot influence the market price for goods or energy services. Larger countries 
however could have this potential and shape market feedbacks and prices by changing trade 
reactions. Applied models may concentrate their analysis primarily on one sector within an 
economy or could cover all relevant sectors (multi sector models). Single-sector models only 
provide information regarding a particular sector and do not include economic relations and 
interlinkages with other economic sectors. Multi-sector models focus primarily on a national 
level but can also be applied to regional or international investigations. 

4.3 Data Requirements 
Model results crucially depend on data quality. Forecasting models must be based on long term 
time series data, the longer and disaggregated the available data, the more precise and detailed 
future predictions can be. Data reliability plays a fundamental role. Some countries do not 
provide the necessary data or otherwise use different statistical accounting methods that are not 
comparable to other techniques and data. On a global level, highly aggregated time series data 
for the main economic sizes and driving factors are obligatory. However, no common database 
exists for a consistent and comprehensive collection of time series data for all world regions. 
Recent developments and cooperation of global economy and trade modelers established a 
common data base primarily covering the major input-output tables of world regions and their 
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bilateral trade flows.2 This data is based mainly on the input-output tables provided by the 
statistical offices of each nation and collects data from UN and OECD statistics. On a very 
detailed level of a country or region, efforts have already been undertaken to harvest and 
establish common databases; depending on the modeling purpose, some data still must be 
imposed.  
 

5 Different Modeling Approaches 
A very common and accepted classification of energy – economy models is the distinction 
between top-down and bottom-up approaches. Top-down modeling approaches tend to cover 
economic relations from a more (as the name implies) “top down” economic perspective 
whereas bottom-up modeling approaches focus more on the description of individual energy 
systems and technologies.  
According to Hourcade et.al. (1996) differences in outcomes of both types of models stem from 
the distinct treatment of how technology is adopted. The following table illustrates decision 
making behavior of economic agents and how markets and economic institutions actually 
operate over a given period of time.  
 

 
Figure 1: Classification of Model Types 

 
Grubb et al. (1993) refers to the very different paradigms both approaches follow, the top down 
approach is associated with the so called “pessimistic” economic paradigm, while the bottom up 
approach is associated with “optimistic” engineering paradigm. 
                                                 
2 See GTAP , Hertel (1998) 
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5.1 Bottom-Up Models 
Bottom-up models provide detailed information about the techniques, structural effects and 
sectoral behavior of an economy. These partial equilibrium economic models describe the 
economy from the bottom side and emphasize the “green” potential of available technologies. 
They can be classified into technical supply and demand models, linear and non-linear system 
optimization models, or system simulation models and partial forecast models. As an outcome, 
bottom-up models determine marginal abatement costs and so called “no regret” possibilities, 
i.e. energy saving potentials at a low cost. According to Hourcade et.al. (1996), bottom-up 
models can be classified into descriptive and prescriptive models. Descriptive models attempt to 
provide practical estimates of the technology mix resulting from actual decisions based on 
assumptions such as complex preferences, intangible costs, capital constraints, risk treatment, 
uncertainty and market barriers. Alternatively, prescriptive models present an estimate of 
technological potentials by evaluating the most efficient existing technologies found through  
cost minimization. Consequently, prescriptive studies provide a more optimistic estimation of 
technological potentials when compared to descriptive studies. 
The limitations of bottom-up modeling approaches are that they generally neglect feedback 
effects to and from the economy as well as the rebound effects on international energy markets. 
Moreover, they do not account for uncertainties related to many environmental and climate 
phenomena. The diffusion process of new technologies and market thresholds such as hidden 
costs and market constraints tend to be neglected, resulting in an overestimation of efficiency 
improvement potentials and environmental policy effects. Furthermore, bottom-up models 
hardly assess the costs of reducing greenhouse gases on a global scale.3  
 

5.2 Top-Down Models 
Top-down modeling approaches focus primarily on the economic description of interactions and 
relations and are classified within this context into IO, macroeconometric and integrated 
assessment models. Input Output (IO) models are largely applied to investigate direct and 
indirect economic and sectoral effects of demand-driven policies. Based on national input output 
tables, dynamic IO model, in contrast to static IO models, determine intertemporal and dynamic 
effects of investment changes. In order to account for intrasectoral substitution opportunities of 
factor inputs, the traditional limited Leontief production functions must be replaced by Constant 
Elasticity of Substitution (CES) production functions that ideally also cover energy as a further 
input factor. Technological progress is taken into account by an autonomous energy efficiency 
improvement factor (AEEI). International trade relations can be simulated by including flexible 
exchange rates. The major limits of IO models are that they can only be used on a national level; 
in the original format IO models do not cover substitution and feedback effects and neglect 
intersectoral substitution effects. National IO models are widely used to estimate direct and 
indirect sectoral effects of diverse policy strategies, primarily in assessing potential employment 
effects.  
Most macro econometric models applied for economic-environment-energy studies are based on 
the above described neo Keynesian theory. Because macro econometric modeling approaches are 
based on national input-output data tables and econometrically estimated sets of equations, they 
are widely used for national, short-term economic forecasting. Since most of the macro 
econometric modeling approaches are based on the neo Keynesian theory, they allow for a 
                                                 
3 Conversely, energy system models are widely used to assess global costs of GHG mitigation, See Kram (1998), 
Criqui, Klaassen et al. (2000) and Capros and Mantzos (2000). 
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determination of equilibria and structural unemployment short term. Because of data constraints, 
macro econometric models are mainly applied for national policy evaluation and economic 
forecast issues rather as long term and global future prediction tools. Macro econometric models 
were initially developed as pure economic models; as energy and environmental concerns 
become more serious, they are adapted to investigate these issues by introducing energy as a 
traditional production factor and by representing an energy market and interaction between both 
components. In most cases, macro econometric models must be based on long-run time series 
data which are not always available for specific environmental goods and services, nor for broad 
trade flows on a global scale. 
Computational general equilibrium Models (CGE) are primarily based on the above described 
neoclassical theoretical background of equalizing supply and demand in all markets by means of 
market clearance prices. Profit maximization under perfect competition and free market entrance 
guarantee zero profits and optimal allocation and distribution of resources. The dynamics of 
CGE is produced by capital accumulation and/or by the exogenous growth of production factors 
and productivity. Recursive dynamic models determine temporary equilibria under myopic 
expectations, intertemporal CGEs consider capital and investment changes over time. In order to 
guarantee the consistency of all exogenous given parameter, CGEs are frequently benchmarked 
on a given base year. CGE models produce (as a response to external shocks) a general 
equilibrium of all markets according to economic behavior of individual agents. Mainly CGEs 
use non-linear substitution-based production and utility functions of the CES type to describe 
production and utility behavior. Energy can be considered a further input production factor; to 
describe technical progress, autonomous energy efficiency factors are considered. Recent model 
improvements include an endogenous representation of technological progress. The main 
shortcomings of CGE are their reliance on an assumption of perfect market equilibrium; they do 
not allow for structural unemployment in the long run. Recent model development take this into 
account by allowing imperfect markets and incomplete information. CGEs are simulation tools 
that assess “if-then” questions in a medium to long term time horizon and can hardly be applied 
for short and long term prediction tasks. 
In order to take into account not only economic but environmental, energy and climatic impacts, 
existing economic modeling approaches must be integrated into ecological, ecosystem, and 
climatic models. The economic assessment of climate change is based on pure economic models 
focusing on economic relations and interlinkages, economic models enlarged by stylized 
climatic interrelations, or submodels usually known as integrated assessment (IAM) models. 
Costs and benefits of climate change are predominantly assessed by integrated assessment 
models (IAM) incorporating physical relations of climate change and the economic effects of 
damage functions. Integrated assessment models are characterized by combining 
multidisciplinary approaches to thoroughly evaluate climate change impacts.  
IAMs are primarily applied in global economic and climate simulations, should incorporate 
uncertainty and risk analysis, social and economic organization of developing economies and an 
endogenous representation of technological change.4 Weyant et al. (1996) distinguish two 
primary IAMs: policy optimization and policy evaluation models. Policy optimization models 
optimise key policy control variables whereas policy evaluation models assess the impacts of 
specific policies. Policy optimization models can be classified into a. cost–benefit models 
evaluating climate policies, b. target-based models optimizing reactions under exogenous 
climate targets, c. uncertainty-based models dealing with decision making processes under 
uncertainty. Policy evaluation models can be separated into two types: a. deterministic projection 
models in which each input and output takes on a single value, b. stochastic projection models 
treating some input and outputs stochastically.  

                                                 
4 See Bosello et al. (1998). 
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Hybrid modelling approaches combine bottom up modeling tools with top down models by 
either a so called “soft link” of an integrated and internal modeling approach or a “hard link” 
that externally exchange key parameters and variables of both models.5 Most applied general 
equilibrium models and overlapping generation models use as input data a national input-output 
table or social accounting matrix (SAM). Econometric input-output models apply solution 
methods of static or dynamic IO analysis but merge it with econometrically estimated parameters 
and equations.6 

 
 

5.3 Mathematical Approach and Solution Methods 
Linear and non linear optimization models maximize or minimize target functions under specific 
side constraints often formulated under disequilibria conditions. Most general equilibrium 
modeling systems and integrated assessment models are formulated by an optimization approach 
where the optimization conditions are equalized to market clearance conditions. Non 
integratable general equilibrium problems can be formulated as a sequence of mathematical 
optimization problems and solved by an interative process. The method of sequencial joint 
maximization finds an equilibrium through determination of Negishi welfare weights.  
Computational modeling approaches benefit from modern algorithms techniques that improve 
and accelerate solution procedures. Whereas linear optimization models are solved mostly by  
general Simplex algorithms, non linear optimization models are principally solved by a general 
version of the Newton algorithms or variants of them.7  
In order to resolve a system of generalized equations, computational general equilibrium models 
(CGE) use an equalization format (Walras law) by explaining a simultaneous system of 
nonlinear equations. The primal approach derives supply and demand functions from the 
production function and determines a market clearance price. Though the dual approach 
ascertains a system of marginal cost functions as inverse supply functions to determine cost 
prices, price dependent demand is derived from Sheppards Lemma which reveals supply. The 
difficulties arise from the fact that no limits on prices and activities (inequalities) occurs so that 
very often an optimal solution cannot be found (Manne 1985). As a consequence, iterative 
equalization methods are preferred.  
Every optimization problem under unequal side constraints can be formulated by a 
complementary approach. Generally, the complementary format assures that each non negative 
variable must be zero, or the corresponding inequality condition must be equalized. The mixed 
complementary format (MCP) represents the first order conditions of a non linear optimization 
problem (Karush Kuhn Tucker conditions).8 In contrast to original non linear optimization 
problems the complementarity format exposes the advantage of allowing simultaneous 
restrictions on prices and activities. MCPs arise in many application areas including applied 
economics, game theory, structural engineering and chemical engineering.  
Econometric regression methods are based mostly on the ordinary least squares technique 
(OLS); a linear system of simultaneous equations is solved by the method of three stage ordinary 
least squares. Non linear econometric equation systems can be solved by maximum likelihood 
estimator processes computerized by the Gauss method and Gauss Newton algorithm, by the 

                                                 
5 See Böhringer (1998) for an integrated bottom up and top down approach see the next chapter for applied 
modeling concepts. 
6 Like Panta Rhei, see next chapter. 
7 Like the Scarf algorithm, for more information and algorithms see Shoven and Whalley (1992). 
8 The programming language GAMS offers two different solution algorithms, MILES and Path, see (Ferris and 
Sinaoiromsaran 1998), MILES see (Rutherford 1993). 
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method of nonlinear two stage least squares, nonlinear three stage squares or generalized method 
of moments estimation.9 
 

5.4 Substitutability 
Linear optimization models constructed to depict production behavior can only represent 
substitution processes between input factors through a change of production technologies. Non 
linear substitution processes between input factors may only be modeled through a non 
linearisation of supply side production practices. 
Most macroeconomic modeling approaches include CES (constant elasticity of substitution) 
function types to characterize substitution procedures. Computational general equilibrium 
models (CGE) mainly consider CES production and utility functions to describe production and 
consumption behavior. Depending on substitution elasticities, CES functions represent  a 
substitution of complementary relationships between goods and factors.  So called nested CES 
production functions include more than two input factors, whereas a conglomerate of two or 
more input factors can be substituted against another input factor. For example: 

1

( (1 ) ) (1 )mtY e a bK b E L
β β

α α βα α
−

− − − 
= + − + − 

 
 

demonstrates a production function with three input factors, capital K, energy E and labor L.  
Capital and energy can be substituted against each other, just as a nest can be substituted against 
labor. Substitution elasticities can be derived from 

1
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α
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+
 and 1
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β
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 with α and β as substitution parameter α, β> -1, a and b  

distribution parameter a, b >0. If the estimation of β is below –1, the substitution elasticity will 
become negative, a theoretical impossibility. If the substitution elasticity is negative, the two 
input factors can be interpreted as complements. If the substitution elasticities are positive, the 
input factors are substitutes.10  A substitution elasticity between zero and one indicates that both 
input factors are incomplete substitutes, whereas a substitution elasticity higher than one full 
substitution opportunity is feasible. To represent trade relations, goods and services are widely 
traded and must be treated as incomplete substitutes, determined by the Armington trade 
function: 

1 1 1
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σ σ σ
σ σ
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 with D as domestic goods and IM imports, σ represents the 

substitution elasticity between domestic and imported goods. 

                                                 
9 See Kemfert (1998). 
10 See Kemfert (1998). 
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Supply and demand substitution processes are induced by relative price changes. If CGE models 
are based on an input output table such as data input, intra and intersectoral substitution 
processes can be covered. Input output models can only represent factor substitution processes if 
the above mentioned CES functions are implemented, because IO models include limited 
production functions with fixed coefficients of the Leontief type. Linear programming models do 
not allow for an inclusion of CES production functions with variable factor coefficients. 

5.5 Role of Technological Change  
The majority of bottom up models use a linear programming or optimization framework. Due to 
this, technological change is represented as a shift towards a new and more efficient technology. 
Linear programming models are widely applied in firms to detect optimal planning tracks. A 
chosen technology is optimal if the gross yield is maximized under the condition that each 
resource is restricted. Each linear equation system is solved by the Simplex algorithm to find a 
maximum value by jumping from one upper extremity to another. The dual optimization 
minimizes costs and determine the corresponding shadow prices of scarce resources. Because no 
transactions costs, information costs, market reactions, uncertainties about discount rates are 
considered, bottom up models tend to generate overly optimistic cost estimates.  
In top down models, technological change is either represented exogenously by a so-called 
autonomous energy efficiency (AEEI) factor or endogenously by explicit investment decisions in 
R&D which increases innovation and new technology learning due to decreasing costs. 
Technological change is usually included within the production function representing 
technological changes resulting from price substitutions. Mainly, technological changes 
influence the productivity of input factors (labor, capital, energy) within the production process. 
Technological changes within the production process of the economy and especially the 
interdependencies and interrelations of driving forces to describe endogenous technological 
progress sufficiently have been studied by various authors within a theoretic or applied modeling 
framework. Traditional neoclassical growth models like (Solow 1956) and (Swan 1956) gave the 
first interpretations and modeling frameworks of standard growth models, while (Arrow 1962) 
found the Solow-Swan model’s ability to demonstrate per-capita growth driven by exogenous 
technological change but not by the endogenous accumulation of inputs. Following (Barro and 
Sala-i-Martin 1992) endogenous growth and technological change models can be classified into 
three main categories: a. Models based on human capital accumulation, b. Schumpeterian 
models based on improvements in the quality of products and c. models based on the 
enlargement of product variety. (Lucas 1988) proposed the first endogenous growth model 
including human capital mainly based on the idea that production of the final good can be 
reached by the input of physical capital, specific human capital and the average level of human 
capital. (Aghion and Howitt 1992) elaborated an endogenous growth model including creative 
destruction in the sense that each new product takes the place of the older one in the 
Schumpterian tradition; (Grossman and Helpman 1991) introduced the same idea. Within this 
model, three sectors are distinguished: the intermediate good, the final good, and research. 
During final good production the productivity of the intermediate good can increase as a means 
of technological progress. Technological advances and innovation are considered uncertain by a 
stochastic process characterized by a Poisson process. 
(Romer 1990) and (Grossmann and Helpman 1991) elaborated an endogenous growth theory by 
considering innovations expanding the variety of available goods. R&D activities are treated as 
other production activities converting primary inputs like capital and labor into knowledge. The 
model of (Romer 1996) and (Aghion and Howitt 1992) consider two sectors. The first  produces 
the final good while the second is the R&D sector aiming to increase the level of technology. 
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(Goulder and Mathai 1999) reflect on induced technological progress both by R&D expenditures 
and learning by doing. Their main findings indicate that if knowledge comes from increasing 
R&D expenditures, carbon abatement can be moved to later time periods, but if knowledge is 
gained through learning by doing, the cost effective option could be accelerating the timing of 
carbon emission abatement. 
 

5.6 Discounting 
The technique of discounting effects is applied by economists to compare immediate positive or 
negative policy strategy impacts with those occurring in the distant future.  
Influenced by a long discussion regarding the “right” discount rate in economic-environment-
energy modeling, modelers tend to be as pragmatic as possible. Two schools of thought have 
been developed based on both prescriptives and descriptive approaches. The former leads to a 
selection of the discount rate by “ethical principles” or rules relating to the way benefits and 
costs of different generations ought to be weighted. This means that the choice of a discount rate 
is based on an observation of the rates of return to capital invested in a variety of alternative 
assets. The first approach mostly leads to relatively low discount rate values (close to zero or 
even negative) whereas the second approach would mean a higher discount rate (five to 20 
percent). However, as these long discussions about discount rates reveal, nearly all scientists 
agreed that it is appropriate to discount future benefits and costs at some positive rates, see 
Arrow (1996), Weitzman (1999) or Manne (1999). 
The discounting technique used in most Ramsey type or OLG models are typically very similar, 
i.e. each generation maximizes the present value of lifetime utilities. Therefore, future utility 
units are discounted to the beginning of their respective lives. Welfare present values are 
calculated by discounting generation-specific utilities to the beginning of the planning horizon 
using the "social discount rate". Generation-specific myopia equals the myopic attitude of a 
central planner summing up all generation-specific present values. Kemfert and Bayer (2002) 
refrain from this very strong assumption because the assumed discounting technique biases in 
favor of current living generations and discriminates against future ones and is therefore not 
"neutral" within an intergenerational framework. Tol (Tol 1999) as well as Bayer (Bayer 2000) 
analyzed different kinds of discounting measures and their impacts on climate change and 
economic reactions. They both found that the discounting method has substantial impacts on 
long-term emissions control and short run emissions abatement. Howarth (Howarth 1998) shows 
that welfare statements depend heavily on transfer assumptions between different generations. 
Distributional aspects are focal points within investigations by Stephan et al. (Stephan/Müller-
Fürstenberger 1998, Stephan et al. 1997), Manne (Manne 1999), Nordhaus (Nordhaus 1994, 
who argues in a Ramsey-type-model) as well as the more qualitative paper by Schelling 
(Schelling 1995). In general, they assert that distributional reasons are the most important argu-
ments for not abating at all. If today's living generations would heavily abate, future generations 
will not only be wealthier due to conventional capital accumulation but also due to returns 
induced by GHG-abatement. On the other hand, renunciation of GHG-abatement leads to a more 
equal distributional effect. Conventional capital formation is used more intensely, leading to 
increasing consumption and investment possibilities for future generations while simultaneously 
decreasing "green capital," resulting in welfare losses for future generations. 
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6 Examples of Economic-Environment-Energy Models 

6.1 Overview 

This short chapter provides a classification of applied economic-environment-energy models 
according to their geographical scale and bottom up (LP, NLP) or top down (IO, CGE, IAM) 
nature. Recent advances in economic-environment-energy modeling have moved towards global, 
regionalized IAMs based mostly on a microeconomic general equilibrium framework.11 
 
 National EU Global Global-Regionalized 
Input Output Models MIS (D) 

MEPA 
   

LP/NLP Models MARKAL 
ETSAP 
MESSAGE III 

HERMES-MIDAS 
MARKAL 

 IEA 
MARKAL 
POLES 
PRIMES 
CERT 

IA Models  ESCAPE DICE, R&DICE, 
PRICE 
SLICE 
CETA 
 

AIM 
IMAGE 
RICE 
FUND 
PAGE 
MERGE 
IIAM 
ICAM 
MINICAM 
OXFORD 
SGM 

CGE /AGE Conrad (D) 
Bovemberg- Goulder 
(USA) 
Jorgeson- Wilcoxen 
(USA) 
NEWAGE-D 

GEM-E3 
NEWAGE-EU 
LEAN 
ETAS 

 ERM 
EPPA 
SGM 
MS-MRT 
G-TEM 
GREEN 
C-Cubed 
WAGEM 
Wordscan 

Econometric Models MDM (UK) 
Panta Rhei (D) 

Quest 
WARM 
E3 ME 

 Panta Rhei (World) 

Table 1: Classification of Economic-Environment-Energy Models12 

 
Empirically oriented and applied theoretic models incorporate endogenous or induced 
technological changes using different approaches. Macroeconometric models like E3ME (Lee, 
Pesaran et al. 1990) or WARM (Carraro and Galeotti 1997) include simple approaches of 
endogenous technological changes. Integrated assessment models like ICAM3 (Dowlabadi 

                                                 
11 See Bosello et al. (1998). 
12 See Kemfert and Kuckshinrichs (1995):MIS; Commission (1993): HERMES-MIDAS; Bahn, Barreto et al. 
(1997), Gielen and Kram (1998) and Manne and Wene (1994): MARKAL- MACRO; Gielen and Kram (1998; 
Kram (1998; Kram (1998): ETSAP; Messner and Strubegger (1994): MESSAGE; Kouvaritakis, Soria et al. (2000): 
POLES; Capros (1996): PRIMES; Nordhaus (1993): DICE; Peck and Teisberg (1992): CETA; Batjes and 
Goldewijk (1994): IMAGE; Nordhaus and Yang (1996): RICE; Tol (1999): FUND; Manne, Mendelsohn et al. 
(1995):MERGE; Rutherford (1992): IIAM; Conrad (1993); Goulder (1995) and Goulder and Mathai (1999); 
Jorgenson and Wilcoxen (1993); Capros, Georgakopoulos et al. (1995): GEM E3; Böhringer (1997): NEWAGE; 
Welsch and Hoster (1995): LEAN; Babiker, Reilly et al. (2001): EPPA; Edmonds (1998): Minicam; Burniaux, 
Nicoletti et al. (1992): GREEN; McKibbin and Wilcoxen (1999): C-Cubed; Kemfert (2001): WAGEM; Bollen, 
Gielen et al. (1999):Worldscan; Barker and Zagame (1995): E3ME; MacCracken, Edmonds et al. (1999): SGM; 
Carraro and Galeotti (1996): WARM; Meyer (1998): Panta Rhei. 
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1998) uses more sophisticated  approaches of modeling endogenous technological changes. 
Macroeconomic general equilibrium models like DICE (R&DICE) (Nordhaus 1999) encompass 
induced innovations; the use of carbon energy is controlled by induced technological change. 
Energy system models like MESSAGE (Grübler and Messner 1998) include learning by doing in 
special functions within an energy system framework. New versions of POLES (Kouvaritakis, 
Soria et al. 2000) or MARKAL (Barreto and Kypreos 2000) contain approaches to endogenously 
determine technological changes in their approaches. (Goulder and Schneider 1999) investigate 
the implications of incorporating induced technological progress through increased R&D effort 
with the result that amplified environmentally related R&D efforts might crowd out other non- 
environmentally related R&D efforts and lead to a decrease in output and gross world product. 
 
 
 

7 Conclusion 
This paper gives an overview of applied economy- energy- environmental modelling for 
quantitative impact assessment. The aim of this paper is to shed light on different modeling 
approaches, compare methodologies and theories and classify existing modeling approaches. 
The creation of an economic- environment- energy modeling approach is primarily influenced by 
the purpose of modeling and merit of explanation. The quality of a model can be accurately 
evaluated only when both targets are explicated and unambiguously reached.  
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2  The theory of energy economics: an overview
Thomas Weyman-Jones

1 Introduction

In reality there is no such subject as energy economics, because energy, although a 
meaningful concept in the physics or engineering sense, is not a commodity that can be 
bought and sold in the marketplace. However, individual fuels (primary and second-
ary electricity, natural gas, oil, coal) can be bought and sold; in this context, primary 
electricity includes renewable sources and nuclear power. Therefore ‘energy economics’ 
is really the economics of fuel markets, and the phrase: energy economics is used for 
convenience to represent all the useful economic concepts which arise in studying dif-
ferent fuels. The energy industries are organised in diff erent ways in diff erent countries; 
many are investor owned, especially in the USA and the UK, but state ownership is also 
common. Many are characterised by economies of scale and hence have considerable 
market power, which usually leads to them being regulated. Fuels are widely traded in 
solid, liquid and gaseous form, and are transported all over the world in tankers, pipes 
and wires.

In some of these fuel markets we can see that it is cheaper to have one company do all 
the business rather than many. Examples are the national power and gas grid companies 
engaged in the activity of bulk transmission of electric power and natural gas. Such com-
panies are traditionally referred to as public utilities (although there is no presumption 
that they are or should be owned by the state). Because these companies are believed to 
operate most cheaply or effi  ciently when there is only one of them in each market we call 
them ‘natural monopolies’ (that is, the traditional public utilities: water, gas, electricity, 
telecommunications, have the characteristics known as natural monopoly even when 
they are not statutory monopolies). Consequently there is a wide public interest in the 
possibility of regulating their behaviour, and the economics of regulation becomes an 
intrinsic part of energy economics.1

The format of this chapter follows from these fundamental ideas. It begins by looking 
at the basic economic ideas of resource allocation in capital-intensive fuel industries with 
emphasis on the nature of cost–benefi t analysis of fuel investment decisions, and the 
consequent implications for effi  cient market pricing. The topics covered here include the 
nature of short- and long-run marginal cost of energy supply, the process of investment 
decision making, and the design of effi  cient price mechanisms in industries where storage 
of the product is very costly, and in industries where delivery of the product through a 
grid diff ers from the economic activity of creating the product. Both of these features are 
critical characteristics of the energy industries. When such characteristics stem from the 
fact that the industry delivers its output through a network of wires or pipes, analysts 
often use the alternative description: network industries. This is followed by a discussion 
of the market conditions that are frequently found in the fuel industries.
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2 Cost–Benefi t Analysis and Market Structure

A considerable part of energy economics and policy is concerned with optimal resource 
allocation which is normative rather than positive economics. However, a normative 
economics approach can be useful to understand market outcomes. This is because a 
competitive market will mimic the allocation of resources that is achieved in a welfare-
maximising model. For that reason, a useful way to simulate the behaviour of a com-
petitive market equilibrium is to characterise the equilibrium through welfare analysis2 
(Mas-Colell et al. 1995, pp. 630–31). Therefore, cost–benefi t analysis is a useful building 
block because it conveniently describes a route to an optimal allocation of resources. In 
fact cost–benefi t analysis has a stronger property as well: the conventional economics 
approach to effi  cient resource allocation, the Pareto criterion,3 is unable to off er policy 
recommendations when there are losers as well as winners from a policy change. A fun-
damental tool of cost–benefi t analysis is the individual consumer’s demand curve which 
expresses the quantity demanded of any commodity (good or service) as a negative func-
tion of its price:

 q 5 q ( p) ;  q r ( p) , 0.

This is illustrated in the left-hand panel of Figure 2.1, for one consumer labelled: j. In 
the fi gure, the price has fallen from p0 to p1 and quantity demanded has risen as a result 
from qj

0 to qj
1. The demand curve expresses the consumer’s willingness to pay for diff erent 

units of a commodity, with the marginal willingness to pay for additional units falling as 
more units are consumed. The area left of the demand curve but above the price actually 
being charged at present is called the ‘consumer surplus’, and it is the willingness to pay 
for so many units of a commodity minus the amount actually paid for those units, using 
the traditional Marshallian defi nition.
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Figure 2.1  Individual and aggregate consumer surplus
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When the price of a commodity falls, the consumer obtains additional consumer 
surplus. In Figure 2.1 (left-hand panel):

 CSj 5 3
pr

ps
qj (p)dp.

Note that this is measurable as an amount of money, and can be measured from an 
empirically estimated demand function. If the compensated demand function has been 
measured, that is, the demand function based only on the substitution eff ect of a price 
change after compensating for the income eff ect, an alternative defi nition is: consumer 
surplus is the amount of real income a consumer would pay to be as well off  after a fall in 
price as he/she would be if the price had not fallen; this is Hicks’s compensating variation 
defi nition of consumer surplus.

To arrive at the market demand curve for a commodity, horizontal summation of the 
individual demand curves of diff erent persons or households, (  j ) is used:

 Q( p) 5 a
J

1
qj ( 

p) .

Horizontal summation is illustrated in the right-hand panel of Figure 2.1, and is required 
when the consumption of the good in question by person 1 reduces the amount available 
for person 2. Such goods (the majority) are called ‘private goods’.

The area left of the market demand curve and above the price charged is then the 
aggregate consumer surplus from consumption of the commodity at the prevailing 
market price, p*:

 CS 5 3
`

p*
Q( p)dp.

This is interpreted as one part of the gross benefi t from supply of the commodity at 
the price p* and is the economist’s universal measure of aggregate consumer welfare. 
It represents the sum of all persons’ compensating variation measures of consumer 
surplus.

The supplier’s revenue is: pQ, and the cost of supplying a commodity is given by the 
cost function:

 C 5 C(Q) ;  C r (Q) ; Marginal Cost (MC) . 0.

Marginal cost is a forward-looking measure, and represents the change in total cost that 
would be observed if the level of output were to change by one unit. Aggregate producer 
surplus is the other part of the gross benefi t from supply of the commodity, and this is 
the area left of the supply curve and below the price charged for the product. The supply 
curve of a product to a market is the horizontal summation of the marginal cost curves 
of the individual fi rms so that producer surplus,4 written p is:

 p 5 pQ( p) 2 C [Q( p) ].
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Then the net economic welfare, W(p*)  from supplying the commodity at a price of p* 
is the taken to be the unweighted sum of aggregate consumer surplus (CS ) plus aggregate 
producer surplus p, that is, total revenue minus the cost of supply, C(Q) :

 W( p) 5 CS 1 p 5 c3
`

p*
Q(p)dp d 1 {p*Q( p) 2 C [Q( p) ] }.

The cost–benefi t analysis of microeconomic economic policy therefore requires the 
choice of p* to maximise this objective with fi rst-order condition depending on the slope5 
of the aggregate market demand curve, dQ/dp 5 Q r ( p) :

 
dW
dp

5 adCS
dp

b 1 adp

dp
b 5 [2Q( p*) ] 1 {Q( p*) 1 [  p* 2 C r (Q) ]Q r ( p*) } 5 0,

and simplifying:

 
dW
dp

5 ap 2
dC
dQ
bdQ

dp
5 (p 2 MC)

dQ
dp

5 0,

which requires that price should equal marginal cost: p* 5 C r (Q) . This coincides with 
the condition for a Pareto optimum, but it is derived by allowing for winners and losers, 
with the winners gaining enough to suffi  ciently compensate the losers,6 and hence is con-
sistent only with the potential Pareto criterion; this is the basis of cost–benefi t analysis. 
In turn, this leads to the prediction that a suffi  ciently competitive market will choose the 
socially optimal behaviour of marginal cost pricing. The problem of economic regula-
tion is whether a given market can be expected to be suffi  ciently competitive. As shown 
above, the standard social welfare function adopted for policy choices in energy econom-
ics is based on unweighted consumer and producer surplus. For energy policy that leads 
to discrete changes a useful approximation to the consequent welfare change is:

 DW 5
1
2 (

 
p 2 MC)DQ.

It is immediately clear that a necessary condition for the policy to be desirable accord-
ing to the potential Pareto criterion is that after the policy change there are no further 
welfare gains, DW 5 0, in other words, price equals marginal cost. But who gets what 
when there is a policy change? Conventional cost–benefi t does not weight these gains 
diff erently, but diff erent weights to refl ect social preferences for one group in society vis-
à-vis another is always a possibility.

What happens when there are large fi xed costs to setting up an energy company, for 
example, the installation of a distribution network: total cost is C 5 F 1 cQ? This is 
illustrated in Figure 2.2, where average cost lies above marginal cost because the role of 
fi xed costs is never entirely absent irrespective of the volume of output. Marginal cost 
pricing at the optimal output Q* leads to losses, and consequently no fi rm will enter the 
industry to supply the commodity, despite the fact that at every output below Q*, will-
ingness to pay for the product exceeds the total cost, including fi xed cost, of supplying 
it.
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Try average cost pricing, in this case a specifi c example of the more general idea of 
Ramsey pricing. The second-best outcome is at QR( pR )  which is the solution to the 
problem:

 maxW( p) 5 CS 1 p 5 c3
`

p*
Q( p)dp d 1 {p*Q( p) 2 C [Q( p) ] },

such that:

 p * Q(p) 2 C [Q( p) ] $ 0.

Since there are equal weights on consumer and producer surplus, social welfare improves 
for every fall in price that gives a monetary transfer from producer to consumer until 
the constraint is just satisfi ed. Therefore lower price with an implied welfare gain of 
{p 2 C r [Q(p) ] }Q r ( p)  until pR 5 C [Q( pR ) ] /Q( pR ) .

3  The Social Discount Rate in Cost–Benefi t Analysis

The passage of time is regarded as one of the most important issues in an economic deci-
sion since it aff ects the delay with which benefi ts arrive and costs can be postponed. The 
discount rate, i, measures the loss of interest on cash fl ows that arrive one year from now 
and so cannot be invested until then. The procedure of discounted cash fl ow analysis 
states that the standard formula for net present value (NPV ) (including both negative 
and positive cash fl ows, where each cash fl ow is assumed to occur at the beginning of the 
year) is:

 NPV 5 x0 1
x1

1 1 i
1

x2

(1 1 i) 2 1 . . . 1
xt

(1 1 i) t 1 . . . 1
xT

(1 1 i)T 5 a
t5T

t50

xt

(1 1 i) t.

Quantity, Q 

Price, p 

Demand, Q(p)

Average cost QC

Marginal cost dQCd

Second best QR Optimum Q*

Figure 2.2  First- and second-best allocations for natural monopoly
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Projects with a positive net present value are worth doing. A useful version of the 
present value formula occurs when the cash fl ow is expected to be the same in every year: 
(x/i) [1 2 (1 1 i)2T ]. This is the net present value of an annuity.

What is the appropriate choice for the discount rate i in cost–benefi t analysis? There 
are two suggested solutions for the choice of social discount rate (SDR): the social time 
preference rate (STP), and the social opportunity cost of capital (SOC ).

Begin with a social welfare function that depends on the level of consumption in diff er-
ent periods: W 5 � (C0, C1,  . . .) . This weights the levels of total consumption for society 
in each period (t)  (including the distribution among individuals, j). One example of this 
social welfare function is:

 W 5 a
t
a

j
d (t)Uj (Cjt) ,

where:

 Uj (Cjt) 5
1

1 2 h
Cjt

12h.

If society consisted of a single individual, j 5 1, who is assumed to have diminishing 
marginal utility, then a specifi c example of the social welfare function could be:

 W 5 2"C0 1 2"C1.

This example is a special case corresponding to d (t) 5 1 and h 5
1
2. More generally, this 

is an example where the present and future generations are weighted exactly equally:

 d (0) 5 d (1) 5 c5 d (t) 5 c5 1.

Note that this example has the property that when present and future consumption is the 
same, the marginal social welfare of consumption is the same, so that the marginal rate 
of substitution between present and future consumption is unity. Consequently in this 
case the generational weights will not aff ect the fundamental choice of the social discount 
rate. Figure 2.3 illustrates this example by using the property of 45º lines, and it can be 
seen that society’s preference for present over future consumption is represented by the 
slope of the welfare contour:

 dC1/dC0 5 2 [ (0W/0C0) / (0W/0C1) ] 5 21 5 2C1/C0 3 C1 5 C0.

Another special example of the social welfare function corresponds to h 5 1. It plays 
a major role in the UK government report on the economics of climate change (Stern 
2006).

 W 5 a
t
a

j
d (t) lnCjt.

In Figure 2.4, the consumption possibility frontier represents the rate at which 
present consumption can be turned into future consumption in the economy’s 
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production of real national income, that is, the rate of return to saving and investment. 
Consider a simple derivation of this frontier for two periods: this period is t 5 0 and 
next period is t 5 1. Suppose the economy starts with a capital stock of K0 and that 
the maximum output available for consumption is f(K ). The fundamental constraint 
limits the sum of total consumption over the two periods to the total output available 
from the capital stock. Period 1’s capital, K1, is equal to the initial stock plus any saving 
(that is, output –  consumption) done in period 0. Assume for the present that capital 
does not wear out.

45º

Consumption next period, C1

Consumption this period, C0

Iso-welfare contour, W 0

W1

Locus of equal consumption per period  

R

C

Figure 2.3  Equal welfare weights for current and future consumption

45º

Consumption next period, C 1

Consumption this period, C0

Iso-welfare contour, W 0

W 1

Consumption possibility frontier, F 0

Locus of equal consumption per period  

R

C

E

B

Figure 2.4  Positive marginal social return to capital requires lower consumption in the 
current period even when there are equal welfare weights for current and 
future consumption
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The constrained optimisation model for choosing the social discount rate is shown 
below:

 maxW 5 � (C0,C1)

 s.t. C0 1 C1 5 f (K0) 1 f [K0 1 f(K0) 2 C0 ].

The Lagrangean function is:

 L 5 � (C0,C1) 1 l (C0 1 C1 2 {
  
f(K0) 1 f [K0 1 f(K0) 2 C0 ] }) ,

with fi rst-order conditions:

 0L/0C0 5 0� /0C0 1 l [1 1 f r (K1) ] 5 0,

 0L/0C1 5 0� /0C1 1 l 5 0,

 0L/0l 5 (C0 1 C1 2 {
 f(K0) 1 f [K0 1 f(K0) 2 C0 ] }) 5 0.

Eliminating l yields the tangency condition:

 
0� /0C0

0� /0C1
5 [1 1 f r (K1) ].

This is shown at point E in Figure 2.4, where:

 dC1/dC0 5 2 [ (0W/0C0) / (0W/0C1) ] 5 2 [1 1 f r (K) ] 3 C1 . C0.

In general, therefore, the social discount rate should be diff erent from zero, because 
otherwise the marginal product of capital is treated as zero. The implication of discount-
ing the future to refl ect that positive return to capital is that society should refrain from 
consumption today to build up capital for the future.

The equilibrium condition can be rearranged to give:

 
0� /0C0

0� /0C1
5 1 1 a0� /0C0 2 0� /0C1

0� /0C1
b 5 [1 1 f r (K1) ].

The left-hand side can be expanded further:

 1 1 a0� /0C0 2 0� /0C1

0� /0C1
b 5 1 1 a0� /0C0 2 0� /0C1

dC
 

C
0� /0C1

 
dC
C
b.

If it is assumed that the weights on intergenerational consumption are constant at 
d (t) 5 1, then this expression representing the left-hand side of the equilibrium condi-
tion can be interpreted as:
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 1 1 adMU
dC

 
C

MU
 
dC
C
b 5 1 1 (hDlogC) ,

where h is the elasticity of the marginal utility of consumption:

 h 5 (dMU/dC) (C/MU) ,

and DlogC is the growth rate of consumption.
However, for reasons to be explored later in the context of Stern (2006), economists 

sometimes do assume that generations are weighted diff erently, that is, that there is a 
positive rate of pure time preference resulting in the discounting of the welfare of a future 
population, that is,

 d (t) 5 1/ (1 1 d) t.

In this case the social welfare function would be written in the form:

 W 5 U(C0) 1 [U(C1) / (1 1 d) ].

The slope of the welfare contour must take account of this intergenerational rate of pure 
time preference, so that the social time preference rate becomes:

 2
dC1

dC0
5 (1 1 hDlogC) (1 1 d) < (1 1 d 1 hDlogC) .

The right-hand side of the equilibrium condition can also be expanded:

 1 1 f r (K)

 5 1 1 {f r (K) [f(K) /K ]K/f(K) } 5 1 1 (DlogY/DlogK) (Y/K) 5 1 1 (aY/K) .

In this expression, f (K ) ; Y  is the real income producible by the capital stock, and a is 
the elasticity of real national income with respect to capital. The common tangent slope 
at E in Figure 2.4 is the discount factor to be applied to socially desirable investments:

 1 1 SDR 5 1 1 [d 1 h(DlogC) ] 5 1 1 (aY/K) ,

that is,

 SDR 5 STP 5 SOC.

The left-hand side of the basic equilibrium condition is the rate of social time prefer-
ence, STP, while the right-hand side is the rate of social opportunity cost of capital, 
SOC. Note that neither side allows for risk, because each individual social investment 
project is assumed to have returns per head of the population that are small relative to 
and uncorrelated with national income.

Estimating this discount factor is problematic. Suppose, which can usually be expected 
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to be the case, that the economy is not at an effi  cient equilibrium, but is at a point such as 
B in Figure 2.4, where the economy is underinvesting (that is, overconsuming) for next 
year compared with point E. Here the STP rate, the left-hand side of the equilibrium con-
dition, is given by the fl atter slope of the welfare contour compared with the SOC rate, 
the right-hand side of the equilibrium condition, which is given by the steeper slope of 
the production possibility frontier. Using either of these two rates to compute the social 
discount rate will result in an error: when there is underinvestment: STP < SDR < SOC.

Now that the essential building blocks of cost–benefi t analysis have been established, 
the optimal allocation of resources in energy economics can be investigated.

4 Marginal Cost and Investment Decisions in Energy Supply

The application of cost–benefi t analysis in energy economics was pioneered at Électricité 
de France in the 1950s (see Boiteux 1960). It came into English economics through the 
work of Turvey (1967, 1971) at the UK Electricity Council and subsequently spread 
worldwide through the work of Turvey and Anderson (1977), and Rees (1984). Other 
important theoretical contributions have been made by Crew and Kleindorfer (1979) 
(uncertainty and pricing), Littlechild (1970) (non-linear programming models), Wenders 
(1976) (tariff  schedule implications) and Bohn et al. (1983) (spot and real-time pricing), 
among others. The textbook model needs to be amended to take account of capital-
intensive energy production, transmission and distribution (Berrie, 1983; Stoft 2002). A 
principal distinction is between output and capacity to produce output. Both are meas-
ured in the same units: electricity = kilowatt-hours per hour (= kilowatts); gas: therms 
per day; oil: barrels per day or tonnes per year; coal: tonnes per year; renewables: tonnes 
of oil equivalent per year (that is, the amount of heat generated that is the same as the 
amount generated by burning 1 tonne of oil).

Assume that one unit of plant and equipment is used to produce one unit of output, 
and that it costs £c per period to hire this plant. Alternatively it costs £c per period to 
repay with interest the loan used to buy the plant. Once installed, it costs £r per period to 
operate 1 unit of plant to produce 1 unit of output. Note that r is the running or operat-
ing cost of 1 unit of power production; c is capacity cost of 1 unit of power production. 
Operating cost is constant up to the level of capacity installed, then it is infi nite because 
no more capacity is available. Figure 2.5 illustrates this.

In this model:

 SRMC 5 e r: demand #  capacity
`: demand .  capacity

 LRMC 5 r 1 c.

The SRMC (short-run marginal cost) curve shifts to the right whenever more capacity is 
installed, and it always intersects LRMC (long-run marginal cost) from below, as shown 
in Figure 2.5.

Optimal resource allocation using cost–benefi t analysis therefore requires:

1. Set price, p 5 SRMC to ration demand to capacity, or to make maximum use of spare 
capacity: p 5 m, where m is whatever level of SRMC intersects the demand curve.
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2. Compute the net benefi t of changing capacity, and invest in or scrap capacity until 
the net benefi t has been used up:

 DW 5
1
2 (

 
p 2 LRMC)Dq 5

1
2 [m 2 (r 1 c) ]Dq 5 0.

This net benefi t for a discrete change in capacity is shown as the shaded triangle of con-
sumer and producer surplus7 in Figure 2.5. At this point:

 p* 5 SRMC 5 LRMC.

It is often convenient to work in terms of a single unit change in capacity: Dq 5 1 and 
in this case the net benefi t is illustrated in Figure 2.5 by the rectangular sliver with base 
equal to q1 1 1 2 q1. The marginal net benefi t of 1 unit of capacity is:

 dW/dp 5 ( p 2 LRMC) (dq/dp) 5 [m 2 (r 1 c) ] (dq/dp) .

Now think of a single unit of capacity and suppose it lasts for T years. The net present 
value of installing that unit over its life is:

 NPV 5 a
t5T

t50

[m 2 (r 1 c) ]
(1 1 i) t ,

and the optimal decision is to invest if NPV > 0. An alternative expression uses the total 
cost of installing 1 unit of capacity instead of the periodic repayment:

Output q, Capacity available per period Q

Price per unit of output p

Demand p(q)

LRMC,  cr +

SRMC1 SRMC2

r

p*

m (r + c)]ΔQ[mW −=Δ 2
1

1q 1 + 1q 2q

Figure 2.5  Single-period marginal net benefi t of increasing capacity by 1 unit and by 
DQ 5 q2 2 q1 units
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 NPV 5 2C 1 a
t5T

t50

(m 2 r)
(1 1 i) t .

In the energy industry it is customary to write this in the reverse as net eff ective cost 
of capacity (NEC):

 NEC 5 C 2 a
t5T

t50

(m 2 r)
(1 1 i) t ,

and invest if NEC < 0.
The NEC is the cost of installing 1 unit of capacity less the lifetime opportunity cost 

savings of having that unit and therefore not having to ration demand. Note the ingre-
dients required in this recipe: (i) forecast of the market-clearing price of energy up to T 
years ahead (m), (ii) choice of discount rate, (i), and (iii) forecast of the technically effi  -
cient operating cost of capacity up to T years ahead.

This has led to a well-known controversy. If demand fl uctuates or is uncertain, then 
SRMC pricing may become very volatile and scrapping and investment policy may show 
many changes of direction. Some economists have suggested setting price = LRMC all the 
time, and using non-price rationing, or maintaining surplus capacity to match demand with 
supply. This was the UK Treasury view in the 1970s–1980s for the electricity supply indus-
try. The two opposing viewpoints are represented by Munasinghe and Warford (1982) and 
Newbery (1985). The analysis just completed sets out the essence of the merchant invest-
ment model of electricity and gas production. It proceeds as if each capacity investment 
decision is taken separately by a diff erent competitive fi rm or merchant. This is the model 
that lies at the core of many major studies of power plant investment such as MIT (2004).

Much policy analysis of individual power plant and renewable technology decisions 
takes the merchant investor approach but it is not clear how to compare diff erent tech-
nology choices in this model. The net present value criterion applies to a single plant 
type but diff erent plant types may have diff erent lifetime durations. One solution for 
comparing diff erent plant types uses a system-based approach discussed later in this 
chapter. Another solution to this comparison problem which can be applied to the mer-
chant investor problem is to use the annuitised NECs for diff erent technologies (Rees 
1973).8 Imagine s 5 1  . . .  S diff erent technologies, with diff erent lives: T(s). Compute the 
annuity factor for each, that is, the annual constant sum for which the present value is 
equal to the NEC (or NPV ) of the corresponding technology:

 A eCs 2 a
t5T(s)

t50
[ (mt

s 2 rt
s) / (1 1 i) t ] f 5 (i 3 NECs) / [1 2 (1 1 i)2T(s) ].

Note the appropriate value for mt
s varies with the type of capacity being evaluated. 

Choose the technology with the lowest annuitised NEC or highest annuitised NPV.
Another approximation used in many studies of energy investments, is based on lev-

elised discounted cost. The purpose is to obtain an equivalent energy price (expressed 
in terms of gas or electricity or oil and so on) for each technology. This ignores system 
implications, and in eff ect treats each separate capacity investment as a mini-supply 
industry of its own. It asks what constant price through time, p, would allow a plant 
operating independently to break even?
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 a
t5T(s)

t51
[psqt

s/ (1 1 i) t ] 5 Cs 1 a
t5T(s)

t51
[rt

sqt
s/ (1 1 i) t ],

so that the levelised discounted cost, LDC is:

 ps 5

Cs 1 a
t5T(s)

t51
[rt

sqt
s/ (1 1 i) t ]

a
t5T(s)

t51
[qt

s/ (1 1 i) t ]

,

that is, the present value of lifetime costs relative to the present value of lifetime energy 
delivered.

Figure 2.5 has become the most widely used investment tool by energy regulators, 
and governments, although not necessarily by energy utilities. Many widely publicised 
studies of electricity generation costs, for example, calculate LDC for diff erent plant 
types and then recommended on the basis of lowest LDC.

There are several objections to this method of cost evaluation, although its ease of use 
and apparent fi nancial soundness makes it very popular:

1. The forecast of energy refers to that generated by the plant, not the demand on the 
system so it assumes that the plant will largely maintain its position in the merit 
order of relative operating costs.

2. The calculation takes no account of the mix of other plant types on the system, and 
does not calculate running cost savings relative to these other plant types.

3. The calculation directly compares plants with diff erent lives.

All of these factors mean that LDC expresses what the average discounted price of elec-
tricity would be in a hypothetical situation in which all of a utility’s generating system 
was converted to the plant in question. LDC is logically coherent as an accounting calcu-
lation, but whether it is economically relevant to cost-minimising plant choice is another 
question.

5  Peak-load Pricing

The analysis can be extended to cover several periods of demand when energy cannot 
be stored from one period to the next. The critical idea is that a period – day, week, 
month, year – is composed of a cycle of subperiods each with its own demand schedule. 
For example, in electricity supply a 24-hour day consists of two demand subperiods: 
daytime peak demand and night-time off -peak demand. In telecoms we might distin-
guish weekday from weekend calls in a 7-day cycle of subperiods. Gas demand fl uctuates 
between summer and winter. Figure 2.6 assumes two subperiods of equal length in each 
cycle for convenience, labelled with superscript 1 for off -peak demand and superscript 2 
for peak demand. The lower demand curve (p1 (q)  corresponding to the prices labelled 
p0

1 and p1
1) represents off -peak demand, and it lies entirely below the upper demand curve 

( p2 (q)  corresponding to the prices labelled p0
2 and p1

2) which represents peak demand).
The cost assumptions are a development of those used earlier. The critical aspect of 
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capacity is that it is available for both peak and off -peak demand. These demands are not 
rivals for the same capacity. This is called the ‘public good nature of peak demand’ and 
allows us to sum the demand curves for each subperiod vertically to obtain a demand for 
capacity curve for the cycle of subperiods.

Once installed, it costs £r per subperiod to operate 1 unit of plant for 1 subperiod 
to produce 1 unit of output per subperiod. Capacity that produces 1 unit of output 
for the whole cycle incurs £2r operating cost. The investment rule requires that price 
= LRMC = 2r 1 c, but price for the cycle is a hypothetical concept constructed by 
summing the peak and off -peak demand curves vertically to represent the demand for 
capacity curve: p1 (q) 1 p2 (q) . Now the pricing rule requires that demand is rationed 
to capacity in each subperiod, by charging a price equal to or greater than operating 
cost, r:

 p1 5 r 1 k1,

 p2 5 r 1 k2.

Capacity available per subperiod  

Demand for capacity 
( ) ( )qpqp 21 +

LRMC per cycle, 2r +

SRMC0
SRMC1

rp =1
1

2
0p

1
0p

2
0

1
0

q

q

=

2
1q

crp +=2
1

1
1q

Price per unit of output p

Figure 2.6  Two-period peak and off -peak pricing when capacity is below optimum: 
p0

1 1 p0
2 . 2r 1 c, and at the optimum: p1

1 1 p1
2 5 2r 1 c
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The investment rule requires that the vertical summation of the peak and off -peak 
prices should cover LRMC 5 2r 1 c for the cycle of subperiods:

 p1 1 p2 5 (r 1 k1) 1 (r 1 k2) 5 2r 1 c 1 k1 1 k2 5 c.

The general properties of the solution are clear from Figure 2.6. Two diff erent positions 
are illustrated. With the upper limit to capacity given by the SRMC0 curve, the prices 
which ration demand to capacity are p0

1 in the off -peak period, and p0
2 in the peak period. 

At this point both prices exceed operating cost, and each subperiod’s demand makes 
a contribution to capacity cost, the capacity payment (k1 or k2, with k2 . k1). The dis-
tances p0

1 2 r and p0
2 2 r represent these capacity payments in Figure 2.6 when capacity 

is limited along SRMC0. However, SRMC0 is not an equilibrium outcome; there is a 
positive net benefi t to increasing capacity, represented in Figure 2.6 by the fact that the 
vertically summed demand for capacity curve p1 (q) 1 p2 (q)  intersects LRMC further to 
the right at a capacity level represented by SRMC1. The willingness to pay for an extra 
unit of capacity at the margin exceeds the marginal cost of another unit of capacity. This 
net benefi t is captured by expanding capacity until p1 (q) 1 p2 (q) 5 2r 1 c, and at this 
level the prices which ration demand to capacity are p1

1 in the off -peak period, and p1
2

in the peak period. Figure 2.6 illustrates two diff erent possible shapes for the demand 
profi le and the distribution of capacity payments across periods. At the initial capacity 
level represented by SRMC0, both off -peak and peak prices exceed the operating cost in 
order to ration demand to capacity. This has the eff ect of removing the actual peak in 
demand and the resulting load profi le is fl at with the same power consumption in both 
subperiods: q0

1 5 q0
2. However, in this example, it is the strength of peak demand that 

generates most of the positive net benefi t of expanding capacity. When this has occurred, 
the optimal prices are such that all of the capacity cost is recovered from the peak period: 
p1

2 5 r 1 c while the off -peak demand covers operating cost only: p1
1 5 r. A consequence 

of this is that the load profi le is no longer fl at and an actual peak in consumption has 
occurred: q1

1 , q1
2.

Another useful way of thinking of the issue is this. If the only way of meeting peak 
demand is to build more capacity, the diff erence between the peak and off -peak prices 
must equal the willingness to pay for more capacity at the peak less the willingness to pay 
for more capacity in the off -peak period: k2 2 k1 # c.

6  A Simplifi ed Spot Pricing Model with and without Random Demand

An important model of energy markets such as gas and electricity is the competitive 
spot pricing equilibrium where the corresponding welfare-maximising equilibrium is 
analysed using Kuhn–Tucker nonlinear programming analysis (similar to classical 
Lagrangean optimisation) to construct a simple model. A much more detailed review 
of this topic is contained in the masterly survey paper by Crew et al. (1995), who, 
in particular, discuss the issue of modelling actual rather than planned consumer 
surplus.

 B( yt)  is the aggregate benefi t function, associated with demand of y in period t.
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Assume that the marginal benefi t of electricity at a given level of consumption is its 
market price, B r ( yt*) 5 pt. The aggregate benefi t could be the consumer surplus plus the 
revenue component of producer surplus:

 B( yt) 5 3
yt*

0

pt ( 
yt)dyt,

that is, the area under the inverse demand function pt ( 
yt) . Net welfare benefi t is then 

B(yt)   2   Cost. Assume that there is a fi nite value for the aggregate benefi t of the fi rst 
unit of consumption: B(0) 5 V*. This is taken as the willingness to pay to avoid loss of 
consumption, and in energy market terms is the value of lost load.

 xt is the load produced in period t which may diff er from the demand yt,
 q is the capacity installed for all periods t 5 1  . . .  T ,
 et is the excess of demand over output load available in period t, so that 
 et ; yt 2 xt; therefore et is the random variable in the model when uncertainty of demand 
is permitted,
 rt is the operating cost of output per unit in period t, and
 b is the unit cost of new capacity installed; installed capacity is q* 5 q/a where a is 
availability of capacity.

When there is no uncertainty, the standard model for one plant and many equal length 
subperiods is:

 maxW 5 a
t5T

t51
B(yt) 2 a

t5T

t51
rtxt 2 bq,

subject to the demand constraints: xt $ yt, t 5 1  . . .  T  with dual variables: mt and the 
capacity constraints: xt # q, t 5 1  . . .  T  with dual variables: kt. The Lagrangean is:

 L 5 a
t5T

t51
B(yt) 2 a

t5T

t51
rtxt 2 bq 1 a

t5T

t51
mt (xt 2 yt) 1 a

t5T

t51
kt (q 2 xt)

The fi rm chooses to maximise net economic benefi t with respect to yt,  xt,  q, because it 
chooses capacity, price and output simultaneously, but not independently. The necessary 
conditions are:

 0L/0yt 5 p(yt) 2 mt # 0, yt (0L/0yt) 5 0, t 5 1  . . .  T ,

 0L/0xt 5 2rt 1 mt 2 kt # 0, xt (0L/0xt) 5 0, t 5 1  . . .  T ,

 0L/0q 5 b 2 a
t

kt # 0, q(0L/0q) 5 0,

 0L/0mt 5 xt 2 yt $ 0, mt (0L/0mt) 5 0, t 5 1  . . .  T ,

 0L/0kt 5 q 2 xt $ 0, kt (0L/0kt) 5 0, t 5 1 . . . T .
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Assume an interior optimum: yt, xt, q . 0, then these conditions are written:

 pt 5 mt: price equals marginal cost on the system,
 mt 5 rt 1 kt: system marginal cost equals operating cost plus capacity payment, and
 a

t
kt 5 b: sum of periodic capacity payments equals the cost of capacity.

These conditions apply to a span of time periods that could cover one day or a cycle 
of subperiods, but they generalise to optimisation over many years with the addition of a 
discount factor; for example, to make an investment decision compare the present value 
of lifetime capacity payments to the lifetime capacity cost:

 a
t

[kt/ (1 1 i) t ] 5 b.

The conditions also generalise to many diff erent types of capacity: s 5 1 . . . S with the 
addition of an appropriate subscript, and an aggregated form of the demand constraint:

 a
s5S

s11
xst 2 yt $ 0.

Then, for example, the marginal cost calculation is:

 m1t 5 r1t 1 k1t 5 . . . 5 mst 5 rst 1 kst 5 mSt 5 rSt 1 kSt.

This last result is illustrated in Figure 2.7, which is based on Turvey (1971).
In the fi gure, fi ve diff erent types (or vintages) of capacity are shown with installed values 

of Q1 . . . Q5. They are arrayed in ascending order of operating cost to represent the idea of 
the merit order of plant dispatch. Critically the long-run marginal cost is no longer imme-
diately obvious. Since the optimisation solves the pricing and investment model simulta-
neously, the system marginal cost is a measure of both short- and long-run marginal cost.

With uncertainty, model specifi cation is particularly important. The basic idea in this 
model is to penalise the proximity of load to available capacity, and this can be dem-
onstrated in a very simple setting. Load shedding or the use of unsatisfi ed demand is 
now included in the model. In particular, it is necessary to distinguish between potential 
demand associated with the current price and the actual load which can be delivered. 
This simple model is based on Stoft (2002, p.136).9 It uses the concept of lost load, served 
load and states that the sum of the two is defi ned as load: yt ; xt 1 et. The diff erence 
between potential demand and actual load can now be positive: et ; yt 2 xt, and this 
random variable has a known probability density function, f(et) . The cumulative distri-
bution function defi nes the probability of any given size of outage:

 F(et*) 5 3
et*

2`

f (et)det 5 prob(et # et*) ,

and two values are of interest: the probability of non-positive outage (no load shedding), 
F(0) , and the probability of positive outage: 1 2 F(0) .

The cost of load which is shed is: V* per unit ofyt 2 xt 5 et, that is, the value of lost 
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load. The demand constraints of the certainty model remain: xt 2 yt $ 0; however, they 
will have shadow prices that include the probability that the constraint is binding. The 
constraint may be violated if load shedding is allowed, and then this is penalised by an 
additional term in costs that again refl ects the probability of this occurring, that is, the 
probability of lost load: 1 2 F(0) . The problem has the Lagrangean function:

 L 5 a
t5T

t51
B(yt) 2 a

t5T

t51
rtxt 2 bq 2 a

t5T

t51
[1 2 F(0) ]V*(yt 2 xt)

 1 a
t5T

t51
[mtF(0) ] (xt 2 yt) 1 a

t5T

t51
kt (q 2 xt) .

Note how the demand constraints have been replaced by an expression composed of 
two terms: the fi rst records positive outages: yt 2 xt ; et . 0 which are associated with 
an expected monetary cost, [1 2 F(0) ]V*, and the second records non-positive outages 
with an expected shadow cost: F(0)mt. The necessary conditions for this simplifi ed state-
ment of the problem read:

Demand (baseload)

Demand (intermediate)
Demand (peak)

r1

r2

r3

r4

r5

m peak

m intermediate

m baseload

Q1

Q2

Q3

Q4

Q5

k2, intermediate k2, peak

£/megawatt/year

megawatts

Capacity and output

Maximum
capacity
available

0
mst = rs + kst    and    � kst = cse.g.

m intermediate  = r1 + k1, intermediate = r2 + k 2, intermediate = r3 + k3, intermediate  = r4

Source: Based on Turvey (1971).

Figure 2.7  Multiplant and multiperiod marginal cost of energy generation
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 0L/0yt 5 p(yt) 2 [1 2 F(0) ]V* 2 F(0)mt # 0, yt (0L/0yt) 5 0, t 5 1 . . . T ,

 0L/0xt 5 2rt 1 [1 2 F(0) ]V* 1 F(0)mt 2 kt # 0, xt (0L/0xt) 5 0, t 5 1 . . . T ,

 0L/0q 5 b 2 a
t

kt # 0, q(0L/0q) 5 0,

 0L/0 [F(0)mt ] 5 xt 2 yt $ 0, F(0)mt{0L/0 [F(0)mt ] } 5 0, t 5 1 . . . T ,

 0L/0kt 5 q 2 xt $ 0, kt (0L/0kt) 5 0, t 5 1 . . . T .

Assume an interior optimum: yt, xt, q . 0, then these conditions can now be inter-
preted in a simple way. Refer to the probability of positive outage as loss of load prob-
ability, LOLP:

 LOLP ; 1 2 F(0) ,

and refer to short-run marginal cost as system marginal price, SMP:

 SMP ; mt.

Then:

 pt 5 [1 2 F(0) ] (V* 2 mt) 1 mt 5 LOLP(V* 2 SMP) 1 SMP

 5 LOLP 3  V* 1 (1 2 LOLP)  3  SMP.

That is, the spot price equals the loss of load probability times the value of lost load plus 
the probability of maintaining load times the system marginal price. System marginal 
price is the cost of the marginal production unit and equals operating cost plus capacity 
payment. The capacity payments sum to the cost of capacity:

 a
t

kt 5 b: sum of periodic capacity payments equals the cost of capacity,

but each now has two components which depend on the loss of load probability:

 kt 5 [1 2 F(0) ] (V* 2 r) t 1 F(0) (mt 2 rt) .

These are the standard results in the spot pricing literature: in each half hour the effi  cient 
spot price equals:

marginal generation cost + marginal capital cost . . . no uncertainty case,
weighted average of marginal generation and outage costs . . . uncertainty case.

Outages are modelled as output from non-existent capacity which has zero capac-
ity cost but a very high operating (outage) cost. An important qualifi cation remains, 
however. The model with certainty has a set of ex ante price relationships that will 
automatically be realised in practice because uncertainty is absent. This is not the case 
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in the model with uncertainty; the ex ante relationships are based on the maximisation 
of expected net welfare benefi t, but the actual ex post realisation will be diff erent. To 
handle the divergences between expected values of the variables and their realisations 
there should also exist an ex post balancing market. Thus the uncertainty model outlines 
the equilibrium before trading, but the real-time spot market must allow instantaneous 
adjustment of ex ante values to realised outcomes.

7  Energy Market Architecture

The analysis to this point gives an insight into the price relationships at the effi  cient 
allocation of resources. However, the welfare maximisation model has been used only 
as a means of simulating the competitive outcome. The mechanism for achieving this 
outcome still relies on competitive markets rather than centralised regulation, as the issue 
of capacity payments highlights. In the uncertainty model the capacity payment which 
covers the cost of building new capacity depends on the strength of demand at the peak 
relative to the system marginal price. In early applications of spot pricing with investor-
owned producing fi rms, many market designs arranged for separate capacity payments 
with regulator-determined value of lost load in addition to system marginal price recov-
ery.10 However, such a regulated market architecture is open to abuse of market power if 
a producer with suffi  cient capacity can increase loss of load probability by withdrawing 
nominated capacity availability at the last moment. Consequently, during the years after 
2000, many spot markets such as that of the UK moved away from a pool with separate 
capacity payments. The effi  cient spot market outcome was left to competitive entrants to 
make off ers and bids to supply through individual negotiated contracts with a balancing 
market to adjust realised values to ex ante planned supply and demand. The mechanism 
for spreading the risk of faulty contracting is an active market in fi nancial options related 
to spot and forward electricity and gas contracts (Stoft 2002; Wolak 2006). In the UK 
case, it is arguable that the stimulus to a more effi  cient wholesale market after the disap-
pearance of the capacity payments system owes as much if not more to competitive entry 
by new generators as it did to the evolution of new trading and contracting arrangements 
(Evans and Green 2005). Consequently, it is important to keep in mind that the structure 
of the welfare maximisation model is not a guide to market architecture; it simulates the 
competitive outcome, but it is still the mechanism of free entry and exit in response to 
profi t incentives that implements the spot pricing equilibrium.

Joskow (2006) has suggested some practical critical ingredients for liberalised elec-
tricity markets on the basis of several years of international experience. In Table 2.1, 
Joskow’s architecture for energy market reform to replace public or state-owned utilities 
(POUs) with investor-owned utilities (IOUs) is summarised. Several of the ideas raised in 
Joskow’s table are considered below, including the rate of entry into energy markets, and 
access to networks. Wholesale market spot prices can even be signalled to retail consum-
ers with the option of a fi xed price tariff  instead.

8 Competition in Wholesale Energy Markets

In UK energy markets a classic case study of the competition in wholesale power markets 
concerns the trading arrangements for electricity in England and Wales. The analysis of 



40  International handbook on the economics of energy

Green and Newbery (1992) suggested that the small number and concentrated size of 
the original market participants led to a Nash equilibrium in supply schedules (off er 
curves) that produced large effi  ciency losses. They suggested that fi rms used market 
power to manipulate the availability of capacity in order to push up capacity payments, 
and increase the marginal price of electricity. This produces the policy implication that 
divestment of plant and enhanced competitive entry is required to improve competition 
in electricity generation, but a diffi  culty with the analysis of markets with a fi nite number 

Table 2.1  Architecture for energy market reform

Component Policy Objectives

a. IOUs Privatise state-owned utilities High-powered incentives, non-
political objectives, hard budget 
constraints

b. Separation Vertical separation of 
generation, transmission, 
distribution and supply

Barriers to cross-subsidisation, 
and discrimination against 
access

c. Demerger Horizontal demerger of generation Wholesale market competition
d. Integration Horizontal integration of 

transmission
Single independent system 
operator for system reliability 
and economic standards

e. Wholesale market Voluntary public wholesale 
spot energy and operating 
reserve markets

Support for real-time supply–
demand balancing, economic 
trading, quick response to 
outages

f. Demand-side 
response

Develop active demand-side 
institutions

Consumer demand-side 
response to wholesale prices 

g. Access Promote effi  cient access to 
transmission network

Effi  cient competitive production 
and exchange, and allocates 
scarce transmission capacity 
among competing users

h. Unbundling Unbundle retail tariff s into 
retail power supply and delivery 
charges

Competition in supply separate 
from regulated (natural 
monopoly) distribution and 
transmission

i. Economic 
procurement

Benchmark supply costs for 
small consumers 

Yardstick for supply by 
distribution company where 
small consumers not open to 
competition 

j. Independent 
regulation

Independent regulatory 
authority with expert staff  

Performance-based regulation 
using good information to 
regulate for distribution and 
transmission, e.g., yardstick 
competition

k. Transition Transition from POUs to 
IOUs

Mechanisms compatible with 
competitive markets

Source: Joskow (2006).
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of fi rms is to determine the optimal number in the market. Many oligopoly models use 
the Nash equilibrium for a Cournot game in which fi rms choose output quantities to 
maximise profi t, taking the quantity of output from rivals as given. Powell (1993) used 
such a model to show that forward contract commitments would reduce the ability of 
fi rms to exercise spot market power. In power markets, however, it is often more interest-
ing to focus on price-setting behaviour. In a two-player Bertrand game each duopolist 
chooses his/her price, taking the other’s price as given: for example, for duopolist 1, 
where p, p, c, q are respectively profi t, price, marginal cost and output, the model states:

 max
{P1: given p2}

p1 5 (
 
p1 2 c)q1.

Here, a pure strategy Nash equilibrium has fi ve properties (Rasmusen 1994), where 
market demand is written p 5 a 2 bQ, and c is marginal cost (the same for each fi rm):

 if p1 , p2,  then  q1 5 Q 5 (a 2 p1) /b  and  q2 5 0; 

if p2 , p1,  then  q2 5 Q 5 (a 2 p2) /b  and  q1 5 0;
if p1 5 p2 5 p,  then  q1 1 q2 5 Q 5 (a 2 p ) /b;
neither  deviates  and  the  unique  equilibrium  is  where  p1 5 p2 5 c.

The essence is that the lower-price duopolist captures the whole market. Prices cannot 
diff er because the higher-price duopolist can respond by shaving price suffi  ciently to 
capture the other’s market share. This stops when each has shaved price to marginal 
cost. Any division of the market is then a Nash equilibrium because each just breaks even 
while any deviation of price from marginal cost will mean zero or negative profi ts.

In a classic paper, Klemperer and Meyer (1989) described a way of extending the 
Cournot and Bertrand models. Instead of saying that players must choose either quan-
tity or price as the strategic variable, they argued that each fi rm would look for its 
profi t-maximising supply curve relating quantity to price. Hence this is called a ‘supply 
function’ model. Here the Nash equilibrium strategies consist not of a set of outputs or 
a set of prices but a set of supply functions stating how much each fi rm will supply for 
any given market price: qi 5 qi (p) . There have been several applications of this model, 
particularly to markets where a small number of fi rms participate in auctions to supply 
a product and each fi rm’s bid consists of both a nominated supply quantity and a price 
that is required for that supply to be available. This is very relevant to the nature of 
spot energy markets where energy producers bid in supplies and prices to a daily market 
organised by an independent system operator, as envisaged in the Joskow architecture. 
Note that there is an additional problem with auctions because the diffi  culty of monitor-
ing the fi rms’ signals to each other and the transparency of any fi rm cheating tend to 
encourage cartel bidding. The version of the Klemperer–Meyer model used here is that 
of Green (1996) and Green and Newbery (1992). Green’s (1996) model is restricted to 
linear supply functions.

Market demand is D = q1 + q2 and market demand is a function of market price: D = 
D(P). Each fi rm thinks of the market price as its strategic variable and recognises that 
its share of market demand is the diff erence between total demand and the other fi rm’s 
share: q1 ; D 2 q2 and q2 ; D 2 q1. It takes as given the other fi rm’s supply function: 
q(P). In the derivation, note that this identity holds:
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dq1

dP
;

dD(P)

dP
2

dq2

dP
.

Firm 1:

 max
P, q2(P)  given

p1 5 Pq1 2 TC(q1) 5 P(D 2 q2) 2 TC(q1)

so 
dp1

dP
5 (D 2 q2) 1 (P 2 MC1) adD

dP
2

dq2

dP
b 5 0

solve: q1 5 (P 2 MC1) a2
dD
dP

1
dq2

dP
b,

and Firm 2:

 max
P, q1(P)  given

p2 5 Pq2 2 TC(q2) 5 P(D 2 q1) 2 TC(q2)

so 
dp2

dP
5 (D 2 q1) 1 (P 2 MC2) adD

dP
2

dq1

dP
b 5 0

solve: q2 5 (P 2 MC2) a2
dD
dP

1
dq1

dP
b.

These are a pair of simultaneous diff erential equations, so the solutions take the form of 
equations: q = q(P) rather than numbers. Now we restrict our search for the solutions 
to linear supply curves of the form: q = bP. We assume linear marginal cost curves: 
MCi 5 ciqi and a linear market demand curve:

 D 5 a 2 bP 1 dD(P)

dP
5 2b.

Our diff erential equation response functions are:

 b1P 5 (P 2 c1b1P) (b 1 b2)

 b2P 5 (P 2 c2b2P) (b 1 b1) ,

but P can be cancelled:

 b1 5 (1 2 c1b1) (b 1 b2)

 b2 5 (1 2 c2b2) (b 1 b1) .

The problem now is to solve for b1 and b2, the slope of each fi rm’s best response supply 
function with respect to the P axis. Market supply is then the horizontal summation of 
the individual supply curves: b1P 1 b2P 5 (b1 1 b2)P. The critical question asked by 
Green and Newbery is this: will the market supply curve approximate the competitive 
industry marginal cost curve (what they call the ‘Bertrand curve’) or will it approximate 
the cartel monopoly bidding curve? Even more interesting is this question: how many 
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new entrants are needed to ensure that the market supply curve is close to the Bertrand 
curve? The eff ect of adding more fi rms is to make the market supply curve steeper with 
respect to the price axis, that is, fl atter with respect to the quantity axis:

 b1P 1  c 1 bnP 5 aa
i5n

i51
bibP,

but it also increases the number of equations to be solved simultaneously:

 bi 5 (1 2 cibi) ab 1 a
n

j2 i
bjb, i 5 1 . . . n.

The eff ect is shown in Figure 2.8. The steepest supply function is the bidding curve for 
a monopoly fi rm, and the least steep supply schedule is that corresponding to a number 
of fi rms which behave as if they comprise a Bertrand–Nash equilibrium in supply sched-
ules. As the number of fi rms entering the market increases, each maximising profi t while 
taking the bidding supply schedule of the others as given, the aggregate of the supply 
schedules moves closer to the effi  cient Bertrand equilibrium schedule.

How many fi rms are needed for effi  cient resource allocation? Green and Newbery 
(1992) simulated the UK spot electricity market shortly after privatisation in 1990, and 
argued that with fi ve or more players of equal scale, the aggregate Nash equilibrium 
supply schedule hardly diff ered from the Bertrand equilibrium supply schedule in terms 
of the estimated deadweight welfare loss. Consequently, although effi  ciency of outcome 
required more than simply splitting the incumbent monopolist into two separate players, 

P

D, �q

D

n firms

Bertrand

2 firms

Monopoly

Nash equilibrium supply functions

Source: Green and Newbery (1992).

Figure 2.8  Green and Newbery power spot market model
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nevertheless a feasible and fi nite number of entrants would deliver an outcome relatively 
close to a competitive equilibrium.

9  What Determines the Optimal Degree of Entry to Market?

A simple model of the optimal number of fi rms in an industry is given by Armstrong et 
al. (1994, p. 107). This is explained below.

The aggregate output of an industry is Q 5 nq where n is the number of fi rms and q is 
the average output per fi rm. Generally we expect the average output per fi rm to fall as the 
number of fi rms rises. Trading off  producer surplus against consumer surplus suggests 
that the net economic benefi t of an extra entrant to an industry is:

 Profi t of last entrant + eff ect of last entrant in lowering price towards marginal cost.

The fi rst term accrues to the producer while the second accrues to the consumers
The net benefi t can be zero for two reasons. First, if both terms are zero and n is 

very large, that is, if there are constant or decreasing returns to scale then the gain from 
more entry is zero when both the last entrant’s profi t is zero, and price equals marginal 
cost. Second, if the two terms are non-zero but cancel out when n is small. If there are 
increasing returns to scale (or fi xed costs are important), then when entry has pushed 
profi t down to zero, this implies P = AC > MC. The second term is negative and entry 
is excessive. The more important the fi xed costs, or increasing returns to scale, the 
lower should be n. Figure 2.9 illustrates. First assume that demand is large relative to 
the output of a single fi rm. This means start with the diagram on the right and ignore 
the demand curve labelled D9 in the left diagram. If demand is large enough (D) then 
free entry leads to P = MC > AC and further entry incentives exist until P = AC = MC. 
Now instead assume that the output of one fi rm is large relative to the market demand. 
Ignore the diagram on the right and assume that market demand is: D9. If minimum 

Q = nqq(n)

D

S = �MC

PP

AC

MC

D' (n = 1)

Industry marketLast entrant

Figure 2.9  Incentive to new entry
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effi  cient scale is high relative to market demand (D9) then entry should stop when P = 
AC > MC.

The formal analysis of the eff ect on a fi rm’s output as the number of fi rms rises is given 
by:

 
dq (n)

dn
5 q r (n) , 0,

 
dW
dn

5 pn 1 (P 2 MC)nq r (n)  ( . 0)  1  [ ( . 0)  3  ( , 0) ].

Here pn is the profi t of the last entrant, and the second term is the eff ect of an extra fi rm 
in reducing the P – MC gap. The optimal number of fi rms is:

 n 5 2
q (Pn 2 ACn)

q r (n) (Pn 2 MCn)
.

10  The Access Pricing Problem

The Joskow (2006) architecture argues for vertical de-integration of diff erent aspects of 
power supply, but there is a link between vertical integration and the important topic 
of access pricing. In vertical integration the key question is the determination of the 
price of input charged to a downstream fi rm by the upstream fi rm. In access pricing, 
one fi rm owns the network for distributing the commodity to the fi nal consumers. It 
could but need not be vertically integrated. However, there is now another fi rm, the 
third party, which wishes to supply the commodity to some of these fi nal customers. 
It can obtain the commodity as input (the third party might be an upstream fi rm) but 
must use the available network owned by the downstream fi rm. The downstream fi rm 
can charge for access to this network. The access charge must cover the network costs 
associated with the customers which the third-party fi rm detaches from the network 
owner. These costs may be very diffi  cult to measure separately. What is the marginal 
opportunity cost of access that will form the basis of an effi  cient access price? Baumol 
and Sidak’s (1994) effi  cient component pricing rule argues that the marginal opportu-
nity cost of access is the profi t forgone by the network owner in permitting the third 
party to detach some customers that the downstream fi rm would otherwise supply. 
In principle, profi t per customer is calculable, but it will be diffi  cult to distinguish the 
fraction which covers network costs from the fraction which refl ects the downstream 
fi rm’s market power. The access pricing problem is discussed in detail by Armstrong 
et al. (1994).

Facilitating competition in the electricity and gas industries requires non-discrimi-
natory open access to the transmission and distribution network, for all producers and 
suppliers. Identify an incumbent network owner (fi rm 1) and a competitive supplier (fi rm 
2). Given that mce1 describes the incumbent’s marginal cost of energy, then its price for 
fi nal downstream supply is:

 P1 5 mce1 1 ica 1 p,

where ica is the incremental cost of access provision, and p shows the profi t mark-up to 
ensure fi nancial viability Therefore the price of access is:
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 Pa 5 ica 1 p 5 ica 1 [P1 2 (mce1 1 ica) ],

and this describes a version of the effi  cient component pricing rule (ECPR) (Vickers 
1997). The competitive supplier will only enter the market if it has a lower marginal cost 
of energy, mce*2 than the incumbent (Figure 2.10), but entry is ineffi  cient at an entrant’s 
energy source cost of mce2. ECPR therefore discourages ineffi  cient entry because the new 
supplier not only has to pay an access charge, it also has to pay the opportunity cost 
of access which includes the incumbent’s lost profi t. The model allows us to unbundle 
services, in this case distribution and supply. The ECPR model identifi es effi  cient entry 
conditions, but assumes that regulatory issues are resolved elsewhere. Figure 2.10 shows 
effi  cient entry where the network owner is an unregulated monopolist.

Product diff erentiation can exist in the supply market, as in any other competitive 
market. Vickers extends the model to write:

 Pa 5 ica 1 s [P1 2 (mce1 1 ica) ],

where s is the displacement ratio, defi ned as the ratio of (a change in output sales for 
the incumbent with respect to the access price) to (a change in supply of access to new 
entrants with respect to the access price).

Three assumptions are made about the displacement ratio to ensure unity: homoge-
neous products; fi xed coeffi  cients technology (one unit of output requires one unit of 
access); and no bypass (the incumbent supplies all access via its distribution network). 
The fi rst of these assumptions may be relaxed. Consequently when the demand for access 
by a new entrant increases by 1 unit, the incumbent will not see a 1 unit reduction in 

Q1
Q2 0

mce1

mce2

mce2*

ica + mce1

DMR

P1

�

Network ownerCompetitive entrant

Retail supply price

Figure 2.10  Unbundling products for access pricing
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demand for its product, because of customer inertia, brand loyalty, and the like, induc-
ing s , 1. Product diff erentiation will lower the access price relative to homogeneous 
products.

The regulatory issue of the network owner’s profi tability remains. Laff ont and Tirole 
(1996) have suggested a global price cap in which the intermediate good (access) is 
treated as a fi nal good and included in the computation of the price cap. This treats 
access and supply symmetrically in a Ramsey pricing framework. Laff ont and Tirole 
contrast this with ‘the general view that intermediate and fi nal goods are to be treated 
asymmetrically’ (pp. 244–5).

The effi  ciency gain of using the global price cap suggested by Laff ont and Tirole can be 
neatly illustrated in Figure 2.11, which is derived from Vickers (1997). The fi nal price and 
the access price are displayed on the horizontal and vertical axes. Separately regulated 
price caps are shown at point A as P ra and P r1. This pair of prices will generally lie on 
an iso-profi t contour labelled p, and an indiff erence curve of consumer surplus labelled 
S. Consumer surplus improvements are represented by S contours closer to the origin, 
while profi t gains to the fi rm are represented by p contours further from the origin. All 
of the area above the profi t contour and below the consumer surplus contour represents 
price pairs which are more effi  cient than the pair at A. We can construct a global price 
cap: wPa 1 (1 2 w)P1 5 P through point A such that points between the locus and the 
p contour are more effi  cient than A without the consumer paying more in aggregate than 
at A. If the weights are proportional to the actual quantities consumed at A, the locus 
will be tangential to the S contour at A. Any chosen combination in the area between 
the locus and the profi t contour will approximate to a more effi  cient entry-access allo-
cation than the one implied by the separate price caps, and will yield a Ramsey pricing 

P1

�

S

Efficiency gain from global price cap

P1
r

Pa
r

Pa

A

Source: Derived from Vickers (1997).

Figure 2.11  Global price cap
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outcome. The incumbent will concentrate where it has a comparative advantage, refl ect-
ing Bertrand entry in ECPR.

A regulator may opt for maximum price limits to protect customers who will initially 
not benefi t from competition. For access pricing this has the following eff ect, refl ecting 
what Laff ont and Tirole describe as the general asymmetric approach:

 P1 # P1 and Pa # Pa,

where the access price cap is determined by the distribution and transmission price con-
trols. Firms would be expected to publish indicative charges well in advance of imple-
mentation, and effi  ciency requires that these are the same for each entrant to a particular 
supply market.

Access pricing may need fl oors and ceilings to prevent ineffi  cient suppliers entering the 
market or to prohibit barriers to entry. Without use of a global price cap, Vickers worries 
about the distortion arising from partial regulation, a special case of this. If the access 
price is regulated, P1 2 Pa will widen, increasing productive ineffi  ciency, as less effi  cient 
rivals enter the market. To prevent predatory pricing, on the other hand, as a result of 
some competitive energy costs being allocated to the regulated business, suggests a con-
straint such as:

 P 2 a $ MC1.

However, if a fi rm’s distribution and supply business were separated into two companies, 
each with its own terms of license the possibility of cross-subsidy would no longer arise.

11  Conclusions

This chapter has attempted to make a broad survey of the theoretical core ideas in energy 
economics. The initial discussion used the idea of Pareto-effi  cient outcomes and social 
cost–benefi t analysis to establish the benchmark competitive and effi  cient allocations 
of energy resources. An important ingredient is the choice of social discount rate which 
was fi rst explained in terms of an optimal saving and growth model. The core ideas 
of effi  cient resource allocation were then applied to investments in new energy supply 
and capacity, and this was shown to be intimately related to the idea of marginal cost 
pricing. The measurement of marginal cost in multiple plants and multiple time period 
investment planning models of energy supply followed and was demonstrated in a spot 
pricing model with uncertainty. Having described the ideas of effi  cient resource alloca-
tion in an energy context, attention turned to the practical implementation in real-world 
energy markets. An architecture for effi  cient energy markets was suggested by Joskow 
(2006), and this was used as a context to investigate the role of entry by investor-owned 
fi rms into energy markets. Feasible competition was demonstrated with a fi nite number 
of entrants, but care is necessary in determining the optimal market design. One impor-
tant aspect of this is the access pricing problem since much of energy supply is delivered 
through pipes and wires.
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Notes

 1. Incentive regulation of energy industries is treated in Chapter 21.
 2. The fundamental theorems of welfare economics state that (i) every competitive equilibrium is a Pareto 

optimum, and (ii) for every Pareto optimum there is a competitive equilibrium.
 3. The Pareto criterion states that an allocation of resources is optimal if no person can be made better off  

without making another worse off .
 4. Since producer surplus is the diff erence between revenue and the area under the curve representing the 

horizontal summation of the marginal cost curves, it strictly excludes fi xed cost and therefore is less than 
economic profi t.

 5. Strictly this should be the slope of the aggregate of the compensated demand curves.
 6. There is no assumption that compensation is actually paid, otherwise the Pareto criterion itself would be 

satisfi ed.
 7. In Figure 2.5, additional producer surplus from this capacity to change is zero, since the long-run mar-

ginal cost is constant.
 8. Rees demonstrates that this is equivalent to comparing the NEC of consecutive programmes of identi-

cal investments in the diff erent technologies where the investment programmes have a common lifetime 
factor.

 9. Stoft (2002, pp. 48 and 136) discusses economic demand as the amount of power that would be consumed 
if the system were operating normally for all consumers. Shed load is included as part of demand.

10. The UK Pool market after privatisation, 1990–2000 is an example of this. Many US power markets 
remained in this situation subsequently (Joskow 2006; Wolak 2006).
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Abstract - Prior to 1973, most industries--including electric utilities-forecasted 
growth using rather straightforward time-trend approaches. While these 
approaches served the industry well during periods of steady and rapid growth, 
they failed to capture the underlying causal factors of growth. Thus, whey 
were unable to predict or explain the sudden changes in growth rates that have 
occurred since the 1973-74 oil embargo. Therefore, more sophisticated 
econometric and end-use models forecasting techniques were introduced to the 
utility industry. The growing awareness of the implications of a finite fossil fuel 
supply, as well as the increases in electricity rates, led fore&asters to consider 
electricity prices and conservation issues explicitly in their models. In the 
industrial sector, changes in technology, structural changes in the economy, and 
fuel switching issues have led to an interest in process models. 
The current trend in utility forecasting is toward #rat@ forecasting models. 
A key characteristic of strategic modeis is their ability to examine explicitly the 
factors and issues affecting future growth. This implies combining elements of 
the econometric approach with the technology detail found in the end- 
use/process models. Strategic models must be capable of doing more than 
merely forecasting future requirements. They must be able to provide planners 
with additional information on which policies to pursue to shape future loads. 

1. ISSUES IN FORECASTING 

Today’s energy planning environment, particularly as it relates to industrial customers, is 
characterized by a number of important issues. First, estimating the future economic strength 
of the manufacturing industries is a key challenge to the industrial forecaster (1). Second, the 
purchasing patterns of industries’ clients have changed. The advent of light weight, high 
performance materials is changing structurally the traditional intermediate materials sectors away 

+An earlier version of this paper was presented at International Atomic Energy Agency 
course on Demand Forecasting at Argonne National Laboratory on September 21, 1988. 
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from firms producing basic metals to those producing composites, engineering ceramics and 
plastics, and specialty metals. Similarly, the advancement of electronics is rapidly changing the 
competitive advantage of traditional consumer product manufacturers in favor of those firms who 
have capitalized on new found consumer desires, and on firms which can effectively meet the 
expanded information needs of a dynamic economy. Finally, developments in new technologies 
are creating new markets. Thus, utilities must be able to assess the competitive position of 
industrial firms in their service area as well as that of the products those firms are producing. 
Only by examining both of these factors can a reliable, long-term forecast of electricity 
consumption be made. 

The complexity of forecasting is further increased through the emergence of new 
technologies, particularly electricity-intensive technologies. As new technologies are introduced, 
the demand for inputs changes due to the requirements of the new technology and changes in 
relative competitive position of that industry as a whole. The key questions associated with new 
technologies are which ones will be adopted by industry and how will their adoption affect the 
input mix (2). 

Since the early 197Os, economic, political, social, technological, and resource supply factors 
have combined to change the operating environment. As far as the electricity markets are 
concerned, many utilities are implementing demand-side management (DSM) programs. DSM 
consists of planning and implementing activities designed to influence customer use of electricity 
in ways that will produce desired changes in the utility’s load shape, i.e., changes in the time 
pattern and magnitude of a utility’s load. The approach is in contrast to traditional supply-side 
planning where utility capacity was built to satisfy a given level of demand. Many utilities are 
actively pursuing DSM programs (3). Figure 1 provides a framework for analyzing these issues. 
The diagram presents the scope of the INDEPTH modeling system which is described elsewhere 
in this chapter. Thus, an approach is required which can capture the influence of numerous, 
closely related issues: international competitiveness, product competition, consumer demand, 
technological change, and DSM programs. See (2) for additional perspectives. 
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2. EVOLUTION OF FORECASTING METHODOLOGIES 

Prior to 1973, most industries, including electric utilities, forecasted growth using rather 
straightforward time-trend approaches. While these approaches served the industry well during 
periods of steady and rapid growth, they failed to capture the underlying causal factors of growth. 
Thus, they were unable to predict or explain the sudden changes in growth rates that have 
occurred since the 1973-74 oil embargo. Therefore, more sophisticated econometric and end- 
use models forecasting techniques were introduced to the utility industry. The growing awareness 
of the implications of a finite fossil fuel supply, as well as the increases in electricity rates, led 
forecasters to consider electricity prices and conservation issues explicitly in their models. In the 
industrial sector, changes in technology, 
issues have led to an interest in process 
time is illustrated in Figure 2. 

structural changes in the economy, and fuel switching 
models. The evolution of forecasting approaches over 

END USE/ ROES! 

I I 
STRAlgiK: 

1960 65 70 80 65 

YEAR 

Figure 2. The Evolution of Forecasting Approaches 

The current trend in utility forecasting is toward strateeic forecasting models. A key 
characteristic of strategic models is their ability to examine explicitly the factors and issues 
affecting future growth. Strategic models recognize the impact that policy decisions can have on 
future loads. This requires detail-detail on the customers’ operations, their current and potential 
demand for electricity, their competitiveness in the market place and their options with respect 
to production processes, switching alternatives, etc. 

In the industrial sector, this implies combining elements of the econometric approach with 
the technology detail found in the end-use/process models. Strategic models must be capable of 
doing more than merely forecasting future requirements. They must be able to provide planners 
with additional information to help shape future demand. None of the modeling methods 
overcomes the uncertainty associated with forecasting. 
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3. CURRENT STATE OF PRACTICE 

As noted, the methods used in forecasting have been changing rapidly since the early 1970s. 
Key findings from surveys of utility forecasters indicate: 

1. Utilities spend significant resources on energy forecasting. 
2. There is a growing desire to incorporate more detail on electricity use into the forecast. 
3. Information on electricity consumption by industry type, customer equipment, and 

operations are generally available, although the quality of the information and the time 
frame over which it is available vary widely. 

The overwhelming majority of utilities currently use an econometric approach to forecast 
industrial energy consumption. Survey results indicate that a combination of approaches is often 
used. In the sample of 14 utilities: 

. Three use an aggregate econometric approach; that is, they produce forecasts for the 
industrial class as a whole. 

. Ten use a detailed econometric approach; that is, the industrial class is disaggregated 
according to such factors as SIC, customer size, and growing industries and declining 
industries. 

. One uses a customer survey as the sole basis for the forecast. 

. One uses a customer survey to supplement other econometric forecasting methods. 

. Two use end-use/process models for forecasting electric consumption of the major 
industries. 

Because some utilities use more than one technique, the sum of the above responses exceeds 
the number of utilities interviewed. 

The use of formal questionnaires to obtain information relevant to generating the industrial 
forecast is the exception rather than the rule. Only three of 14 respondents collect and 
incorporate customer information into the forecast through use of a formal questionnaire. The 
far more common practice is to collect customer-related information informally through customer 
representatives. Because industrial forecasts are typically generated at a more aggregate level 
of detail than the specific customer information, such information is incorporated into the 
forecast in an ad hoc manner. That is, the information is used judgmentally to adjust the 
statistically derived electricity consumption level up or down as appropriate. The practice of 
interviewing industrial customers, rather than relying on surveys, is quite a contrast to the 
residential sector where appliance surveys are conducted regularly by the industry. 

The following information was collected regarding the overall familiarity of the utility industry 
with process models that estimate energy consumption by focusing on the underlying industrial 
processes and technologies. The familiarity of the respondents with the concept of process 
models is as follows: 

. Twelve have gained familiarity with the models through seminars, conferences and/or 
the literature. 

. Two used the process models in the preparation of their industrial forecast. 

. Four expressed the opinion that process models are too data-intensive and cumbersome 
for use as forecasting tools at the service area level. 

. Two have no familiarity with process models. 

In addition to technology, industrial energy consumption is influenced by the level of 
economic activity. Economic drivers used by the respondents include: 

. Final Reserve Board production index. 

. Value of shipments. 

. Service area employment. 

. National/regional production levels for important industries in the service area (number 
of automobiles, tons of paper, etc.). 
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. Gross state product. 

All but one of the respondents indicated they used outside economic forecasting services to 
provide them with at least the starting point for generating the drivers for their models. Four 
indicated that they had in-house economic services that regionalized or adjusted national forecasts 
to reflect service area conditions. 

A common concern in the development of an industrial forecasting model is the availability 
of data, particularly with the increased tendency of the industry to incorporate more detail into 
the forecasting models. Of the 14 utilities interviewed, 12 classified their customers, and 
consequently, industrial electricity consumption, by at least the two-digit SIC level. Some of the 
customer classifications go back as far as the 196Os, others only to 1982. There is some doubt 
about the validity of the data from the earlier years due to misclassification, changes in customer 
product mix, and changes in the SIC categories. 

In addition to consumption data, some models, such as process models, require information 
on industrial customer processes and equipment. One-third of the respondents indicated that 
their customer representative had good knowledge of their customer’s electricity consuming 
equipment. Another third indicated that they obtained similar information through recently 
conducted surveys. The remaining one-third indicated that they had little knowledge of their 
customer’s equipment and processes. 

All but one respondent indicated a general level of satisfaction with their present forecasting 
procedures. This, however, does not imply that all of the forecasters’ needs are currently being 
met. Specific needs, as expressed by the forecasters, include: 

. More detail on the customer’s operations to assess his business competitiveness. 

. More detail on the pattern of consumption. 

. More detail on consumption and end-uses to be used for marketing purposes. 

. Better understanding of the impact of conservation on customer’s consumption. 

. Better understanding of the effect of technology changes on industrial consumption. 

. Increased accuracy of economic variables driving the forecast. 

Regarding DSM, it is interesting to note that for most respondents DSM in the industrial 
sector was limited exclusively to rate-related programs. Specific demand-side programs mentioned 
include: 

. Time-of-use rates. 

. Off-peak energy rate. 

. Interruptible rate. 

. Special metal melting rate. 

. Economic development rate. 

. Industrial customer audit program. 

. Financial incentives for the purchase of energy efficient equipment. 

. Educational activities on the efficient use of electricity. 

. Marketing of conversions from fossil fuels to electricity. 

Utilities devote considerable resources to the system-wide forecasting activity. The total level 
of effort devoted to forecasting residential, commercial, and industrial energy consumption, as 
well as the economic drivers, ranges from 2 to 40 person-years per year for the utilities 
interviewed. The average level of effort is 11 person-years per year. 

4. SYSTEMS OF MODELS 

A detailed review of the strengths and weaknesses of the alternative modeling approaches 
is described in (4). Based on this review, a hierarchical, menu-based approach appears well 
suited to meeting utility needs. 
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Such an approach is adopted in the INDEPTH modeling system, described elsewhere in this 
chapter. The concept is however perfectly general. The system should have some general 
properties such as the following. It should form an internally consistent, nested modeling system 
that would enable each utility to select an appropriate level of detail based on the availability of 
data and the specific characteristics of its service area. System of models consist of several levels 
of analysis. The broadest level will normally consist of a series of econometric models that 
produce electricity forecasts for the 20 two-digit major industry groups such as food products, 
lumber products, and pulp and paper products. These econometric models will provide complete 
coverage of the manufacturing sectors. The second level of models will focus on a few key 
industrial sectors through the use of process models. These models provide greater detail about 
the industry being modeled, but cannot, by themselves, be used to generate forecasts for the total 
manufacturing sector because only a few sectors are modeled. The third level of models is the 
eauioment models. These models are designed to forecast change in market penetration of key 
end-use equipment, such as motors. 

In the integrated modeling mstem. all the component models need to be supported by a 
common set of assumptions, external drivers, and a consistent logic. These common elements 
are necessary because the forecasts obtained from the second level-process models--are implicitly 
contained in the forecasts produced by the first level--econometric models. Similarly, the results 
of level three-the equipment models-are implicitly contained in the econometric and process 
models. Therefore, all levels of the system utilize the same macro-level economic forecasts to 
assure that the electricity forecasts are based on common perceptions of the underlying economic 
growth of the service area, of the structural effects on industry sectors, and of technological 
change. Therefore, a critical component of the modeling system is the data base and the 
methods to regionalize economic forecasts. 

5. SELECTION OF MODEL SPECIFICATION 

Selection of the particular model specification is based on satisfying several objectives. It is 
necessary to strike a balance between model specifications that are abstract, complex, theoretical, 
and difficult to implement with those that are overly simplistic, possess little statistical and 
theoretical justification, and are being used because of the expediency of implementation. The 
following objectives need to be considered: 

. Validity--Is the model conceptually and theoretically sound? Are the relationships, 
specifications, and data accepted by the professional community? Do models of a 
similar nature possess a track record of accurate forecasting? 

. Transferability--Is the model capable of being specified, estimated, and implemented in 
a way that makes it applicable to a variety of areas? 

. Data availability--Are the data available for model estimation? Is the quality of the data 
sufficient to make key planning decisions? 

. Output capabilities--Is the model capable of being formulated in such a way as to satisfy 
the need? 

. Ease of understanding--Can the model structure and implementation be understood by 
critical decision makers who must have confidence in the model and its results to make 
decisions? 

. Issue handling--Does the model allow examination of critical issues facing forecasters? 
Can the model address any or all of the following: 
- Structural change in product demands 
- Regulation 
- Technological change 
- Demand-side management issues such as rates, incentives, and education 
- Alternative input prices 
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A classification scheme useful for describing the trade-offs between the 
contained in models versus their ability to explain is shown in Figure 3. 

level of detail 

High 

lndustf ml 

LOW 

Degree of industrial Detail 

Figure 3. Positions of the Different Forecasting Models 

6. APPLICATION OF MODEIS 

Eouioment Model AnDlications 

High 

in Given Taxonomy 

The equipment models are used to examine the impact of technological change in key 
equipment common to most manufacturing establishments. Examples include electric motors, 
process heating equipment, and lighting fixtures. These models are run to analyze the potential 
impacts of DSM programs designed to promote the use of certain types of end-use equipment. 

Equipment models when used for electric utilities will produce results in the form of 
electricity consumption by motors, electric lights, etc. The consumption of energy by this 
equipment will, however, already be contained within the forecasts made by the econometric and 
process models. Therefore, sector totals for each industry cannot be obtained by merely adding 
up the consumption levels forecasted by equipment models. 

The implementation of the equipment models, therefore, requires two steps: (1) 
identification of equipment usage in the industrial sectors of other model levels, and (2) 
utilization of the equipment models in a simulation mode. 

A bridge is built that describes the baseline level of equipment usage in each industrial 
sector in the econometric and process models. The bridge allows identification of the implicit 
baseline equipment consumption. By utilizing the equipment models in the simulation mode- 
with the baseline being the level of usage described in the bridge--the net than@ in equipment 
usage can be added to any other model result. 
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Econometric Model Aonlications 

The econometric models are the most general and comprehensive of the models. Built at 
the two-digit SIC level, these models form the basic forecasting capability of most modeling 
systems. Through simple summation, the aggregate manufacturing consumption can be 
determined. All other models within the system modify and supplement the results obtained 
from the econometric model. 

The macro-driven, service area economic forecasts, and decision-making assumptions used 
in the econometric models m be consistent with those used at the other levels. Only if the 
other levels are used in a simulation mode can different data or assumptions be used--and then, 
the results from the different data must be compared to baseline results from the data used in 
the econometric models. 

Thus, the econometric models are critical tools for forecasting. Utility-specific applications 
will use the elasticity estimates derived from the system of cost-minimizing input demand models 
in single-equation models after regional calibration. The process and equipment models are used 
to analyze in greater details results which are implicitly contained in the econometric models. 

Process Models ADD~~C&OIIS 

The process models are for use by utilities interested in better understanding how a 
particular four-digit industry may evolve over time. Thus, the process choice models are used 
only if that industry segment is important in a local service area. 

The process models yield a forecast of electricity consumption at a more detailed level than 
is produced by the econometric models. Therefore, the results of the process models cannot be 
added to the results of econometric models without careful consideration of possible double 
counting. The process models can be integrated with the econometric models as follows. Two 
sets of econometric models are specified. One for the set of entire two-digit SIC& and another 
based on two-digit SICs except for the four-digit sector being modeled by the process models. 
For example, if a process model is built for SIC 3311~-basic steel--then a special econometric 
model containing all activity in SIC 33 except 3311 is also built. 

Bonometric Versus Process Models 

Application of econometric and process models is outlined on Figure 4. The driver model 
operating at the bottom level generates input (production mix) in monetary units. Therefore, 
calibration is required for the process model into the physical units. 

Both econometric and process model have their specific data bases as listed in the figure. 
Behavioral lags representing an estimate of time required to achieve the equilibrium market share 
are often included in process models. 

Model outputs can be described briefly as future demand trends from the econometric model 
and technology choice from the process model (as an optimization algorithm is applied). 

Mixed Models Armlication 

In the middle the mixed models are placed as described before. This type of modeling can 
use a combination of orthodox generic approaches described before for econometric and process 
models. 
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Figure 4. Econometric Versus Process Models 

The mixed approach might be just one model, called hybrid in our taxonomy. It can also 
be a system of models, which can use separate econometric, process, and other types of models. 
INDEPTH is an example of such an integrated modeling system. In the most general case, it 
can be a set of different type of models employed to generate the demand. 

Such a model set was used in an Energy Modeling Forum study to evaluate the impact of 
structural shift in the US economy on industrial energy demand. On the macroeconomic level, 
three economy-wide models were employed. To predict the major trends in the US economy, 
the PILOT model was used (see Chapter “Multisectoral Planning Models”). This is a 
macroeconomic model designed for long-term projections of both energy demand and economic 
output. The PILOT model is a large-scale dynamic input-output model of the US economy. The 
main goal of the model is to evaluate technological change, which is assumed to be the driving 
force of economic growth. The INFORUM model, an input-output macroeconomic model, was 
used for short-term projections only (i.e., through 1995). 

Finally, the WHARTON model was used as a driver for industrial models. WHARTON 
generated sectoral outputs, which were used to forecast industrial energy demand. The PILOT 
model was calibrated to WHARTON’s base-case scenario. It was impossible to use the PILOT 
model to generate energy demand by industrial sectors, as the aggregated energy services 
submodel is employed. 
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All the types of models represented in this study can be used to forecast the levels of 
demand for different energy carriers. However, the three models described above were designed 
generally to describe the macroeconomy. Therefore, to conduct the detailed research, the 
sectoral output levels obtained from these macroeconomic models were introduced as drivers to 
three different types of industrial sector models: 

. Process (ISTUM) 

. Hybrid (ORIM) 
l Econometric (PURHAPS) 

Observation on Models Behavior or ResDonse 

As a result of this comparative study, some observation on models behavior can be made. 
Preliminary observations were that the choice of method applied can bias the results. As a rule, 
the higher growth in demand level, especially for electricity, was obtained from the econometric 
model. The nature of the bias in the process-type models is to be overly optimistic on the rate 
of efficiency improvement in the input-output coefficients. The rationale of the econometric 
models is that our best guess of the future is provided by a study of past trends. Therefore 
econometric models can easily capture long-term regularities such as electrification and 
automation if they are contained in historical data. 

During the process of detailed comparisons, it was found that differences in model outputs 
were not very large, after proper calibration. There are, however, some aspects of model types 
which might be of some interest for users. 

The penetration of new technologies can be an extremely important factor in the future. 
This issue can be examined only by engineering process models. 

Econometric models tested in the EMF 8 study show surprisingly low sensitivity to changes 
in the input prices, especially oil prices. This might be explained as a result of the relatively 
long time periods used by the models. 

All models have built-in tendencies that favor or discourage use of certain inputs. All 
models show a trend toward electricity with virtually no substitution away from electricity toward 
fossil fuels. Process models display a tendency toward coal, possrbly due to lower nonfuel costs 
of coal technologies. 

In general, econometric models are highly dependent on time series data and are best suited 
for short-term projection. As a consequence, econometric models may not be appropriate in 
forecasting the effect of new technologies that depart from the historical pattern. 

An excellent illustration of the difference between econometric and process models is 
afforded by the forecasted role of cogeneration by the models participating in the EMF 8 study. 
In Figure 5 both of the process models show declining intensity of purchased electricity in 
manufacturing while the other models show it to be increasing. This discrepancy was primarily 
due to self-generation. 

The long term trend for cogeneration and self-generation had been declining for almost a 
century and the recent surge in activity had not yet been reflected in the data available to the 
modelers at the time of the study. Consequently, the forecasts of the econometric models 
reflected very little cogeneration activity in the future. 

Because the process models base their forecasts more on future conditions than past trends, 
the favorable economics of cogeneration resulted in a very substantial penetration of this 
technology. This was the greatest single difference in the results of the two modeling 
methodologies. 
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Figure 5 

The inherent optimism concerning market penetration rates exhiiited by process models 
stems from the difficulty of modeling institutional obstables to new technologies. In the case of 
cogeneration, the contractual and financial complexity of many of these projects has hindered 
projects that might otherwise have been economically attractive. Furthermore, the aggregate 
nature of national models obscured regional variations that limited cogeneration activity to those 
utility districts that needed capacity. These issues are typically handled by a logistic market 
penetration function but there is little theoretical basis for estimating lag parameters other than 
those associated with capital vimaging. 

As was stressed before, the promising direction is to take advantage of the chief features of 
both methods. The models should not rely entirely on historical trends. Even recent history 
cannot point out future trends. Future trends are driven by many other factors such as 
penetration of new technologies, input prices and availability, shifts in processes, and product mix, 
etc. Econometric models are also plagued by the fact that supply constraints have been a major 
trend factor affecting consumption in the past in many countries. Thus, demand relationships 
cannot be easily identified through normal econometric techniques. 

VIII. CONCLUSIONS 

No one type of model can be recommended as the best one for a particular forecasting task. 
The choice is with the analyst, who can make it based on the experience and availability of 
techniques and resources. Often a system of models approach will be preferable over that based 
on a single model. 
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2.1. ECONOMETRIC TECHNIQUES: THEORY VERSUS PRACTICE 
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Abstract - This paper introduces the basic concepts used in econometric 
modeling, and describes five prescriptions to avoid common real-world pitfalls 
in that style of modeling. The paper begins by comparing econometric 
modeling with other forms of modeling used in energy modeling and 
engineering. It describes what an econometric model is, and how to build one. 
It then gives a detailed explanation of many facets of the five prescriptions: pay 
attention to uncertainty; don’t expect a free lunch when devising specifications; 
pay attention to prior information; don’t expect to draw conclusions without 
adequate data; and check the historical track record of your model. The issues 
of generalization and robustness over time receive special attention; they are 
important in practice, and subtle in theory. Finally, the paper discusses model 
development in practice, building upon experience with PURHAPS, a model 
I developed for the Energy Information Administration (EIA). 

1. BACKGROUND 

Economic theory, in the United States, usually begins with simplifying assumptions like free 
markets, perfect competition, no externalities, and perfect foresight. After years of study, the 
advanced student is told how to modify this theory to address real problems in the real world, 
which are often quite different from the theory in important ways. Some students never quite 
make the adjustment. 

Econometrics is very similar. This paper will introduce the novice to the basic assumptions 
and methods of econometrics, and then discuss problems which come up in modifying the theory 
to fit the real world. 

Broadly speaking, there is no sharp dividing line between econometric models, engineering 
process models, statistical models, simple time-series models, systems dynamics models, etc. All 
these types of models are systems of equations designed to forecast or simulate whatever we 
want to forecast or simulate. The real difference lies in b we obtain information or 
parameters to plug $t& the models. 

Some classes of models tend to rely on a priori information or indirect information about 
what we are forecasting; models of this sort include “pure” process models, classical systems- 

+This paper expresses the views of the author, not those of EIA or DOE, though it was 
reviewed at EIA prior to submission. As this paper goes to press, the author’s address has 
changed to: Room 1151, NSF, Washington DC. 20550. 
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dynamic models and expert systems. Other classes are based on emoirical data about exactly 
the kind of variables we are trying to forecast; this includes econometric models, time-series 
models, statistical models, (identified) control-theory models, and artificial neural networks. 

In the energy business, the a priori models tends to be very complex, because people include 
lots of lower-level detail to create a feeling of earthy realism; however, the parameters are 
usually based on judgment or guessing, and it is hard to be sure the model will track actual 
trends. The good empirical models tend to be simpler, because they are usually limited to 
variables which are observed on a time-series basis; however, they are strongly rooted in 
empirical reality, if done right. 

The a priori models sometimes seem easier to understand, at first, because they mimic 
concrete, well-known engineering processes (at least in part); however, because they contain so 
much detail, it is not always easy to know what causes the bottom-line forecasts to come out as 
they do, and the role of human behavior is often neglected or oversimplified. Empirically-based 
models are the reverse: the overall behavior is easier to understand, but the detailed reasons 
behind the trends -- both historically and in the forecast -- may require further analysis. A good 
researcher will learn how to combine both prior information a~& empirical information into a 
model, as this paper will discuss. 

The relations between different w of empirical model are subtler. 

On some level, there is no real difference between a statistical model, an econometric model, 
and a model developed by using the identification techniques of control theory; all three rely on 
the same core of theory, which this paper will discuss. “Simple time-series models” and artificial 
neural networks depend on the same theory as well, but they try to automate the process of 
coming up with a functional form; in effect, they assume that the user does not really understand 
the structure of the system he is studying, so that a computer can do the job as well as a person. 
This is a good assumption in some cases (as in recognizing patterns among thousands of variables 
which no one fully assimilates into his or her intuition), and a poor assumption in others (as in 
the study of physical phenomena for which the dynamics are well-understood). 

2. GOALS OF THIS PAPER 

In the United States and many other nations, econometrics is a major academic discipline, 
based on the idea that a careful analysis of historical data can be a good starting point for 
analyzing or projecting the future. Like any major discipline, econometrics has a long history, 
full of false starts, new perspectives, and hundreds of applications, some good and some bad. 

This paper will present those concepts and rules of thumb which we have found most 
important, in practice, in a government organization concerned about the quality of its forecasts. 
No one can expect to become a first-class econometrician after reading one article; there are 
simply too many tricks and traps to learn. However, we will try to explain the key concepts, and 
cite books which elaborate on their application. We also hope to pinpoint those 
misunderstandings which are common among experienced practitioners, and we apologize to them 
that there is not enough space here to explain all the details. Unfortunately, these 
misunderstandings have often led to the creation of models which totally misrepresent the 
dynamics of the variables which they are supposed to predict. 

This chapter will begin by saying what an econometric model is and how -- mechanically - 
- to build one. Next, it will discuss five major prescriptions for the correct use of econometric 
tools. Then it will discuss the use of these tools in practice at the Energy Information 
Administration (EIA). It will conclude with a very quick overview of the PURHAPS model, one 
of the econometric models I have developed for EIA. 
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3. WHAT IS AN ECONOMETRIC MODEL? 

Strictly speaking, an econometric model is no different from any other forecasting model - 
- it is made up of any set of equations or formulas which can be used to predict the future. For 
example, consider the following simple model to predict population: 

POP(t+ 1) = c *POP(t) (1) 

This says that population in year t+l is equal to a constant “c” multiplied by the population in 
year t. If you obtain your estimate of the constant c by asking your boss what c should be, or 
by studying textbooks on theology or ideology, then we would call this a judgmental model. If 
you obtain your estimate of c from small-scale case studies of controlled populations, we might 
call this an engineering model. If you have an historical time-series of data on population, for the 
state or nation whose population you are forecasting, and if you estimate c from that time-series 
in a rigorous way, then we would call this an econometric model. In principle, then, there is no 
such thing as an econometric model; there are only econometric methods for estimating 
parameters such as “c” in general models. A pure econometric model is simply a general model, 
in which all of the parameters have been estimated by econometric methods, based on empirical 
data. 

Econometric methods were initially developed for use in economic forecasting. However, 
there is nothing in our discussion which will restrict their use to economics. Econometric 
methods have often been applied directly to forecasting social and political systems (Werbos, 
1974; Werbos, 1977; Werbos and Titus, 1978). Human minds and computers which truly imitate 
human minds must also have a built-in capability to learn cause-and-effect relations by somehow 
analyzing a time-series of sensory experience; we have shown how econometric methods may be 
embodied directly into the wiring of such systems (Werbos, 1987a; Werbos, 1986a). 

In general, people who use historical data or trends or track records to help them make 
decisions are making inferences about cause and effect. Like it or not, they are engaged in a 
form of statistical inference. Even if they say they are merely testing an hypothesis, or a relation, 
and not formulating a model, the fact is that they m estimating a model; the potential for error 
and uncertainty is merely less visible and harder to correct when they deny this fact. (Of course, 
some managers would prefer to hide such uncertainties from their superiors. If a superior really 
cannot understand econometrics, there is an art to using econometrics properly and m 
translating the results back into English, using graphics and discussions of percentage growth rates 
and historical analogues.) 

4. HOW CAN AN ECONOMETRIC MODEL BE BUILT? 

The first stage in building a model is to review the available data and concepts, as we will 
discuss further in the section on “Practice”. 

Next one must choose a computer package to work in, to implement the econometric 
methods. EIA generally prefers to use the SAS package (SAS, 1985a; SAS, 1985b) on its large 
computer, because of its superior flexibility and data-handling capabilities; however, Troll (1981) 
has also been used, because of the sophisticated econometric tools it contains (some developed 
under contract to us). On microcomputers, SAS is also available, but is relatively expensive at 
present; Lotus is widely used, and new packages from Wharton Econometric Forecasting 
Associates (of Philadelphia) and elsewhere may be used more in the future. We use SAS to 
estimate parameters such as “c” in equation 1, and to evaluate the overall degree of fit of 
equations such as 1 and alternatives to 1; then, when all the equations are estimated and 
selected, we usually program the forecasting itself in FORTRAN. Actually, SAS and Troll have 
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the capability to simulate the model -- to generate forecasts - as well; we have used that 
capability only rarely, because our models have usually been too big to fit into those systems. 

The next step is simply to use the package chosen. To estimate equation 1, for example, 
you would first locate a time-series of data on the variable POP, and load it into a SAS dataset 
using the SAS command DATA (SAS, 1985a). Then you would use a SAS command such as 
GLM (SAS, 1985b) to estimate “c” in equation 1, and to evaluate the error which this equation 
would have led to in forecasting the past. You could also use SAS to estimate alternative 
equations, and their errors, and you could select between equations based on their error. At that 
point, you have the equation, and you need only code it into a forecasting program. 

The most common way to estimate a complex model, in econometrics, is to use “regression” 
or “least squares.” Using regression, we estimate each equation of the model separately, one 
after another. For each equation, the regression command finds those values for the parameters 
which lead to the smallest possible error over the historical period you have data for. “Error” 
is defined as the sum over all observations of the square of (actual minus predicted). Regression 
also reports what the error is for the equation as estimated. 

In actuality, most computer packages have two main regression commands available -- a 
linear regression command and a nonlinear regression command. (See Wonnacott and Wonnacott, 
1977, Chapters 13 and 15, for more explanation.) To avoid complications, most economists use 
linear models such as the following two-equation model: 

Y(t) = a -Y(t-1) + bl -X,(t) + . . . + bn -X,(t) + c (2a) 

z(t) = cl *Y(t) + c2 *Y(t-1) (2b) 

In equation 2a, Y(t) is the “dependent variable” -- the variable being predicted in that equation. 
Y(t-1) and X,(t) through X,(t) are the independent variables of that equation. 

The term “c” is the “constant term” or “intercept;” note that equation 2b has no intercept. 
The parameters of the model are the constants a, bl through bn, c, cl and c2. The “endogenous 
variables” -- Y and Z -- are the variables being predicted somewhere in the model. Y(t-1) is a 
“lagged endogenous variable” (because Y is endogenous and because t-l represents a “lagged” 
value, a previous year’s value.) X, through X, are “exogenous” because they are not endogenous. 

This example is linear, because the dependent variable in every equation is predicted as a 
linear combination (“weighted sum”) of the independent variables, plus an optional constant term. 
To estimate each equation in SAS, you need only use the linear regression command (GLM or 
something similar) once for each equation. You can be sure of quick results, and you do not 
have to give an initial guess for the values of the parameters. Each time, you only have to tell 
SAS the name of the dependent variable and the names of the independent variables. You also 
have to tell SAS whether you want a constant term in the equation, and whether you want SAS 
to print out all the diagnostic statistics anyone has ever thought of. 

At first glance, equation 2a may appear somewhat abstract and unrealistic. Economic 
relations in the real world are often more complex. For example, even in a simple model of fuel 
oil demand (QOIL) as a function of residual oil prices one would not want to use the simple 
equation: 

QOIL = a -PRESID + b .PDIST + c -DISTSHARE (3) 

If you used this equation, by regressing QOIL on PRESID, PDIST, and DISTSHARE, you would 
expect to find that “a” and 93’ are estimated as negative numbers, expressing the idea that higher 
prices lead to lower demand. However, with “a” and ‘b” negative, there will always exist a price 
so large that demand becomes negative, which is an absurd forecast. Likewise, the effect of 



Demand forecasting methodologies 217 

changes in PDIST should depend on how large the distillate share is; PDIST and DISTSHARE 
have an “interaction effect.” For these reasons, a better specification would be: 

LOG(QOIL) = a + baLOG(POIL) (4a) 

POIL = PDIST ~DISTSHARE + (1 - DISTSHARE) -PRESID (4b) 

Equation 4a says that QOIL is a function of the weighted average price of fuel oil, POIL. It says 
that a given percentage change on POIL leads to a proportionate percentage change in QO& 
the factor of proportionality is just “b”, the price elasticity of demand. (To see this, differentiate 
4a or see Wonnacott and Womracott, 1977, Section 15-3). Equation 4a can be estimated easily 
in SAS by first using a DATA step to calculate: 

LOGQOIL = LOG(QOIL) 

LOGPOIL = LOG(PDIST -DISTSHARE + (1 - DISTSHARE) -PRESID, 

and then calling the regression command and asking it to regress LOGQOIL on LOGPOIL. 
Equation 4b contains no parameters at all to estimate; it is called an “accounting identity” (as 
opposed to the “behavioral equation” 4a). Equation 4a is linear in the parameters a and b, but 
not in the original variables QOIL and POIL Most econometric models are linear in the 
parameters but not in the original variables. Most of them also use tricks like the above to 
express economic relationships. 

If equation 4a had actually been nonlinear in its parameters, then nonlinear regression could 
have been used. Nonlinear regression requires a lot more care and patience, depending on what 
computer package you use, but there is usually a way to make it work. Likewise, there are 
alternatives to regression which would require you to estimate the entire model as a system, 
together; to use these alternatives, you would have to type both equations into a single model 
file or command block. 

Aside form their linearity, the models in equations 2 and equations 4 have two other 
simplifying features. First, they are “recursive“. In economics, this means that they are really just 
simple formulas; you can calculate a forecast by plugging in values for the exogenous variables 
and lagged endogenous variables, and using the equations one after another like a formula or a 
recipe. Most econometric models are actually simultaneous, as in the following example: 

LOG(SUPPLY) = a + b -LOG(GNP) + c -LOG(PRICE) (5a) 

LOG(DEMAND) = d + e -LOG(GNP) + f .LOG(PRICE) (5b) 

SUPPLY = DEMAND, 

where GNP is exogenous and where the model is used to forecast a PRICE that makes SUPPLY 
and DEMAND balance. to make a forecast, you cannot jus plug in GNP and PRICE on the 
right-hand side; you cannot, because you don’t yet know that PRICE is. You have to solve this 
system of equations, as a set of three simultaneous equations in three unknowns. In fact, if you 
insert these three equations into Troll (1981), Troll will take care of this problem and give you 
a set of forecast which solve the equations. 

Notice that it would be very dangerous to estimate a system like this by ordinary regression. 
If SUPPLY did equal SEMAND in all historical years, then you would get exactly the same set 
of parameters (d,e,f) when you use regression on 5b as you did (a,b,c) when estimating 5a; you 
would not really have two different equations. Even if the equations were very slightly different, 
you could not rely on what you get when you subtract one from the other (as required in solving 
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them). In these kinds of situations, it is important to estimate the model as a system (Wonnacott 
and Wonnacott, 1977, chapter 22). 

These situations arise in energy modeling, but the problem is usually not significant, mostly 
because we deal with dispersed system involving lagged responses. The systems estimation 
methods often lead to worse results, because e of their complexity, because the use of 
instrumental variables introduces random noise, and because of problems with “robustness” 
(discussed below). On the other hand, the simultaneity problem can be serious with fuels like 
LPG and other minor forms of oil, whose markets are very limited and respond quickly to price; 
our goal, in those cases, is to look for something like a “reduced form” model for each such fuel 
(e.g. in equations 5 first solve, to get log(Price)=g+h .LOG(GNP), and then estimate g and h). 

Even the model in equations 5 still has one further simplification: all of the variables are 
assumed to be available for all historical years in you data base. (SAS will overlook a few missing 
values here and there, however.) It is possible to build econometric models which do not have 
this property, because they include “time-varying parameters” or “hidden variables;” however, this 
is not common at present, and the tools to estimate such models are hard to come by. One can 
work around this problem, to some degree; for example, if the population growth rate, “c” in 
equation 1, varies over time as a function of women’s education (WED), then one might 
postulate that c=a+b *WED, and rewrite equation 1 as: 

POP(t+ 1) = a-POP(t) + b.WED(t) *POP(t) (6) 

Finally, for completeness, it should be emphasized that variables in an econometric model 
are not always simple time-series. Many authors will perform regressions on a data base of 
different observations at the same time, such as data from different states, and then use the 
results to predict the future. This is called forecasting based on cross-sectional analysis, and the 
results are usually unreliable at best, both in the short-term and in the long-term. For example, 
one of the first econometric equations ever studied was the classical consumption function: 

C(t) = a+b.Y(t) (7) 

where C is national consumption and Y is national income. In cross-sectional analysis, “a” was 
significantly larger than zero, and there seemed to be a large saturation effect in consumer 
spending But in time-series, “a” was quite close to zero. For purposes of forecasting changes over 
time, the time-series version is the right one to use. In general, variations across space tend to 
be different from variations across time, and we have seen this lead to problems over and over 
again. (For example, see the discussion of “locational bias” in Werbos, 1983, Chapter 4.) 

An ideal model should be able to account for variations over time and space both; however, 
without data from different times, it would be foolish to assume that one has an ideal model. 
Still, one can collect “pooled” data, which vary over time and space both, as we have often done 
(Werbos and Titus, 1978; Werbos, 1983). To use such data in packages like SAS can be slightly 
tricky, when you estimate a model containing lagged variables. In arranging our data (Werbos, 
1983), we found it necessary to include a dummy year, 1973, to precede the years for which we 
had pooled data (1974-1981), and we inserted the SAS missing value code for all 1973 data. 
Observations 1 through 8 represented 1973 through 1981 in the first state, while 9 through 16 
represented the second state, and so on. (Without this, the SAS “LAG” function would not have 
given us valid time lags.) 

5. FIVE FUNDAMENTAL PRESCRIPTIONS 

This section will provide a kind of back-door introduction to the theory underlying 
econometrics, by trying to explain five prescriptions for avoiding gross errors which are common 
even among professionalists. 
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219 

o Don’t expect a free lunch when choosing specifications 

0 Pay conscious attention to prior information 

o Don’t expect to draw conclusions without adequate data 

o Check the historical track record of your model (This may be the most important) 

Pav Attention to Uncertainty 

None of the models above -- from equation 1 to equation 7-- say anything about uncertainty. 
They are all forecasting models, recipes for making base case projections. Even though there are 
many different schools of thought in statistics and econometrics, they all agree that uncertainty 
needs to be addressed explicitly as a central part of the analysis. 

Broadly speaking, there are two major schools of thought here: 

o The purist school, which has done an admirable job of simplifying and unifying our 
understanding of statistical methods, and devising new and better and more elegant methods. 

o The utilitarian school, which has made live complicated and tricky all over again, by focusing 
on the intractable problems which occur in real-world forecasting. (This is quite different 
from the quick and dirty school, which pays more attention to deadlines than to quality 
problems either in theory or in the real world.) 

Both schools have a great deal to contribute, but we incline towards the utilitarian school. 

From the purist’s point of view, regression simply cannot estimate equation 1 as it stands, 
as if it were a meaningful model of population growth. If you regress POP(t+l) on POP(t) with 
no constant term, then the model you are really estimating is: 

POP(t+1) = c-POP(t) + e(t) (8) 

where e(t) represents a random disturbance, governed (generated) by a normal probability 
distribution. We sometimes call e(t) “error,” but statisticians like to think of it as something out 
there, in the real world, rather than an “error in the sense of “mistake.“. Often we call e(t) “white 
noise,” to make this view explicit. Equation 8 is a “stochastic model,” because the assumptions 
about the random disturbance have been made explicit as an integral part of the model. 

When we look at the noise term explicitly, we can see immediately that there is something 
implausible about the model in equation 8. Equation 8 assumes that the noise comes from the 
same probability distribution in all years, implying that we should expect the same general size 
range for the noise in all years. If population grows by a factor of 10 in the period under study, 
this could be a very poor assumption about the noise; as a practical matter, this assumption 
would lead to an estimate of “c” dominated by the experience of the last few years, disregarding 
the earlier data. It is more plausible to expect that the noise will represent a certain percentaee 
of the population, and that its size range will grow in proportion to the population, as in the 
model: 

POP(t+1) = c -POP(t) + e(t) -POP(t) 
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In this equation, the overall noise terms - e(t) q POP(t) - grows in size in proportion to 
population; in other words, e(t) -- which now represents noise as a fra tion of the oooulation -- c 
still comes from a fixed probability distribution (imposing a fixed size range). 

Equation 9 cannot be estimated directly in regression. However, now that we have a 
complete stochastic mode, it is legitimate to divide both sides by POP(t), as we could with any 
algebraic equation; this yields the equivalent model: 

POP(t+l)/POP(t) = c + e(t) (10) 

This can be estimated by regressing POP(t+l)/POP(t) on 89 independent variables plus a 
constant terms; in practice, this is just a matter of estimating the average value (mean) of 
POP(t+l)/POP(t). It is more conventional, however, to use a similar but slightly more plausible 
alternative to equation 9: 

LOG(POP(t+l)) = c’ +LOG(POP(t)) + e(t) (11) 

which is equivalent to: 

LOG(POP(t+ l))/POP(t)) = c’ + e(t) (12) 

More generally, equations like equation 8 -- which assume a constant size range for error 
when a constant size range is not plausible or does not fit the data - are said to have a problem 
with “heteroscedasticity.” This is a common problem, and algebraic transformations (like the 
above) are commonly used to overcome it. Sometimes, however, algebraic transformations are 
not a workable solution. For example, when the dependent variable is LOG(QOIuQGAS), as 
in the standard “logit” specification for fuel choice, there is a heteroscedasticity problem which 
can only be resolved by resorting to med rearession> which exr>licitlv treats the size range of 
e(t) as a function of other variables; the theory is given in Pindyck and Rubinfeld (1976), and 
applied in the PURHAPS model (Werbos, 1983, p.1264). (This correction would have been 
desirable, but far less necessary, if we had worked with a simple time-series showing no 
order-of-magnitude variations in fuel shares.) 

Besides heteroscedasticity, there are other possible problems with the theory that e(t) is 
random and normal across time. For example, e(t) may be correlated with its previous value, 
e(t-1). When the standard Durbin-Watson test (available in SAS and other packages) gives a 
score much different from 2.0, it is conventional to use a different regression command -- 
regression with an autocorrelation correction -- to estimate the model under the assumption that 
e(t)=r -e(t+l)+a(t), where a(t) is random; if r -- the “autocorrelation parameter” -- is not 
significantly different from zero, one can go back to using conventional regression. 

Recently, many statisticians have begun to recommend a more careful study of the model 
residuals, e(t), to see if they fit more complex “Box-Jenkins” models (Box and Jenkins, 1970). In 
theory, certain classes of Box-Jenkins models can represent the idea that forecast errors result 
from a combination of noise in the real world and noise in m what is happening in the 
real world. These kinds of models can reduce forecasting errors, but tests done for real-world 
multiple-equation models (Werbos, 1974; Werbos and Titus, 1978) suggest that it would be better 
to focus on the long-range track record of a model, as we will descni below. (Engineers have 
another way of estimating such stochastic models, but their formulation, unlike the statisticians’ 
formulation, contains excess parameters and can almost never be uniquely estimated.) 

All of these recommendations are based on the following fundamental theorem, an 
application of Bayes’ Law, which underlies all inference from empirical data (in statistics or in 
other fields): 

Pr(Model 1 Data) = Pr(Data 1 Model - Pr(Model)/Pr(Data) (13) 
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This states that the probability of a model being true, after we have observed a certain history 
of data, is the product of three terms. One of these terms -- Pr(Data) -- is the same for all 
models, and has no effect on our relative choice between models. Another - Pr(Data/hIodel) -- 
refers to the probability that we would have observed what we did in the data if the model were 
true. For stochastic models, like equations 8 through 12, this term can be calculated directly by 
calculating what e(t) would be in all the years of data (assuming a given estimate of the 
parameters as part of the “Model), and then using the normal probability distribution to calculate 
the associated probabilities. This term is called the likelihood function; it is a function of the 
parameter estimate, the model, and the data. The remaining term - Pr(Mode1) - represents the 
probability that a model would be true, a miori. before any statistical data are examined. 

Most purists agree that it would be unscientific to account for Pr(Mode1) explicitly in 
statistical estimation. They argue that all possible models (and all possible sets of parameter 
estimates) should be treated as equally probable a priori. They argue that modelers should always 
estimate these models by finding parameter values which maximize the likelihood function. Most 
existing statistical packages do in fact maximize likelihood exactly (as in regression) or 
approximately (as in iterative methods which imitate the full information maximum likelihood 
command for estimating systems of equations). 

Bayesian statisticians have argued that economists have important information, prior to 
statistical analysis, about the relative probability of different models and parameter values. We 
would agree, but would argue that the economists’ information is very complex; it would be 
better to use the computer to produce a comdete, graphic description of the likelihood functions 
__ the information found in the data - and then count on the human being to account for his 
prior information after the statistical analysis is complete. This puts a heavy burden on the 
person doing the statistics, since it is not enough to just print our estimates of one final equation; 
it is essential to consider the range of uncertainty for all the parameter estimates, and to consider 
different ways of looking at the data. 

Utilitarians (like us) go further, and argue that simple statistical models are never “true” in 
any absolute sense. They argue that your choice of estimation method should depend on the 
aonlication of the estimates or forecasts. The overemphasis on definite, base case forecasts is a 
product of naive decision-makers, who have yet to understand well-known procedures for coping 
more honestly with uncertainty (Brown et al., 1974). Indeed, one may argue (Werbos, 1979) that 
probabilities, rather than expected outcomes, should be the main focus of long-range planning 
anyway; however, the efficient implementation of this principle involves many complexities 
(Werbos, 1987a; Werbos, 1986a). The utilitarian Raiffa has found that elite Americans tend to 
understate ranges of uncertainty by a factor of 3 or so, perhaps because they do not account for 
the limitations of the assumptions they use. This suggests a need for great care in using 
mathematical models built on expert judgement rather than empirical fact. Raiffa’s followers, such 
as Rex Brown, have developed many techniques to train, improve and organize probability 
assessment by human judgement; nevertheless, the problem of bias remains difftcult and 
fundamental. It is important that modelers help decision-makers think more clearly about 
alternative scenarios, rather than aggravate these biases. Even though it is very difficult to 
estimate probabilities objectively -- when technological and political forces are primary sources 
of uncertainty -- it should be possible to convey the nature of uncertainty in a useful way, and 
explain alternative viewpoints. 

Utilitarians also tend to look for estimation methods which are likely to give more accurate 
forecasts even when it is hopeless to formulate a model which is “true” in an absolute sense; such 
methods are called “robust estimation methods,” The problem of heteroscedasticity leads to a 
simple (though unconventional) example of robust estimation. Consider the simple model: 

ENERGY-USE(s,t) = c SPRODUCIION(s,t) + e(s,t) (14) 
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where energy use is projected by state (s) and by the year (t). A purist would tell us to replace 
e(s,t) by e(s,t) -PRODUCTION(s,t), and they divide by PRODUCTION(s,t) to get a regression 
equation. If we do this, we are guaranteed that the percenw error in predicting energy use will 
average out to zero (i.e., positive and negative errors will balance out). If we had kept equation 
14 as is, we would be guaranteed that the actual error in predicting energy use will average to 
zero; in other words, greater attention would be paid to bigger states. If the goal is to predict 
&@l energy use, then the latter is preferable; it would lead to more uncertainty in our estimate 
of c, in theory, but it would also guarantee that we are estimating that version of c which is right 
for our application. If we admit that equation 14 is only a simplification, then we have to accept 
that the version of c which minimizes one error measure will be different from the version which 
minimizes another. In technical terms, there is a tradeoff here between statistical efficiency (i.e., 
random uncertainty in our estimate of c) and statistical consistency (estimating the right c). 
Tradeoffs of this sort are quite common, and often require some sort of ad hoc compromise. 

Don’t Exoect a Free Lunch When Choosine Soecifications 

Choosing the equations of a model is a difficult process, whether the model is econometric, 
judgmental, or engineering-based. The process is essentially the same for all three, except that 
econometricians normally restrict themselves to using variables for which they have data. 
Econometricians often start from a general theoretical model and translate it into its implications 
for observable variables; there is no need to represent the entire mechanism by which variable 
A affects variable B if the ultimate impact is represented correctly. Also, when doing 
econometrics, you usually consider several alternatives, and use empirical results to decide which 
version to select in the end. In fact, you typically try out new alternatives after you have studied 
the results and looked for explanations of what is going on. 

There are some analysts who offer you a hope of forecasting without resort to this difficult 
process. They often suggest that “simple time-series analysis” or “simple econometrics” can be an 
alternative to the labor and uncertainty which comes with explicit models. In actuality, this is an 
illusion (though the explicit models of econometrics are simpler than most engineering models). 
For example, “simple Box-Jenkins analysis” (Box and Jenkins, 1970) offers more comttlicated 
models of noise than regression assumes; it essentially offers yet another complex correction to 
explicit models (Werbos, 1974). The vendors of “simple” analysis typically apply statistical methods 
to a simple forecasting model, such as: 

Y(t+1) = a + b *Y(t), (15) 

where Y is the variable you are trying to forecast. Admittedly, this model is sometimes 
worthwhile. Admittedly, simple models in general tend to be more robust than complex models, 
ceteris Daribus. Some salesmen have suggested that this approach can be applied to electricity 
demand, to save utility planners from the pain of using models which require forecasts of local 
industrial growth, which are fraught with uncertainty. However, this economic uncertainty is real, 
and unavoidable; a forecaster can hide the uncertainty from his clients (which does them a 
disservice), but the economic uncertainties are there and d affect electricity demand. If 
economic growth is known to be central to electricity demand, then it should be reflected in the 
model. In general, the choice of a model should be based on a careful analysis of what is known 
about the variable being modeled, and what is shown in the data; there is no magical way to 
escape this process. 

Forecasting problems in private industry are sometimes so complex that analysts cannot 
devise an adequate specification, even when data are plentiful. In such situations, a full-scale 
“neuron network” system may be useful. The best neuron network systems (Werbos, 1987a; 
Werbos, 1988; Werbos, 1989) are essentially equivalent to a massive automated search through 
all possible specifications -- linear and nonlinear -- to find that specification which minimizes 
some combination of forecast error and model complexity. The prior knowledge of the analyst 
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is not used at all (except in the construction of the data base.) At EIA, we have yet to encounter 
such situations. 

In one recent situation (IFS, 1986), we had access to a massive data base on fuel-switching 
in which we didn’t know what to expect. Elaborate cross-tabulations in SAS were very useful in 
helping us form hypotheses, and then formulate and estimate econometric models. 

All of these examples emphasize that a modeler should take the time to devise specifications 
carefully. Some students are willing to do this, but expect to be given exact rules on what kinds 
of specifications to use. Once again, they are looking for a kind of fee lunch, and they can find 
a few misleading papers in journals which give them the rules they are looking for. In actuality, 
the choice of specification should be based on a translation of your prior knowledge (Pr(Model) 
in equation 13) into mathematical equations; there is no set rule for what the equations must 
look like, but there are guidelines for how to do the translation. A good econometrician should 
have some familiarity with the guidelines for translation (Brown et al., 1974; Forrester, l%l) 
which have been developed for models in general. Econometricians have developed further 
guidelines, but they are too numerous to cover here; still, please do consider what happens to 
your model when the independent variables take on extreme values, and do consider whether the 
forecasts would change the way you want them to in response to a small change in the inputs 
(as a function of other inputs). Also consider whether the specification really could represent 
alternative points of view (e.g. large and small price elasticities) through different parameter 
estimates. 

This notion of translation between human knowledge and mathematics is so vital that it 
merits several examples. 

First of all, translation from English into mathematics may be compared with translation 
from Chinese into English. In Chinese, one can make statements like “man see horse.” In English, 
this could mean that “a man saw a horse”, or that “every man sees a horse sometime in his life”, 
or that “those three men are looking at a horse”, or that “this man will see a lot of horses”, etc. 
In order to translate from Chinese into English, one has to decide what tense to give the verb 
“see”, what number or article to put before the word “man”, etc. A good translator will make 
these decisions based on a careful understandino of the context in which the statement appears. 
Even then, several interpretations may still make sense; in that case, the translator may go back 
to the author of the Chinese statement, and ask which alternative would be used. Note that the 
translator can state the alternatives to someone who only speaks Chinese; the Chinese language 
permits ambiguity, but does not require it. 

An irresponsible translator would not try to understand the Chinese original; instead, he 
would follow a mechanical rule, such as assuming the present tense in every sentence which does 
not explicitly refer to the future or the past. Irresponsible translators can easily produce 
paragraphs in English which look downright silly (as in the instruction manuals which come with 
certain imported products). In translating from English into mathematics, one can produce silly 
mathematics just as easily, if one is not careful about the role of time in the equations. 

Second, consider a question which the Energy Modeling Forum brought up in 1985; “How 
much fuel-switching has there been between oil and gas in response to prices in manufacturing? 
Two modelers came up with completely different answers to this English-language question, based 
on the fame set of data (Annual Survey of Manufactures) at the State level from 1974 to 1981. 
One modeler (David Reister of Oak Ridge) translated the English-language question as follows: 
“In any given year, was the market share of natural gas in manufacturing as a whole much 
greater in those States where the gas price was a smaller fraction of the oil price?” The other 
(myself) translated it as: “In any given industry, was the change in market share from one year 
to the next much greater in those States and years where the change in the price ratio was also 
great?’ These are two different questions, and it is not surprising that they yield different 
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answers. At EIA, we have tested both kinds of specifications, and were not surprised that the 
latter type led to much smaller forecasting errors. 

Translation back from the statistics into intuitive terms is just as important. For example, a 
few years ago we reviewed a major paper on new car Miles per gallon (mpg), which developed 
a model which predicted that a doubling in gasoline prices would double mpg in the future. 
Working through their vehicle attribute equation, we discovered that this forecast depended on 
the assumption that new cars would be eight feet tall or eight feet long in order to get higher 

mpg. 

Pav Conscious Attention to Prior Information 

Often forecasts try to provide a “most likely” view of the future, based on all of the 
information available. Historical information is only part of that information. Expert judgement, 
private sector plans, and engineering information are also part of that information. In an ideal 
world, we should not have to choose between econometric forecasts versus engineering forecasts, 
and so on; we should develop forecasts which have the highest probability of coming true, 
conditional upon all three kinds of information. In an econometric model, this can be 
approximated by choosing specifications and altering parameters, where necessary, to reflect such 
information. 

This kind of adjustment is a tricky process. There is a risk of confusing the final user, who 
may not be able to tell what comes from historical trends and what comes from adjustment. Also, 
when adjustments are made on the basis of judgments, political biases and wishful thinking easily 
enter in, and cause further confusion. Adjustments based on population wisdom which in turn 
depends on past history may represent a “double-counting” of history or far worse. Therefore, 
there is much value in having some forecasters -- such as academics -- produce pure econometric 
models and leave the discussion of other factors to their verbal discussion sections. 

The Energy Modeling Forum (Werbos, 1987b) has given us some examples of how this kind 
of adjustment can be done and explained to the reader. For example, if an historical trend 
(reported, say, as c-year in an equation to predict energy intensity) can be clearly explained as 
the result of using a single technology throughout the historical period, and if we are quite sure 
that a radically different technology will come on and dominate the forecast period, then an 
econometric model should be adjusted to reflect our best knowledge of the new technology. 
Conversely, if new technologies are expected in the future, but are numerous and hard to predict 
exactly, and if there were also new technologies coming on line in the historical period, one is 
better off trusting the econometric model. 

Don’t Fxoect to Draw Conclusions Without Adeauate Data 

Econometric models, when estimated, make a statement about cause and effect relations. For 
example, in equation 6 above, if ‘b” were estimated as a negative number, this would say that 
increases in women;s education can reduce population growth by some amount. If b were 
estimated as a positive number, it would say the reverse. In either case, the estimated value may 
be a fluke, a coincidence due to a relative shortage of data. To see if this is likely, we need to 
examine the “standard error” of b, which is possibly the most important statistic printed out by 
standard regression programs. By and large (Wonnacott and Wonnacott, 1977), the true value of 
b will be equal to the estimated value plus or minus the standard error, in seventy percent of the 
cases; it will lie within two standard deviations in ninety-five percent of the cases. Old-fashioned 
statisticians would say that b “is not significantly different from zero” when the value b=O was 
between these confidence limits; however, it is better simply to report what the standard errors 
are, to make it clear to the reader how big b still mieht & (given the limitations of the data). 

Large standard errors may result from any of the following: 
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o Lack of data. (Having four times as many independent observations cuts the standard errors 
in half. However, with pooled data, the observations -- e.g., from neighboring states -- may 
not be entirely independent, and the true standard errors may be larger than the reported 
ones.) 

o Lack of an adequate specification. (Cutting historical error in half cuts standard errors in 
half.) 

o Correlations between the independent variables, or “multicollinearity.” (This represents a 
qualitative lack of data -- a lack of data on situations where the independent values have 
different values.) 

Many social scientists do not appear to realize that standard errors really do account for the 
effects of multicollinearity. When two independent variables do correlate very strongly with each 
other, there is no magic procedure to solve the problem; an honest statistical analysis will simply 
report that there is not enough data available to decide which variable has an impact on the 
dependent variable. When there is strong multicollinearity (as hinted at by large standard errors), 
but no really strong correlation between two variables, one should suspect three-way patterns of 
correlation; to locate these kinds of patterns, one can perform an eigenvector analysis of the 
correlation matrix, and look for the eigenvector whose eigenvalue is closest to zero. (Belsley, Kuh 
and Welsch have discussed these kinds of diagnostics.) When there are many variables involved, 
and when forecasts will be made for situations where the independent variables continue to 
correlate with each other, methods like “ridge regression” may be better than ordinary regression 
when multicollinearity is suspected (Dempster et al., 1977). When a model must be estimated, 
but the data are inadequate, one must generally fall back on prior information (and flag the 
resulting uncertainty). 

Check the Historical Track Record Of Your Model 

There are many economists who test out alternative specifications, and publish whatever gets 
the highest “R-squared” score as printed out by SAS. This cf,en leads to disaster, because 
R-squared scores are not comparable between equations which represent the dependent variable 
in different ways; for example, an equation which predicts energy per unit of outout will often 
be more accurate than an equation which simply predicts energy, but will often have a lower 
R-squared score (because the dependent variable has less variance). The situation is even worse 
with complex statistical methods as used in fields like cost function estimation; there, the 
“adjusted R squares” are often aggregate constructs whose relation to forecast error may be quite 
tenuous. 

As a first step, one can try to compare mean square error (MSE) across models, because 
it is reported by SAS and is more often comparable between equations. As a second step, one 
can simply use the alternative equations to predict the same basic variable (e.g., energy 
consumption), and calculate the average error; this can be done in SAS by using the “OUTPUT” 
option to output the regression predictions to a file, and by using the numerous SAS utilities to 
calculate the implied predictions of energy and their errors. 

In practice, there is no substitute for trying to understand what is in the data, as directly as 
possible. Predictions and actual values should be plotted against time, where possible, and the 
differences explained. This provides a basis for going back and changing the model (or better 
understanding its weaknesses). Plots like these are important both in estimating a model and in 
explaining the model to others. Tukey of Princeton has written a book on moratorv Data 
Analysis, describing additional techniques for better understanding the residuals graphically. 

In the past, some econometricians have routinely used “dummy variables” (1 in some years 
and 0 in others) or other procedures to throw out “outliers,” observations which are hard to 
explain using their forecasting model. (Some statisticians have also recommended maximizing the 



226 PAUL J. WERJJOS 

1.5 power of error instead of the square error, which has much the same effect.) More recent 
authors, like Belsley, Kuh and Welsch, have stressed to need to study the outliers (and other 
“influential observations”) rather than simply throw them out, because they may be crucial to 
what your model is trying to forecast and may be important as a guide to a better model. For 
example, the oil shortages of 1974 and 1979 were “outliers.” but a model which ignores them is 
a poor guide to reality. Again, the hard-to-explain observations should be obvious in a plot of 
predictions and actuals, but more sophisticated tools exist for identifying them. 

In practice, we have also found that there is no substitute for performing a “dynamic 
simulation” test of a model, if you are considering the use of a model which contains a lagged 
endogenous variable. This is quite different from evaluating the “predicted values” which come 
out of a standard regression command. For example, if you were estimating equation 1 over the 
period from 1%7 to 1985, the “predicted population” for 1980 would be calculated as “c” 
multiplied by the actual population in 1979, in a regression package. In dynamic simulation, the 
prediction for 1980 is calculated as “c” multiplied by the prediction for 1979, which in turn is 
calculated as “c” times the prediction for 1978, and so on. The regression test would be 
appropriate, in theory, if predictions one Year ahead were all that you care about. The dynamic 
simulation test would be better if you planned to forecast further out into the future, eif the 
real concern for policy is the eventual result several years into the future. 

A purist would argue very strongly that the regression test is adequate, if one has faith in 
the truth of one’s model. He would argue that those lacking in faith should look for better 
models. A utilitarian would argue that &l models are oversimplifications, and that faith without 
tests is no way to do modeling. Experience has shown that cumulative error tends to be quite 
important (or even overwhelming) in models containing lagged endogenous variables, regardless 
of their theoretical virtues. More to the point, it has shown that such errors can be avoided 
either by specifications without lagged endogenous variables (if such can be found, with otherwise 
comparable MSE scores) or by a new form of robust estimation. 

An example of the former comes from our PURHAPS model: by filtering the effect of 
energy prices over time, we can represent the notion of capital-embodied price responses just as 
effectively as do recent academic models based on lagged dependent variables (previous period 
energy intensity); however, our older version may be more robust. On the other hand, there are 
many models (especially models which assess changes induced by policy) which have much higher 
error levels and much crazier parameter estimates when lagged endogenous variables are not 
included. 

To estimate models with lagged endogenous variables, several authors -- including Larry 
Klein of Wharton, and myself (Werbos, 1974) independently -- suggested several years ago that 
models could be estimated by directly picking parameters so as to minimize errors in dvnamic 
simulatia. This could be implemented in practice by doing the dynamic simulations on a PC 
package like Lotus, and adjusting the parameters by hand to minimize the error in dynamic 
simulation. This form of robust estimation may be somewhat extreme; however, we have found 
(Werbos and Titus, 1978; and Chapter 4 of Werbos, 1983) that it is possible to compromise 
between this approach and regression, and still allow for a noise term in the model (allowing for 
uncertainty). Dynamic robust estimation methods of this sort have cut errors in half in a number 
of applications (where lagged endogenous variables were important), and have even done better 
in short-term forecasting (Werbos, 1974; Werbos and Titus, 1978). The compromise method looks 
similar to “exponential smoothing” methods which are essentially equivalent to the Box-Jenkins 
methods discussed above; however, they weight the square error in different ways, and this 
difference in weighing will probably be the key feature even of more advanced methods along 
the same lines. 

When calculating error for a system of equations, one may simply use a weighted sum of the 
error for different variables (including “filtered” variables). A utilitarian would argue strongly for 
doing this, and for weighing each dependent variable’s error according to the importance of that 
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variable in a larger context; he would not use the classic form of full information likelihood, 
which is very volatile and subject to singularity problems. 

6. MODEL DEVELOPMENT IN PRACTICE 

Econometric methods are used for many purposes in government and industry. Many people 
use them for causal analysis, their original purpose as described above. 

In my division of the Energy Information Administration (EIA), we use these methods to 
build up models of energy demand by sector in the United States economy. These models are 
then used as part of a larger modeling system (IFFS) which currently projects energy supply, 
demand, and prices by year from 1985 to 1995. The base case projections are published in the 
Annual Enerav Outlook, along with a few sensitivity cases. IFFS is also used in a variety of 
special studies which come up every year; for example, it may be used to predict energy demand 
and supply with and without an oil import tax. EIA, like Wharton Econometric Forecasting 
Associates and many other forecasting organizations, maintains both an annual and quarterly 
forecasting model. The problems of publishing annual forecasts are similar in all such 
organizations, where quality is a concern, and will be discussed here in general terms. 

EIA has never used econometric models exclusively to generate forecasts. The goal is always 
to make forecasts which represent our best guess about the future, conditional upon various 
assumptions about the GNP or world oil prices. The GNP forecast is taken from an economic 
forecaster, such as Data resources, Inc. The world oil price is projected by another division of 
EIA, and alternative scenarios are developed to reflect the uncertainties in this projection. Our 
goal is to report the best guess we can, accounting for all sources of information, including 
historical data, engineering ada, the trade press, etc. In some sectors, we begin with econometric 
models, and in others we begin with engineering process models; in either case, we try to inform 
or calibrate the model, accounting for information from other sources. 

In developing a new model, one rarely starts from scratch. There is usually an existing 
model that was used in the previous year to forecast the same general concept. Generally 
speaking, we go through six stages (when we have the resources to do things correctly): 

o preliminary evaluation of the existing model(s) 

o detailed literature review 

o assessment of sources of uncertainty and how to reduce them 

o data acquisition, econometric analysis, and the like 

o coding and testing 

o model maintenance 

Preliminarv Evaluation 

The preliminary evaluation usually starts from the annual review of model forecasts which 
occurs as part of the annual forecasting cycle. Most reviewers have certain expectations about 
what the forecast should look like, based on a variety of sources. If a forecast is much different 
from these expectations, it is scrutinized further. (Unfortunately, it is more difficult to identify 
poor forecasts adjusted by brute force to match common expectations; however, when there are 
competing viewpoints represented in the process, based on deeply held professional or political 
orientations, any forecast may be different from what someone expects. It is common to be told 
within the same week, by different people, that a given elasticity is “absurdly high” and “absurdly 
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low" both.) “Industry” is widely cited in this process, but in a haphazard way and in different 
directions. 

Next, the analyst tries to explain why the forecast differs from expectations. Often, this 
explanation involves a plot of historical data, showing how the assumptions of the model perform 
compared with more popular assumptions. Simple plots and growth-rate calculations are vital to 
these explanations, which take up a major part of the analyst’s time; translations back and forth 
between English, statistics, and simple plots or tables are central to the process. 

A critical advantage of econometric methods at this point is that they do have an historical 
track record and a corresponding data base. Also, they may be simpler to understand and explain 
than the process models; they do not contain large files of assumptions which can carry hidden 
biases. Process models, on the other hand, can simply be adjusted to match the prior 
expectations. In the past, process models were more popular than they are now, because they 
could show large impacts from proposed regulations such as the Power-plant and Industrial Fuel 
Use Act. Models such as the Project Independence Evaluation System have come under great 
criticism for their optimism about oil imports, even though the authors worked hard to warn the 
reader in the document that the conditions for zero imports by 1985 (as requested by the 
policy-makers) would be very difficult to meet. 

If the explanation for a forecast does not have enough information behind it, or is not 
communicated properly, adjustments are made, and the issue will be studied in more detail after 
the current forecasts are produced. (Econometric models can be adjusted and rerun at least as 
easily as process models, but the adjustments tend to be more visible.) Likewise, questionable or 
uncertain forecasts are usually revisited even if they are not initiaily modified. At times, a detailed 
review from the Quality Assurance Division may spark a preliminary evaluation. If the 
preliminary review of a model then suggests a major problem, the problem goes to the top of 
the priority list. 

A great difficulty in this process is to sort out the difference between common expectations, 
political or other prejudices, and objective reality. When there are many layers of analysis 
between the raw data and the final publication, there is often a danger that the likelihood 
function will be multiplied manv times by the same prior probability distribution, therefore biasing 
the publication a bit too heavily towards the priors; there is no cure for this problem other than 
improved communication. 

In general, this process tends to be very instructive, but the details are rarely published; they 
tend to be viewed as too technical. 

Detailed Literature Review 

When there are major problems with an existing mode, the model may or may not be 
rewritten; that depends on the nature of the problem. The first step in reviewing the problem 
is a thorough review of alternative models and forecasts, and the information behind them. 
Uncertainty assessment is the next stage, but the literature review itself tries to find complete 
information for that next stage; thus, an informal uncertainty analysis is always being done. 

The literature review requires an evaluation of the statistical methods used in the existing 
models. It requires an effort to understand what is going on, substantively, in the sector being 
modeled. It requires a great deal of thought about how different phenomena, in the real world, 
would influence different kinds of statistical analysis or model in different ways. (Among the 
important phenomena are things which bias different data collection efforts.) It requires 
skepticism and a search for evidence when judging the statements of other modelers and of 
“substantive experts” both. It requires a search for possible biases, as with models which make 
strong assumptions about the costs of new technologies. It requires a search for widely opposing 
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paints of view. Above all, it requires an effort to understand why different forecasts of the same 
variables from different sources come out differently. 

After the literature review is largely complete, it is usually important to write a brief memo 
on the issues which have emerged, and to get feedback from other analysts. 

Uncertaintv Assessment 

The most critical stage in modeling, most often neglected, is the analysis of first-order 
uncertainty. First-order uncertainties are those things which explain most of the differences 
between the existing models (or potential models). It is sad how often government agencies have 
spent millions of dollars on detailed, highly precise models, without checking to be sure that the 
gross, first-order sources of error have been thoroughly understood. 

A key part of the first-order analysis is an approach to explaining the basic, first-order trends 
in past history. This includes a plan to resolve or reduce the uncertainties by statistical analysis 
or by the most reliable, empirically-based methods available. After the first-order uncertainty has 
been resolved, one can move on to the second-order uncertainty, and so on; at all times, no 
complexity needs to be added (on the conceptual level, anyway) unless it really helps reduce the 
basic uncertainties. 

With behavioral effects, such as price elasticities, energy demand, or fuel-switching 
sensitivities, the historical data provide a good way to estimate model parameters; econometric 
techniques are appropriate. With engineering variables, such as synfuels costs, we have supported 
statistical cost-calibration analysis by Ed Merrow at the RAND Corporation; early studies, taking 
engineering estimates at face value, had been too optimistic. The key question about technology 
is how much changes in its rate of development are likely to m trends or price responses 
in the future; often, these changes introduce uncertainties both on the upside and the downside, 
uncertainties which it is difficult to resolve realistically. Changes in markets are often at least as 
important as changes in technologies as such. 

In some cases, as with industry, the technological change has been so complex and so 
continuous (on average) that we use an econometric approach almost completely (except with 
petrochemicals). With transportation, a hybrid approach is used because of the unique role of 
new car miles per gallon (mpg). In the residential and commercial sectors, a key problem (not 
yet resolved) is to reconcile the conflicting studies which claim that conservation has mostly been 
due to lower thermometers (which won’t continue when prices stabilize) or due to structural 
improvements in new buildings (which will continue as housing stocks roll over). 

Uncertainty assessment cannot be done unless you know which forecast you are trying to 
evaluate. At EIA, our main concern is to get the national base-case forecasts right, and to get 
an accurate response to moderate price changes and economic growth. When new policy issues 
arise, a new assessment is needed for the new issue; at times, this may force the development 
of a new model. For example, a few years ago, when issues about contracts were considered 
fundamental to natural gas regulation issues, a new model was developed which specializes in 
that area; now, however, the empirical issues of base case accuracy are beginning to get more 
priority again. 

According to industry representatives at the Energy Modeling Forum, private corporations 
often have a special need for State-level forecasts or the like. Unexpected national trends 
probably invalidate the State-level forecasts as often as any other problem does; likewise, 
behavioral assumptions at the State level may be a problem. For this reason, insights developed 
in national analysis may be useful to private industry. However, the forecasts themselves have 
rarely been subject to uncertainty analysis at the State level, even when State-level data are 
available; therefore, they are not to be taken at face value. EIA does publish regional forecasts, 
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in special service reports; however, these forecasts are produced mainly because they are 
important to the accuracy of the national forecasts. The regional forecasts are checked, but are 
not evaluated in depth. 

The work at this stage should follow directly from the analysis of uncertainty. Econometric 
techniques are used at this stage more and more at EIA, in part because we have a comparative 
advantage in using data and in part because of cost considerations. (A thorough and conclusive 
analysis of even one technology is not cheap.) 

Looking at models as boxes, we often ask what kind of real knowledge or information is 
really “in” the box; our econometric models contain primary information about what can be 
learned from history, based on the analysis stage. Because of the adjustment process, they contain 
a bit of secondary information that we borrow from other sources about markets and 
technologies. Good process models contain primary information about technologies, developed 
at the analysis stage; however, they are adjusted to match historical reality, and may be secondary 
users of econometric information. Some hybrid models or global models tend to be secondary 
users of both kinds of information. 

Codinn and Testing 

This is straightforward conceptually; I wish it were so easy to do. At EIA, we code our 
models in FORTRAN, because even our econometric models are too complex for basic systems 
like Troll to handle at present. The statistical analysis is mostly done in SAS, because SAS is 
flexible and easy to use with complicated data bases; the DATA and PROC MATRIX 
components of SAS are especially powerful. 

h4odel Maintenance 

The uncertainty analysis and review described above continue for all models, even after they 
are established, on a regular cycle. 

General Observations 

After this exercise is completed, it often seems that the insights gained in modeling are more 
important to policy than are the forecasts themselves, if the job was done right. Good Bayesians 
know that the future is highly uncertain, and that any policy which is based on a definite 
exoectation of a “baseline future” is likely to be a poor policy. People at EIA and elsewhere vary 
greatly in their willingness to describe and explain the full range of uncertainties, as opposed to 
defending the base case or presenting a small number of conservative sensitivity cases in line with 
popular expectations. 

The steps needed to get good forecasts are also needed to refine one’s understanding of 
cause and effect, as I pointed out in the discussion of maximum likelihood theory above. When 
cause-and-effect analysis is done outside of the forecasting context, it is often based on quick, 
casual statistical models or analysis by eyeball; it often derives incorrect conclusions because it 
fails to account for issues we learn about in forecasting. Unexpected futures are also important 
to cause-and-effect analysis, as they are to forecasting. It is a continuous challenge for modelers 
to find ways to exchange such insights and make them fully available to decision-makers. 

Of EIA’s model based reports, the Short-Term Enerav Outlook is often cited as the most 
respected. These quarterly forecasts are based on simpler models, and are more completely 
econometric than the annual forecasts are; the model assumptions and historical track record 
have been communicated effectively in recent years, and there has been feedback from high 
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levels of the government. The communication is more difficult for the annual model, for at least 
three reasons: 

o the annual model contains major process-model components (mainly on the supply side) 

o the published year-ahead forecasts are not a good basis for testing track records, because 
they are calibrated to the quarterly forecasts. 

o the annual model makes use of more detailed data sources, some of which have been 
discontinued, changed in scope, or collected at irregular intervals; while the models account 
for this, it is not possible to put all the relevant information on one neat plot that goes up 
to 1985 

A key problem in comparing published long-term forecasts over time is to control for GNP 
assumptions and world oil price assumptions. For example, optimistic assumptions about 
economic growth, taken from other government components, can push up energy demand 
forecasts; energy use in industry tends to be very volatile with respect to the rate of growth, and 
few government forecasts ever show major recessions. EIA has published plots showing the track 
record of our model in predicting world oil prices as a function of OPEC capacity utilization; the 
track record has been surprisingly good, but earlier forecasts of OPEC capacity utilization led to 
major errors, due in part to economic assumptions. 

7. EXAMPLE 

The Purchased Heat and Power System (PURHAPS) is one of the models I have developed 
at EIA, following the approach described above. The core of PURHAPS is a system to predict 
purchased fuels and electricity in manufacturing in the United States, excluding refineries. This 
represents only half the energy covered in our industrial sector, but there is not enough space 
here to discuss all the rest. This part of PURHAPS contains good examples of the issues 
discussed above. For other -- simpler -- examples of these issues, see also our Transportation 
Energy Demand (TED) model (Werbos, 1986b) (which should be adjusted to reflect more recent 
analysis of alternative fuels (Werbos, 1987c). 

EIA management decided it needed a new model of industrial energy use early in 1982, after 
several analysts in several divisions agreed that the existing model was unsatisfactory. The existing 
model, a version of the Oak Ridge Industrial Model (ORIM), was driven by “econometric 
equations of total energy use which had not been derived from empirical data, and which could 
not be estimated very easily; the fuel-switching was driven by a “process representation” which 
did not reflect differences between the different Zdigit industries, differences which seemed 
critical in our reading of the literature. ISTUM2 did have an adequate process representation, 
and was seriously considered for use; however, the cost of calibrating all the technology data, and 
doing the historical calibration we would require for our purposes, was enough to rule it out. 

The decision was made to start out, at least, with an econometric model, and add 
engineering detail only when and as there was reason to do so. I proposed that we first get the 
basics right, and then consider more elaborate models of primary metals, chemicals, and paper 
after this point is reached. In later years, the possibility of more elaborate industry models was 
considered but never seemed to promise much reduction of uncertainty at acceptable cost; 
however, the system is still considering a suggestion that we buy data from SRI International 
which might allow a better treatment of petrochemical feedstocks, for which the usual data 
appear contradictory and problematic. (Some analysts have recommended that we model this 
sector equating ethylene with petrochemicals, but the complexity and flux of this industry suggests 
that this would not buy us anything better than the simple, aggregate approach we now use.) 

Our initial analysis goal was two-fold: 

MY 15-,/4-a 
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o To get total energy use right, at the national level, we wanted a model to track energy use 
in the individual industries (for which good historical data were available back to 1958) as 
well as possible. 

o To get fuel-switching right, we wanted a model to represent State-level tradeoffs within 
specific industries. Other EIA demand models do not carry State-level detail, but it was felt 
that fuel price tradeoffs vary a great deal from State to State in industry; also, the availability 
of State-level data from the Annual Survey of Manufacturers was critical. 

Forecastine Total Enerev Bv Industry 

Based on our initial literature review, it was felt that Dale Jorgenson’s work with Barbara 
Fraumeni was the best starting place for the national energy equations. (Other work by Ernie 
Bemdt at MIT appeared ve’y promising, but too difficult to update in time for the next Annual 
Enerw Outlook.) Dale Jorgenson was given a small contract to update his database on the price 
and quantity of capital, labor, energy, and materials used in industry through to 1979, and to 
reestimate the equations he had published. 

As part of our normal review process, we tested the resulting equations with Jorgenson’s own 
data to see how well they would have performed in the past. The results were a great 
disappointment to myself and to Jorgenson; we have published a curve or two of the errors, but 
have otherwise tried to move on to something better. Some people suggested that the Jorgenson 
effort had been ill-conceived; however, the purpose of scientific research is to discover new 
information, as we had, and an updated database was needed in any case. 

The original Jorgenson equations had been estimated as a complete system, using a system 
of constraints and estimation methods related to 3-stage least squares. We tried to reestimate 
Jorgenson’s energy model, using only the energy equation and multiple regression; the errors 
were less, and some people wanted to go ahead and use the results, but the price elasticities did 
not make sense over time and the problem turned out to be unavoidable with the “translog” 
model being used. 

We then estimated a similar equation, using the same data base and still controlling for the 
effects of capital prices, etc., but assuming a constant elasticity of energy prices on energy 
demand per unit of production. This worked better, and made much more sense in historical 
plots. It also showed much smaller price elasticities than the theoretical economists had been 
publishing in recent years (based largely on the translog or on data from 1958-74). 

In the following year, we studied the residuals more carefully, and found some signs of bias. 
We explained this bias as a result of “capital-embodied price responses,” which represent the 
effect of slow capital turnover on energy conservation; this explanation led to a much better tit, 
including average errors of about 1% in all the major industries in the postembargo period. The 
equation has no lagged endogenous variable to allow the possibility of cumulative error in 
forecasting several years out. (The new Transportation Energy Demand (TED) model has slightly 
larger errors -- 1.8% -- in forecasting total personal travel; however, because these errors are 
visible in a single olot of actual travel versus predictions from 1954 to 1983, the personal travel 
model is probably viewed as a bit more reliable.) 

Forecasting Fuel Shares 

Our analysis of fuel shares also produced a few surprises. 

Coal use changed so slowly over time that we needed a nonlinear model (requiring nonlinear 
regression) to track it at all. Coal use turned out to be comolementarv to natural gas, to a very 
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slight degree; at first, we thought that this was an artifact of our equations, but we found out that 
the historical fits got noticeably worse when we “corrected” the speeiflcation to cut out the 
complementarity. 

With electricity use, we initially used a lagged endogenous variable to represent long-term 
price effects. However, we discovered that the parameter estimates were very unstable when we 
changed the equations slightly, because e of “robusmess” problems; we then settled on something 
a little simpler. 

With oil-gas switching and with electricity-fossil shifts, we predicted changes in shares as a 
function of changes in prices from one year to the next. Initially, we tried a simpler version with 
oil-gas switching, predicting shares as a function of prices, but a comparison of the two 
approaches verified our suspicion that the simpler version would be biased. States initially varied 
in fuel shares in 1974 because of differences in industrial mix which depend on other factors; an 
equation based on changes assumes that different States may have different fuel shares even 
when prices are equal, and it does lead to much smaller errors. (The MSE has been published 
for both versions, and is several times larger for the simpler version.) 

With oil-gas switching and electricity shares both, we were worried that trends might have 
changed over time, or that long-term price effects might be larger than short-term price effects 
(i.e., that the simple specifications might have robustness problems). To test this, we tried 
specifications projecting changes in shares from 1974 and 1978 to year t as a function of price 
changes over the same period, little change was found. To test the trends, we used “dummy” 
variables (each set to 1 for a particular year and 0 in all others) in place of the constant term in 
these equations; we found little noticeable effect with gas, but we did decide to use the average 
trend over the last four years for electricity shares. 

Sources of Further Information 

Even the important details of this story would fill up too much of this book. For a concise 
description of the model, please consult Volume I of the PURHAPS documentation (Werbos, 
1984). Volume III (Werbos, 1983) gives the story and the rationale behind the initial version of 
the model in much more detail (one chapter per equation). The nonmanufacturing portion of the 
model has changed since then. More recent information (including updates and adjustments) is 
given in a number of papers, mostly focusing on the substantive meaning of our forecasts 
(Werbos, 1987b; AEO, 1985; Werbos, 1987d). 

Structure of the Manufacturinn Model 

The basic structure of PURHAPS is shown in Figure 1. For each of 17 manufacturing 
industries, 7 econometric equations were estimated, corresponding to the 7 in the chart. Each of 
the State-level equations is applied 51 different times in ever forecast year, once for each State; 
the results differ across States simply because the fuel prices, industrial production, and 
previous-year conditions differ across States. The State forecasts for total energy use are not 
simply “shared out“ from the national total; in each industry, the national equation and the 51 
State equations form a system of 52 simultaneous equations, each constituting a well-thought-out 
model, which are “solved“ as a system. 

The original Jorgenson model was a “KL,EM” model, where “K” represents capital, “L” labor, 
“E” energy, and “M” intermediate materials. PURHAPS may be called a “KIM/LEO” model, 
because capital, materials, and time (I) are accounted for a national level, while labor, energy 
and output are also used at the state level. 
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Figure 1. Structure of the Manufacturing Model 
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Abstract

During the last two decades electric power generation industry in many countries and regions around the world has undergone a significant

transformation from being a centrally coordinated monopoly to a deregulated liberalized market. In the majority of those countries,

competition has been introduced through the adoption of a competitive wholesale electricity spot market. Short-term efficiency of power

generators under competitive environment has attracted considerable effort from researchers, while long-term investment performance has

received less attention. In this context, the paper aims to serve as a comprehensive review basis for generation planning methods applied in a

competitive electric power generation market. The traditional modeling techniques developed for generation expansion planning under

monopoly are initially presented in an effort to assess the evolution of generation planning according to the evolution of the structure of the

electric power market.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Throughout the world, the electricity industry is

currently undergoing significant restructuring towards

deregulation and competition. One impetus for this change

is the belief that electricity generation no longer possesses

the sub-additive cost properties of a natural monopoly due

to technologically driven decreases in efficient plant sizes.

As Banks [1] mentions, this kind of thinking led to the

question: if smaller installations are economically justi-

fied, then why should they be owned by a monopolist?

Diminishment of scale of economies in generation has

made competition possible among power producers. This

restructuring has broken the utility industry into gener-

ation firms who compete among each other to sell power,

which is transmitted by a monopoly high-voltage

transmission system to independent distribution firms

and local customers. For generation firms, it is now

very important to be able to analyse and to model the

behavior of the market in order to make decisions with the

highest level of information. This is true for existing

firms, potential new investors or any entity interested in

the electricity market [2].

Either under a more organized market scheme in which a

market operator centralizes generation and demand bids,

clears the market and leads the settlement process, or under

a more decentralized one where physical bilateral contracts

prevail, electric firms must assume much more risk and

responsibility on their own decisions. These changes have

drastically altered the nature of utility planning. Most

generating capacity additions are now provided by non-

utility generators [3]. A number of studies concerned with

the competitive performance of electricity spot markets

exist in the literature [4,5]. However, less attention has been

paid to the long-run efficiency of restructuring—specifi-

cally, the area of investment in generation [5–7].

Optimal long-term generation expansion planning (GEP)

is traditionally perceived as the determination of the

minimum-cost capacity addition plan that meets forecasted

demand within a pre-specified reliability criterion over a

planning horizon (typically 20 years). Capacity expansion

models have a long tradition in both the power sector and

the operations research literature. They were one of the first

applications of linear programming in the 1950s when the

industry was operating under the regulated monopoly

regime [8].
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Just as former monopolies must adapt to survive in newly

deregulated competitive markets, so must existing planning

tools if they are to remain useful in the new market

environment. Dyner and Larsen [9] discuss the changes

occurred in the electricity planning process, including

methods from optimization to simulation and forecasting,

as deregulation takes place and illustrate which new

methods should be included in the electricity planning in

the future. This paper focuses on generation planning, and

aims to specify the main advancements occurred under a

deregulated competitive electricity market, starting from the

traditional concept in a central electricity market.

The rest of the paper is structured along four sections, as

follows:

† Section 2 is a review of the GEP in a centralized

monopolistic electricity market and the models mainly

developed and used to deal with this problem.

† Section 3 emphasizes the need for new techniques for

GEP under the new era of wholesale power competition

† Section 4 is a review of the literature regarding GEP

under competition.

† Section 5 is the conclusions derived by the present study.

2. Generation planning in monopoly

The traditional aim of an electric power utility has

focused on providing an adequate supply of electric energy

at minimum cost. Various models for generation planning

were developed to fulfill this function through optimization

algorithms and probabilistic production costing (PPC)

simulation. Recently the environment factor has been

added to the problem of generation planning as a major

new dimension [10].

The purpose of generation planning models is to

determine the generation units to be constructed, the time

to be constructed and the amount of power to be produced

while the total cost (fixed and production cost) to a utility is

minimised [11]. Anderson [12] reviews different types of

mathematical programming models that have been used for

generation planning, while Pokharel and Ponnambalam [13]

discusses some of the essential issues of electricity

generation expansion planning and develops a methodology

to analyse electricity planning when the variables are

deterministic and stochastic in nature.

Mathematically speaking, solving an optimal GEP

problem is equivalent to find a set of optimal decision

vectors which minimize an objective function under several

constraints. The mathematical formulation of the traditional

GEP problem has been presented by Park et al. [14],

according to the one used in the WASP model [15]:

Min
U1;…;UT

XT

t¼1

½f 1
t ðUtÞ þ f 2

t ðXtÞ2 f 3
t ðUtÞ� ð1Þ

s:t: Xt ¼ Xt21 þ Ut ð2Þ

LOLPðXtÞ , 1 ðt ¼ 1;…;TÞ ð3Þ

Rl # RðXtÞ # Ru ðt ¼ 1;…; TÞ ð4Þ

M
j
t #

X

i[Vj

xi
t # M

j
t ðt ¼ 1;…T ; j ¼ 1;…; JÞ ð5Þ

0 # Ut # �Ut ðt ¼ 1;…TÞ ð6Þ

where:

T the number of years of the planning horizon

J the number of fuel types

Vj the index set for jth fuel-type plants

Xt is the cumulative capacity vector (in MW) by plant

type in year t (state vector)

xi
t the cumulative capacity of the ith plant type in year

t

Ut the capacity addition vector by plant type in year t

(decision vector)

Ut the maximum construction capacity vector by plant

type in year t

ui
t the capacity addition (in MW) of the ith plant type

in year t

LOLPðXtÞthe loss of load probability with Xt in year t

RðXtÞ the reserve margin with Xt in year t

1 is a reliability criterion expressed in LOLP

Ru; Rl the upper and lower bounds of the reserve margin

M
j
t ; M

j
t the upper and lower bounds of the jth fuel type’s

capacity in year t;

f 1
t ðUtÞ the discounted investment costs associated with

capacity addition Ut in year t

f 2
t ðXtÞ the discounted fuel and O and M costs associated

with capacity Xt in year t

f 3
t ðUtÞ the discounted salvage value associated with

capacity addition Ut in year t

To consider investments with longer lifetimes than a

planning horizon, the linear depreciation option is used as in

the WASP model [15]. The types of constrains that are

mentioned above are as follows:

† Eq. (2) implies a state equation

† Eqs. (3) and (4) are related with reliability constraints

(LOLP criterion and reserve margin bounds)

† Eq. (5) reflects the capacity mixes by fuel type

† Eq. (6) gives the yearly construction capabilities by plant

type

Although the state vector Xt; and the decision vector Ut

in the year t have dimensions of MW, we can easily convert

these into vectors that have information on the number of

each plant.

As obvious, a long-term GEP problem is a highly

constrained non-linear discrete dynamic optimization pro-

blem that can only be solved by complete enumeration
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[15–19]. Therefore, every possible combination of candi-

date options over a planning horizon must be examined to

get the optimal plan, which leads to a computational

explosion [14]. The high non-linearities of a GEP problem

basically originated from the probabilistic production

costing simulation and a set of physical/engineering non-

linear constraints [15,16,20].

To solve this complicated problem, a number of methods

were applied successfully during the past decades. Among

them, dynamic programming (DP) is one of the most widely

used algorithms in GEP [15–22]. Although DP-based

approaches have some advantages over other algorithms,

the so-called ‘curse of dimensionality’ [3,14] has inter-

rupted the direct application of the conventional DP to

practical GEP problems [15,16,18,19]. For this reason the

WASP [15] and EGEAS [16] use a heuristic tunnel-based

technique in the DP routine where users pre-specify state

configurations and successively modify tunnels to arrive at a

local optimum. Caramanis et al. [23] used dynamic

programming (DP) to solve this investment problem in

stages. At each stage, several polans or stages are identified

and then investigated using PPC simulations, from which

the best ones are saved to the next stage. Karaki et al. [10]

present a GEP model based on tunnel dynamic program-

ming (TDP) and PPC integrating a model for air effluents of

generating units. The DP is based on the work of Caramanis

et al. [23] with modification on the tunnel sizing procedure.

The PPC simulation is based on combining a probabilistic

generation model with the load duration curve of the system

to deduce a risk model from which the expected energy not

supplied is calculated along with the expected energies

produced by the units. The model was applied in an

expansion case study of the power generation system of

Electricite du Liban.

Bloom [17] used generalized Bender’s decomposition

(GBD) algorithm to sub-divide the master GEP problem

into a set of sub-problems, which are solved in an iterative

way until the optimum cost is found. The master problem is

solved using linear programming, and the sub-problems are

solved using PPC simulation techniques. The modeling of

environmental constraints is done, at the PPC level, as an

energy limit on selected units. Simulating the operation of

energy limited units is based on the economic equivalence

of peak-shaving mode and the slice-in mode of operation

[24]. Bloom and Gallant [25] present the ‘facet algorithm’

based on formulating the PPC calculation as a linear

program, which can incorporate dispatch constraints as

linear inequalities thus allowing the quick evaluation of

binding constraints and the activation of new ones as

needed. Masse and Gilbrat [8] applied a linear programming

approach that necessitates the linear approximation of an

objective function and constraints. Park et al. [26] applied

the Pontryagin maximum principle whose solution lies in a

continuous space. Also, there is some research on the

development of static optimal mix by Levin and Zahavi [27]

and Ramos et al. [28] based on non-linear programming

frameworks.

Ammons and McGinnis [29] develop a comprehensive

generation expansion planning model to determine the

generation units to be constructed and the production level

of each new and existing generation unit. Belgari and

Laughton [30] and Sawey and Zinn [31] develop models for

large-scale generation planning for the combination of

generation and transmission operations. The above papers

focus on relatively easy-to-quantify factors such as fixed

and production cost [11]. Customer outage cost and utility

outage cost are not considered in most of the generation

planning literature. A few studies in the literature have

considered utility and customer outage cost. Hobbs [3]

incorporates scheduled utility and scheduled customer

outage cost in the objective function of a model (i.e. the

amount of the scheduled outage is a decision variable).

Relative to scheduled outage, forced outage is unexpected

and the resulting damage may be enormous. Wang and Min

[32] consider the forced outage cost as a component of the

total cost to a utility. However, in their model, only utility

outage cost is considered.

The issues of risk and uncertainty that are usually

associated with GEP were mainly addressed by stochastic

optimization, decision analysis and tradeoff analysis [33,

34]. Gardner [35] presented a multi-stage stochastic electric

utility planning model to compare the flexibility benefits of

different electric utility resources when dealing with

demand uncertainty. Felder [36] evaluates two financial

approaches (risk adjusted discount rates and option theory)

that incorporate risk in electricity resource planning.

A global optimization technique using a Genetic

Algorithm (GA) has been successfully applied to various

areas of power system such as economic dispatch [37,38],

unit commitment [39–41], and others [42–44]. GA-based

approaches for optimal GEP have several advantages.

Naturally, they not only can treat the discrete variables

but they overcome the dimensionality problem. In addition,

they have the capability to search for the global optimum as

well as quasi-optimums within a reasonable computation

time. However, there exist some structural problems in the

conventional GA such as the premature convergence and

duplications among strings as evolution is progressing [45].

Park et al. [14] proposed a hybrid GA approach incorporat-

ing the tunnel-based DP scheme of WASP. The basic idea of

this approach is based on the GA’s capability to find the

global optimum or quasi-optimums and the tunnel-based

DP’s high performance to find a local optimum. Fukuyama

and Chiang [46] and Park et al. [47] applied a genetic

algorithm to solve a test GEP problem, and showed

promising results.

The multicriteria decision making models allows the

evaluation of options against a wide range of criteria,

grouped in a hierarchical structure. Mills et al. [48] present a

tool that facilitates a multiobjective-driven electricity

planning process, based on the Integrated Resource

A.G. Kagiannas et al. / Electrical Power and Energy Systems 26 (2004) 413–421 415



Planning approach. Voropai and Ivanova [49] suggest a

general approach to the multicriteria decision analysis on

GEP, which unites different multicriteria analysis tech-

niques in terms of different preference relations in the

analysis of decisions and their combination. Beccali et al.

[50] present a methodological tool in order to help the

decision maker to synthesize a large set of variables,

comparing the ELECTRE method to a fuzzy set approach.

Martins et al. [51], present a multiple objective linear

programming (MOLP) model for power generation expan-

sion planning which accounts for demand-side alternatives

in an equal footing with supply-side options. Mavrotas et al.

[52] presented an approach based on mixed 0–1 MOLP

model and applied to the Greek electricity generation sector

for identifying the number of output of each type of power

units needed to satisfy the expected electricity demand in

the future. The core of the model is a branch and bound

algorithm, which has been properly modified for the

multiple-objective case and is capable of generating the

whole set of efficient solutions.

Among the artificial intelligence techniques, expert or

knowledge based systems have been the most successful, in

particular as far as power system planning is concerned. In

1989, Zhang et al. [53] presented a bibliographical survey of

expert systems in electric power systems. Madan and

Bollinger [54] continued this work by presenting the

application of artificial intelligence (mainly expert systems)

to power systems. Balu et al. [55] and Adapa [56]

concentrated on the application of expert systems in

power system planning. While artificial intelligence is

widely used in power planning, including transmission

planning [57], distribution planning [58], voltage/reactive

operation planning [59] and load forecasting [60], its

application in GEP is still rare in the literature, to the best

of our knowledge. David and Zhao developed a heuristic

expert systems-DP (1989) [18] and applied the fuzzy set

theory (1991) [19] to reduce the number of search states.

3. From monopoly to competition

Until the 1970s, the resource planner’s task was just to

determine the best size, timing and type of large central

station generation plants to meet future electric loads [3].

The objective of the capacity expansion models is to select

the mix of plants that minimizes the total cost of satisfying a

time (and sometimes randomly) varying demand over a

typical horizon of say twenty years [6]. During 1990s DSM

options have been included in order to form the integrated

resource planning (IRP) models [61–63]. Modeling demand

side management programmes has been widely covered in

the literature [64–67]. In addition, the planning procedure

has become even more complex, through the disposal of

several investment options [3]. A number of methodologies

and models have been presented in the literature during the

last two decades that deal with the above problem using

several approaches of optimization techniques, as presented

in Section 2.

However, the way that generation expansion planning

has been approached and solved has been totally redirected

through the introduction of competition and deregulation of

electricity markets. The problem of power GEP has been

reformulated from being cost-minimisation to profit-max-

imisation. The privatised approach evaluates a resource

alternative’s benefits according to its own revenue stream.

This private revenue stream will depend on a number of

factors (i.e. how privatisation is carried out and the type of

market or contract). The greater uncertainty in load growth,

fuel markets and government regulations have made the

problem even more complex. Not only are future demands

for electricity within a given region uncertain, but

competition with other power generators also means that

many utilities cannot take their market share for granted.

Historically, resource planners have focused on what

resources should be chosen rather than the dual solution

what prices should be charged. Prices and their effects on

loads can be included in resource integration models by

adding two types of constraints: a revenue requirements

equation and a demand curve [68,69]. The first constraint

relates the utility’s price to its resource costs. Under the

assumption of cost-based regulation of private utilities,

wherein utilities are allowed to recover all costs prudently

incurred, such a constraint would specify that the revenue

received by the utility should cover its costs. The second

constraint relates loads to prices. The more intense

competition becomes, the more elastic that curve will be.

These two constraints are generally non-linear. Revenue

equals price times quantity demanded, which are now both

decision variables. As a result, the models become more

difficult to solve.

An important change in a traditional production cost

model is the introduction of elasticity of the demand. In

classic production cost models the demand was inelastic and

had to be met (subject to a penalty for unserved load). Now,

the equilibrium quantity is obtained by maximizing the total

surplus, defined as the sum of consumer’s and producer’s

surplus. As a result of the competitive environment that now

utilities face, the needs of planners for optimization models

have changed, in order to take into account mainly the

uncertainty of the market factors evolution and the

increasing competition.

The implications of competition in power generation

expansion planning models have been widely addressed in

the literature. Hobbs [3] stresses four major implications of

increasing competition, including greater uncertainty

regarding market sizes and prices, better understanding of

the cost structure, response to price changes and behavior

according to the actions of other suppliers of energy. The

new planning approach is presented by Rosekrans et al. [70].

Ramos et al. [2] discuss the characteristics of traditional

production cost models that remain relevant in the new

regulatory framework. The detailed representation of
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the electric system operation and the quantitative character

of the decision variables (unit output levels) of the traditional

production cost models lend themselves to a Cournot

analysis, which is one of the standard oligopoly equilibrium

concepts. Murphy and Smeers [6], present the steps

necessary to transform a capacity expansion model designed

for a regulated monopoly company into one applicable to a

perfectly competitive market. The first step is to introduce a

demand model that accounts for the dependence of demand

on prices. Assuming that the associated inverted demand

function is the gradient of a utility function ðpðqÞ ¼

uUðqÞ=uqÞ the minimal cost capacity expansion problem

can be readily extended into a nonlinear model where the

objective is to minimize the net present value of producers

and consumers surplus over a certain horizon.

4. Generation planning in competition

Outcomes in the electrical system will no longer depend

upon traditional total cost minimization scheme, but rather

on the interaction of individual, profit maximizing firms

[41]. Each firm must look to maximize its production

surplus (market revenues minus operation costs) in an

uncertain context where its perception of risk, the behavior

of the competitors, the ownership structures, the technology

mix, as well as a multitude of other external, technical,

economical and managerial factors heavily condition the

market. The system behavior will therefore be characterised

by the economic market equilibrium as a result of the

interaction of all these factors. Market equilibrium defines a

point of convergence of the market, provided that each

participant behaves looking forward to maximizing its own

profits [2].

Several areas of knowledge converge in modeling market

equilibria, such as microeconomic theory [71] (Cournot and

Bertrand models among others [72,73]), game theory (non-

cooperative games [74]), mixed complementary problems

(MCP) [75,76] and mathematical programming with

equilibrium constraints (MPEC) [77]. Several papers have

addressed the computation of the market equilibrium in the

electric sector [78]. They differ in how each generating firm

f anticipates that rivals will react to its decisions concerning

either prices p or quantities q: In the following models we

assume that all players get the market clearing price (‘pay-

your-bid’ auctions operate differently). A comprehensive

review of the types of strategic interactions that have been

or could be included in power markets models has been

presented by Day et al. [78], including:

† Pure competition (no market power)/Bertrand

† Generalised Bertrand Strategy (‘Game in Prices’)

† Cournot Strategy (‘Game in Quantities’)—The Cournot

model is detailed in analyses by Newbery [79] and

Borenstein and Bushnell [80].

† Collusion

† Stackelberg

† General conjectural variations

† Conjectured supply function (CSF)

† Supply function equilibria (SFE)

The general SFE approach was introduced by Klem-

perer and Meyer [81] and applied by Green and Newbery

[4] to the electricity industry reforms in England and Wales

(E and W). They use a simplified supply function

equilibrium approach. Rudkevich et al. [82] extend this

technique to the use of a stepwise supply function.

Borenstein et al. [83] defined a general classification of

the different markets and competitive equilibria in the

electric industry. Green [84] used a linear version of this

model and applied it to prospective divestitures of

generation assets mandated by the regulator of the

electricity industry in E and W. Bladick, Grant and Kahn

[85], offered a generalization of the Green’s model and

extended the application to subsequent changes in the

horizontal structure of the electricity market in E and W.

Borenstein and Bushnell [80] used a simulation model,

which heuristically evaluates the California market under

competition. The electric energy market is modeled using

the Cournot equilibrium framework, where the companies

are considered strategic or competitive fringe depending on

their institutional characteristics. Each market equilibrium

is calculated using an iterative algorithm that sets each

strategic firm’s production at its optimal level while holding

constant the output of the other strategic firms. This process

is repeated until no strategic company has the incentive to

modify its production level given the production levels of

the other strategic firms. Bushnell [86] extends this

simulation model to include interperiod elements. He

represents the equilibrium conditions analytically and his

model achieves market equilibrium taking into account

hydro scheduling decisions, which regard planning

resources for multiple periods.

Hogan [87] models the profit maximization problem of

each strategic firm as a nonlinear optimization problem that

takes into account network constraints. The profit max-

imization of fringe companies is represented by incorporat-

ing their first order optimality conditions into the

optimization problem of the strategic companies.

Ramos et al. [2] models the competitive behavior of the

electric generation energy market by incorporating a set of

constraints, naming the equilibrium constraints, into a

traditional production cost model. These constraints repro-

duce the first-order optimality conditions of the strategic

companies. Their approach represents the objective of profit

maximisation, subject to oligopoly competition, while also

keeping a high level of operational detail and without

resorting to any kind of iterative procedure. All the system

agents are represented in their model: the market operator,

the electric generation firms, and the demand bidders.

Strategic investments is a first relevant notion for

analyzing investments in restructured electricity systems.
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Strategic investments are those that modify rival’s actions.

They are best interpreted in a two-stage decision context

where investment decisions are made first while operations

(generation, trading and sales) are decided in the second

stage. Second stage uncertainties, when they are present,

influence first stage decisions.

In one of the first models of this type, Spence [88]

considers the case where an incumbent builds capacity in

the first stage while the potential entrant invests in the

second stage. Both operate in the market in the second

stage. Spence assumes a single technology characterized

by variable capacity and operations costs. The potential

entrant incurs a fixed cost to enter the market, which the

incumbent has already paid. There is no uncertainty in this

model. The entrant optimizes its decision assuming that the

incumbent will utilize all its capacity in the second stage,

given the entrant effectively enters the market. The

potential entrant decides to enter the market only if it

can make a positive profit after paying for the fixed cost.

The incumbent selects its capacity and operating levels in

order to maximize its profit subject to the condition that it

wants to bar the entrant from the market. Dixit [89] retains

some elements of Spence’s model and modifies others. As

in Spence both the incumbent and the entrant resort to

single technology characterized by variable capacity and

operating costs and the fixed cost of entering the market.

The incumbent is still the sole investor in the first stage but,

in contrast with Spence, it can also add capacity in the

second stage. The decision paradigm is also different from

Spence’s as the second stage market is of the Cournot type.

The incumbent makes its first stage capacity decision to

optimize its profit, taking the market equilibrium achieved

in the second stage into account. There is no uncertainty in

this model. From a computational point of view this

nesting of an optimization and equilibrium problem results

in a mathematical program subject to equilibrium

constraints.

In contrast to both Spence and Dixit, Gabsewicz and

Poddar [90], assume that the two firms may simultaneously

enter the market. They do so by choosing their capacities in

the first stage, and they cannot revise this choice in the

second stage. The only second stage decisions are

operational and as in Dixit’s model, the second stage

market equilibrium is Cournot. Gabsewicz and Poddar also

modify the description of the technology by dropping the

fixed cost to enter the market. Uncertainty is a key element

of the Gabsewicz and Poddar model. They assume that the

demand function is revealed in the second stage only and

that the achieved equilibrium is contingent on this demand

information. This implies that investments must be decided

before knowing the intensity of the demand. Firms invest so

as to reach to a Nash equilibrium in the first stage knowing

the outcome of their decision in the second stage. This

nesting of two equilibrium problems (a perfect subgame

equilibrium) leads to an equilibrium problem subject to

equilibrium constraints.

Von der Fehr and Harbord [5] present a two-stage game,

where in the first stage n firms simultaneously enter the

industry and choose the amount of capacity to install, then

demand is realized and firms simultaneously submit offer

prices, or bids at which they are willing to supply power.

This model has similarities with those of Kreps and

Scheinkman [91] and Davidson and Deneckre [92].

However, the difference between them locates in the way

that market prices are determined.

These models provide a realistic framework for looking

at investments in the restructured power sector. Murphy and

Smeers [6] moved a few steps from economic concepts

towards computable models of capacity expansion in

restructured electricity systems by presenting three models.

The first supposes a perfect competitive equilibrium. The

second model (open loop Cournot game) extends the

Cournot model, sometimes used for modeling operations

in restructured electricity systems to include investments in

new generation capacity. The third model (closed loop

Cournot game) separates the investments and sales decision.

It describes a situation where investments are decided in a

first stage and sales occur in a second stage, both taking

place in an oligopolistic market.

In reality markets may contain only a few players who

will be well aware that their actions affect each other’s

decisions. Models of resource decision making and pricing

that account for possible strategic behavior might yield

more realistic assessment of prices within power markets.

Both non-cooperative and cooperative game-theoritic

models can play this role.

Non-cooperative Nash models have been used to analyse

the effect of transmission costs upon competition among

deregulated utilities in New York [93], to explore possible

reactions of cogenerators to utility policies regarding

purchased power [94] and to model bidding strategies in

the UK electricity market [74].

Cooperative game models, in contrast, can provide

estimates of the stakes each party has in coordinated

planning and operations. The analysis by Gately [95] of the

benefits of coordination among India’s regional power

boards is the classic study of this type. He used a

mathematical programming-based generation expansion

model to calculate the costs for each board if they operated

autonomously, and then their costs if they cooperated.

Those results allowed him to calculate the core of the

cooperative game, defined as possible allocations of the

benefits that would leave each party off than it could be by

itself or in subcoalitions with any of the other parties.

5. Concluding remarks

The case of the California power crisis, during the

summer months of 2000 and the winter months of 2000–

2001, showed that the most important factor was the

shortage of power supply relative to demand [96]. Of
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course, the design flaws in the Cal PX combined with a

number of exogenous factors has undoubtedly lead the

crisis. However, the specific event has emerged the

procedure of long-term power generation expansion plan-

ning as one of the major concerns of power generators,

considering the fact that potential regulatory flaws could not

ensure that optimum short-term behaviour could lead the

market actors to optimum long-term efficiency.

As Rosekrans et al. [70] stress, under competitive

electricity markets, simulation and optimization models

will be used in a different context. Rather than specifying

the decisions for central planners to build an ‘optimum’

system, these models can be used to simulate the decisions

of individual plant owners and developers, such as which

plants are unprofitable and will retire and which resource

options are likely to be profitable and thus enter the market.

Such a market simulation should be of interest to private

decision-makers in investigating the profitability of various

courses of action, both by themselves and by their

competitors. While the regulated monopoly model can

easily be extended to deal with a perfectly competitive

market, further extension to an imperfect competition

context is much more complex, where power market is

oligopolistic or in other words the number of suppliers is

sufficiently small that each can influence prices [6].

Market power is an actively researched area in the

literature on restructured electricity systems. Several

models exist that look at the operations of a market with

oligopolistic players when capacities are given. In contrast

with this wealth of literature on market operations, very

little is available when it comes to investment. To the best of

our knowledge, market models dealing with both invest-

ments and operations in an oligopolistic electricity market

are rare at this time. These models are stylized analytic

models that do not lead to computable tools. What emerges

from this study is in which level sophisticated techniques

could really support in practice power generators who need

to have in their availability a useful tool for GEP, even if the

optimum plan is not developed.
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A B S T R A C T

The use of Distributed Energy Resources (DER) has been proposed as one of the possible solutions to

today’s energy and environmental challenges. The optimal integration of DER in distribution networks is

essential to guarantee the best of resource, i.e. maximize their benefits, such as reduction of carbon

emissions, reduction of network energy losses and to minimize the negative impacts, which can affect

the network quality, cause network sterilization and increase investment and operation costs. Hence,

DER planning is a multi-objective problem in which many objectives of interest, sometimes conflicting,

need to be optimized simultaneously, and where a compromise for different perspectives (DER

developer, Distribution System Operator, regulator) needs to be found. Appropriate multi-objective

planning methods that consider technical, environmental and economic impacts of DER integration, and

that are able to support a suitable model of stochastic DER and active networks, can provide a deep

insight into the case specific and general advantages and drawbacks of DER. Consequently, the interest in

multi-objective DER planning has increased in recent years, and a number of novel methods have been

proposed in this area. This paper provides a timely review of the state-of-the-art in multi-objective DER

planning, and discusses in detail the challenges, trends and latest developments in this field.
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1. Introduction

1.1. Background

In recent years, climate change has prompted international
awareness about the impacts that electricity generation and the
use of energy have on the environment. In this context, local
generation of heat and electricity and the local use of renewable
energy resources are considered as some of the most promising
options to provide a more secure, clean and more efficient energy
supply [1].

Distributed Generation (DG) is defined as ‘‘an electric power
source connected directly to the distribution network or on the
customer site of the meter’’ [2]. The most common DG technologies
include Combined Heat and Power (CHP) generators, micro-
turbine gas generators, solar photovoltaic generators (PV), wind
generators and micro-hydro schemes [3]. At present, DG is
considered within the broader concept of Distributed Energy
Resources (DER), which also includes responsive loads and energy
storage [4].

1.2. The need for optimal DER integration

Several benefits can be obtained when DER is correctly
integrated. For example, DER located close to load centers and
with a production coincident with demand reduces power flow in
lines. This reduction in power flows results in an improvement of
voltage profile, and in a decrease in the line losses [3]. Moreover, if
DER produces power at peak times, network investments can be
deferred [5]. Similarly, the reliability of the network can be
increased by DER with constant production and connected to
meshed grids, or by DER that are allowed to operate in islanded
mode while connected to radial networks. In contrast, DER with a
variable output, such as wind generators, or DER connected to
radial networks and not allowed to work in islanded mode do not
increase the reliability of the network [3].

Many of these technical effects translate to economic benefits
for the Distribution System Operator (DSO) (e.g. reduction of
line losses, investment deferral, increased reliability), or for the
customer (e.g. increased reliability). The economic benefits for
the DER owner arise from energy sales. Hence, for a DER
developer maximizing the amount of energy traded, while
keeping the system within technical operation limits, is
paramount. From a societal perspective the use of renewable
energy resources offsets fossil-fuel-based energy and provides a
cleaner energy supply.

Distribution networks were designed deterministically for
unidirectional power flows, from higher voltages to lower voltages,
rather than to accommodate large penetrations of DER. As a result,
wrongly located DER, DER whose production is not coincident with
demand or DER whose capacity largely exceeds the capacity of the
network, has negative effects, such as reverse power flows,
increments in line losses and voltage rise [3]. DER located close
to fault points contribute to the fault currents and might require
the replacement of switchgear equipment [3]. Other impacts of
DER include the degradation of voltage quality, by injecting power-
electronic harmonics, and an increase in network instability,
because of the low inertia of DER [6].

The distribution network must be kept within operational and
design limits at all times to provide good-quality energy and avoid
damage to the equipment. Hence, the technical impacts of DER can
limit the installation of DER and restrict the associated economic
and environmental benefits. In weak rural networks, where large
amounts of renewable resources are expected to be located,
voltage rise [7] and thermal capacity are the impacts limiting the
integration of DER. In meshed urban networks, where large
numbers of micro-CHP units could potentially be installed, thermal
limits and fault levels are the most common constraining factors
[3].

There are two management philosophies to keep the network
within operational limits and to minimize the steady state impacts
of DER: ‘‘fit-and-forget’’ and Active Network Management (ANM).
Under a traditional ‘‘fit-and-forget’’ connection philosophy, the
grid is reinforced to keep the system within deterministic
operational limits. That is to say, the operational problems are
solved at the planning stage. Strbac et al. [8] identifies that the ‘‘fit-
and-forget’’ approach would require extremely costly reinforce-
ments in the network to accommodate large penetrations of DER.
Hence, this management philosophy is limiting for the integration
of DER [4]. Thus, ‘‘a fundamental shift from passive to active
network management’’ was proposed in recent years [9]. Under
this management philosophy the operational problems are solved
with the active management of the network and the DER. ANM has
been shown to considerably increase the amount of DER that can
be connected to the network without the need for reinforcement
[4].

Under either management approach, the optimal integration of
DER in the distribution grid is fundamental to guarantee the best
use of resources, i.e. maximize benefits and minimize costs. The
sub-optimal integration of DER under a ‘‘fit-and-forget’’ manage-
ment will result in a requirement for additional and unnecessary
transmission and distribution grid reinforcements, network
‘sterilization’, increased line losses and/or unattainable develop-
ment and environmental targets [5,10,11]. Likewise, the sub-
optimal integration of DER under active DER management will
result in excessive energy curtailment, which could convert an
economically feasible project into an unfeasible one [12], and
restrict the further exploitation of renewable energy resources.

This paper reviews techniques for the optimal integration of
DER. In particular, the area of multi-objective DER planning is
examined in detail. In Section 2 the problem formulation is
presented, and the dilemma between optimization and modeling
discussed, some single-objective techniques are introduced.
Section 3 examines the key concepts of multi-objective optimiza-
tion, and introduces the two main types of techniques used in this
area. Section 4 presents the critical review of multi-objective DER
planning. A summarizing discussion and conclusions are provided
in Section 5.

2. Planning of distributed energy resources

2.1. Problem formulation

DER planning is the structured process of optimizing DER type,
size and/or location in order to achieve a set of objectives and
subject to a set of constraints. A general representation of this
problem can be expressed formally as:

minFðxÞ ¼minð½ f 1ðxÞ; f 2ðxÞ; :::; f mðxÞ�Þ
s:t:
x2V

GðxÞ ¼ 0
HðxÞ � 0

where fi is the ith objective function; m, the number of objectives; x,
the decision vector of DER location, sizes and types; V, the decision
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domain that defines the possible locations, sizes and types of DER
(search space); G(x), the equality constraints, usually defined by
the power flow equations of the network; H(x), the inequality
constraints, usually technical limits of the equipment (e.g. voltage
constraints, thermal constraints, short circuit limits, etc.), operat-
ing limits of DER (e.g. maximum capacity) or performance targets
(e.g. reliability, emissions, maximum allowed curtailment).

This problem has nonlinear equality constraints defined by the
power flow equations; hence, it is a non-convex optimization
problem. It also has some nonlinear optimization objectives, such
as line loss minimization. The planning variables are the discrete
locations, sizes and types of DER and the topology of the network.
As a result, DER planning is a non-convex combinatorial problem,
with several local optima, and one global optimal solution. Non-
convex, nonlinear, combinatorial problems are usually difficult to
solve using traditional mathematical methods since these methods
are designed to find local optima solutions [13].

The complexity of this optimization task is dealt with using two
approaches. The first is to apply simplifying assumptions to the
formulation of the problem. For example, linearization of the
objective functions and constraints, relaxation of the constraints,
reduction of the dimensions of the search space, assumption of the
discrete nature of DER units as continuous, simplification of the
time-variability of load and DER into snapshot analyses [12]. In this
way, it is possible to solve the optimization problem using
traditional mathematical programming methods, for which
powerful programming methods are available (e.g. Linear Pro-
gramming).

The second approach is based on the use of heuristic
optimization techniques, such as Evolutionary Algorithms (EA).
These heuristic techniques are well suited to deal with non-convex
combinatorial problems [14] and can handle discontinuous search
spaces. Moreover, they allow optimization of intricate non-
differentiable objective functions. Hence, they enable more
detailed modeling of the time-variability of DER. Though, the
drawback of these techniques is that they only find an
Fig. 1. Optimization/modeling d
approximation of the global optimal solution in a limited time.
This optimization/modeling dilemma is discussed further next. A
thorough account of the development and application of heuristics
techniques within power systems problems is given in [15].

2.2. DER planning: an optimization/modeling dilemma

When a real optimization problem, such as DER planning, is
over-simplified the optimal solutions found are in fact sub-
optimal, or as phrased by Irving and Song [16]: ‘‘a real solution to a
non-problem’’. For instance, a simplistic model of renewable
generators (e.g. a snapshot power-flow analysis, or the analysis of a
single-day profile for wind generation) optimized with a very
accurate optimization method (e.g. linear programming) will
produce solutions that although accurate, will almost certainly be
sub-optimal for the real problem, given the limited scope of the
model. Similarly, a realistic model of DER is worthless when
optimized with an inaccurate optimization method, i.e. ‘‘a non-
solution to a real problem’’ [16]. For example, an extremely
complex model of the power system (e.g. a minute-by-minute
simulation of the power system) optimized by an ad hoc method
(e.g. analysis of a few configurations chosen by hand) will clearly
provide a solution that is not optimal, even with the realistic model
used. These examples illustrate the optimization/modeling dilem-
ma faced in the solution of real optimization problems (Fig. 1).
Hence, if useful planning tools are to be produced for DER planning,
the formulation of the problem should be as close to the upper-
right corner of the figure as possible. Often, this requires a good
compromise between the accuracy of the optimization method,
and the detail of the model of DER and the network.

There are some key aspects that need to be considered when
modeling the DER planning problem. First, some benefits and
impacts of DER depend not only on the location and size of the
generation, but also on the complex relationship of generation and
demand over time. The interaction of diverse time-variant energy
sources and demand is stochastic in nature. Adequate evaluation
ilemma. Adapted from [16].



A. Alarcon-Rodriguez et al. / Renewable and Sustainable Energy Reviews 14 (2010) 1353–13661356
methods, such as probabilistic load flow [17], stochastic simulation
or Monte Carlo Simulation [18], can be used to evaluate the
interaction of stochastic DER and demand.

Also, network access for DER has been traditionally allocated on
a firm access basis. In this case a ‘‘worst-case scenario’’ analysis of
maximum generation and minimum load is sufficient to evaluate
some of the impacts of DER. However, some renewable generators,
such as wind turbines, provide their maximum output for only very
short periods of time [19], and as a result the use of a probabilistic
analysis of DER integration provides a more objective evaluation of
DER impacts and benefits [4].

Moreover, recent studies have shown that a non-firm
integration of DER permits larger renewable energy production
[20]. When non-firm access is considered, active management of
the DER and the network is essential to minimize the network
impacts and avoid expensive network reinforcements [4,21]. The
modeling of the DER planning problem becomes more complex
when the evaluation of controllable technologies is proposed.

A simplified deterministic approach limits the analysis of time-
variant energy resources (e.g. wind and solar energy), or the
consideration of controllable technologies (storage, ANM). Conse-
quently, the optimal integration of DER must determine not only
the optimal number, size and location of DER units, but also
evaluate stochastic impacts of DER, and the possibility of actively
controlling DER and the network.

2.3. Single-objective DER planning

In recent years diverse methods for optimizing the location, size
and/or type of DER have been proposed, with particular emphasis
on DG placement and sizing. Most DER planning methods focus on
the optimization of a single objective. Some examples of single-
objective methods are discussed next. One of the most common
objectives found in literature is the minimization of line losses.
Line loss minimization methods are based on analytical optimiza-
tion techniques (e.g. [22]), mathematical programming techniques
(e.g. [23]) and genetic algorithms (e.g. [24]). For simplification, few
of these methods consider the stochastic nature of DER. Moreover,
none of these techniques considers the impact of active networks
in the analysis.

Other single-objective DER planning approaches focus on the
minimization of total cost. Cost can be aggregated from different
points-of-view. Hence, these techniques formulate the problem
either from the perspective of a DER developer [25], from the
perspective of a DSO that can invest in DER [26,27] or from the
perspective of a DSO that cannot invest in DER and wants to
minimize the cost of network reinforcements [28]. These methods
are based on the use of traditional mathematical optimization
techniques and genetic algorithms.

More recently, methods to quantify the network capacity, i.e.
how much DER can be optimally connected without the need of
reinforcements, have been proposed. These methods respond to
the need to increase renewable DER installations at the minimum
cost. For instance, Harrison and Wallace [11] present an Optimal
Power Flow (OPF) approach to obtain the maximum DER capacity
in predefined locations. This method was later upgraded to
optimize both DER locations and size simultaneously, using a
hybrid ‘‘GA-OPF’’ approach, where the Genetic Algorithm (GA) is
used to solve the combinatorial problem, and the OPF solves the
capacity allocation problem [29]. Keane and O’Malley explore a
similar problem, and propose a linear programming technique to
find the maximum capacity the can be installed using a firm
connection [30], or to maximize the energy that can be harvested,
minimizing network violations, in a non-firm integration [20].
Ochoa et al. [31] take the problem further, and propose a multi-
period OPF to maximize the DER capacity that can be installed
considering ANM. This method is based on non-linear program-
ming. It allows the analysis of stochastic DER, and could be
updated to maximize energy harvesting, instead of installed
capacity.

A single-objective approach is often practical from a DER
developer or a DSO point-of-view. DER developers can obtain
information about the most promising locations for DER invest-
ments to maximize installed capacity, energy sales and revenue.
Also, even if DSOs are not allowed to own and operate DG, as in
most European counties, they can identify which locations, sizes
and types are beneficial (or detrimental) for their system
operation, and provide incentives for optimal network develop-
ment [32].

2.4. Multi-objective DER planning

Diverse stakeholders participate in DER development and
management. Hence, planning objectives can be formulated
from different perspectives, e.g. the DER developer, the DSO, or
civil society, ideally represented by the regulator [33]. Some of
the DER planning objectives are naturally conflicting; conse-
quently in some cases there is no single planning solution that
will satisfy all stakeholders. For example, DER capacity
maximization will produce an increase in line losses [34];
likewise, cost minimization of network investments conflicts
both with capacity maximization and line loss minimization.
Similarly, society’s interest in low-carbon energy sources might
conflict with the need for an affordable and reliable energy
supply. A multi-objective approach helps to identify compromise
solutions that benefit all stakeholders [34]. Moreover, multi-
objective DER planning methods can provide valuable informa-
tion about the correlations between the benefits and impacts of
DER integration, and can inform the decision-making process
[35]. From a high-level perspective, a multi-objective analysis of
DER integration can help to inform incentives and policies to
encourage DER developments in the places, sizes and types that
ensure benefits and minimize the impacts of DER. Next, the key
concepts of multi-objective optimization are discussed, and the
main types of multi-objective optimization methods introduced.

3. Multi-objective optimization

3.1. Key concepts

When an optimization problem has a single objective the
definition of ‘‘best solution’’ is one-dimensional and there is only
a single best solution (or none, eventually). In contrast, a multi-
objective problem with conflicting objectives has no single
solution, but a set of optimal solutions. In this case, the multi-
dimensional concept of ‘‘dominance’’ is used to determine if one
solution is better than other solutions. A solution a is said to
dominate a solution b if the following two conditions are true
[36]:
� a
 is no worse than b in all objectives and

� a
 is better than b in at least one objective.

In this case b is said to be ‘‘dominated’’ by a, or alternatively, a is
said to be ‘‘non-dominated’’ by b. A dominated solution is also said
to be ‘‘sub-optimal’’. The solution to the multi-objective problem is
the set of non-dominated solutions, known as the Pareto set. In
terms of their objectives the Pareto set is referred as to the Pareto
front, and these terms are sometimes used interchangeably. A
solution belongs to the Pareto set if no improvement is possible in
one objective without losing in any other objective. These concepts
are illustrated in Fig. 2.
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Finding a single solution for a multi-objective problem involves
two stages: optimization and decision-making. Depending on the
order in which these tasks are performed, there are two possible
approaches to obtain a single solution for a multi-objective
problem, as illustrated in Fig. 3. The first approach uses a priori

preference information and single-objective optimization techni-
ques. All objectives are aggregated into a single-objective function
that is optimized (e.g. weighted-sum method), or alternatively, one
‘master’ objective is optimized and the rest of the objectives are
considered as constraints. In these two cases the decision-making
process precedes the optimization process (e.g. left-hand side of
Fig. 3). These procedures can be very useful to find single solutions
when detailed preference information is known a priori [36]. Deep
Fig. 3. Finding a single solution fo
knowledge of the problem is required to define an adequate
aggregation method and weights, or master objectives and
constraint levels, respectively.

When a priori information is not easily available, the process of
obtaining as many solutions as possible in the Pareto set, i.e. the

multi-objective optimization process, is critical. The information
contained in the Pareto front elucidates compromise solutions
between different stakeholders or trade-offs between incommen-
surable objectives. This knowledge facilitates a more informed
decision-making process and provides deep insight into the
problem. As a result, in the second approach the decision-making
process takes place after the multi-objective optimization (e.g.
right-hand side of Fig. 3). Initially, several solutions of the Pareto
front are sought at once, and preference information is expressed
afterwards (a posteriori). Some authors believe the second
approach to be an ‘‘ideal’’ (or ‘‘true’’) multi-objective optimization
approach for the following reasons:
- T
r

he method is more methodical, more practical and less
subjective, compared with a priori approaches [36].
- It
 provides a wider range of alternatives to choose from,
information that would have been lost is conserved; therefore,
it permits more informed decisions [37].
- S
ince real problems are usually multi-objective, this approach
permits a more realistic representation of practical problems
[37].
- T
hrough transparency the approach permits the generation of
useful information about the problem being studied [38]; it is
a multi-objective problem.
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possible to know the scope of every objective and to analyze the
correlations between objectives.

Next, multi-objective optimization methods used to find the
Pareto set are introduced. This introduction provides a theoretical
background for the literature review of Section 4.

3.2. Multi-objective optimization methods

Normally, multi-objective problems have a large number of
solutions defined by the Pareto front. Since finding all Pareto
solutions is practically impossible, a subset of the Pareto set is usually
looked for. Hence, multi-objective optimization is the process of
finding as many solutions of the Pareto front as possible. Solving a
multi-objective problem involves satisfying three areas [36,39]:
- A
ccuracy: To find a set of solutions as close to the real Pareto front
as possible.
- D
iversity: To find a set of solutions as diverse as possible.

- S
pread: To find a set of solutions that ‘‘capture the whole

spectrum’’ of the true Pareto front.

These requirements are exemplified in Fig. 4. The first case
(Case 1) is able to obtain solutions that are accurate and capture
the extent of the objectives; nonetheless, the set of solutions is not
diverse. In the second case (Case 2), a diverse set of well-spread
solutions is obtained, although these are not accurate. The
solutions in the third case (Case 3) are accurate and diverse;
however, the edges of the Pareto front are not explored. Finally, the
fourth case (Case 4) illustrates the solution of an ideal algorithm.
Fig. 4. Requirements of a multi-ob
Methods to find several Pareto set solutions are divided into
two main groups [36]. The first group makes use of single-objective
techniques and a priori information. Several solutions of the Pareto
set are identified by changing the aggregation function or the
master objective iteratively. The use of single-objective optimiza-
tion methods for multi-objective optimization is known as the
‘‘classical approach’’ to multi-objective optimization. Two of the
most common methods of this type are the weighted-sum method
and the e-constrained method [36]. These methods can be very
useful when detailed preference information is known beforehand.
However, these methods have their drawbacks, the weighted-sum
method can prove to be very time consuming with a large number
of objectives (i.e. a large Pareto set) and the solutions found will
strongly depend on the shape of the Pareto frontier and the
aggregation method [36]. Also, the weighted-sum method is
unable to deal with non-convex Pareto fronts. Similarly, the e-
constrained has been classified as a ‘‘naı̈ve’’ approach for multi-
objective optimization [40], as it requires strong a priori knowledge
of the problem [41], is time consuming (each single solution of the
Pareto front requires several iterations) and it is not appropriate for
a large number of objectives [41].

The second group of multi-objective optimization methods is
based on Evolutionary Algorithms [36]. EA handle sets of possible
solutions simultaneously, and as a result, permit identification of
several solutions of the Pareto front at once. Hence, EA are
recognized as a natural way of solving multi-objective problems
efficiently. The first Multi-objective Evolutionary Algorithm
(MOEA) was proposed in 1984. Since then, a large number of
MOEA has been developed. Generally, these are classified as first-
generation or second-generation MOEA [36]. The key characteristic
jective optimization problem.
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of the second generation of MOEA is the use of elitism. Second-
generation MOEA have been demonstrated to outperform their
first-generation (non-elitist) counterparts [36]. A detailed account
on the development of MOEA is presented in [12,36]. At present,
two of the most recognized algorithms of the second generation
are the Non Sorting Genetic Algorithm II (NSGA-II) [42] and the
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [43]. These
algorithms include procedures to find an accurate, diverse and
well-spread Pareto front. Hence, they guarantee to generate useful
information for the subsequent decision-making process.

A growing number of authors have proposed multi-objective
approaches for the DER planning problem, especially in the last six
years. Initially, ‘‘classical’’ multi-objective optimization techniques
were used. Then, the recognition that a ‘‘true’’ multi-objective
approach provides a better way of solving the problem encouraged
the use of specialized MOEA such as the ones aforementioned. In
the next sections, these multi-objective DER planning approaches
are reviewed. They have been grouped based on authors (or
research groups) and this can be read as the ‘schools’ from which
this thinking on DER planning optimization is emerging.

4. Multi-objective DER planning: a review

4.1. From the e-constrained method to the NSGA-II method

Celli et al. [32] presented in the 2003 Power Tech Conference
one of the first works to discuss the advantages of a multi-objective
formulation for DG planning. This work proposes the use of a GA
based e-constrained method to find the best sizes and locations for
DG to minimize several objectives. These objectives are: cost of
reinforcements, cost of energy non-served, cost of power losses,
cost of energy bought and a harmonic distortion index. In addition,
technical constraints of the network are taken into account
(voltage, line current and short circuit limits). The problem is
analyzed from the point-of-view of a DSO that has no control over
DG investments. Hence, Celli et al. mention that the information
produced by the planning tool can be used to determine any
incentives the utility could offer to DG developers.

This work was later extended and published in 2005 [35]. In this
second publication, Celli et al. discuss load and DG variability. The
objective function is evaluated by means of a probabilistic load-
flow, previously developed by Celli et al. [44]. It can be inferred
that this approach was also used in the publication reviewed in the
previous paragraph. This probabilistic load flow assumes linear
correlations among DG units, and between loads and DG units.
Therefore, controllable DG units cannot be analyzed with this
method. The probabilistic load flow used assumes that the
probability distribution function (PDF) of all generators and loads
is normally distributed. However, some DER cannot be accurately
described by a normal PDF. For example, wind energy is usually
described using Weibull or Rayleigh distributions [10]. Hence, in
some cases the evaluation of planning attributes using this
approach will be only approximated.

In 2005, Carpinelli et al. [45] extend the multi-objective
approach in order to include uncertainties in DG energy produc-
tion. Each one of the possible futures is formulated as a scenario.
Subsequently, a ‘‘double trade-off method’’ is used. The double-
trade-off method can be summarized in five steps:
1. F
ormulate the problem as a single-objective problem: use one
objective of interest for the planner as the master objective, and
the rest of the objectives as constraints.
2. F
or each objective chosen and for each scenario, apply the e-
constrained method [35] to find several Pareto solutions.
3. E
valuate the set of optimal solutions of each scenario in the
remaining scenarios.
4. F
or each scenario, determine the set of non-dominated
alternatives (conditional set).
5. F
inally, find the global decision set: the alternatives that are not
dominated in at least one future, that is, the union of the
conditional sets.

The robustness of each of the alternatives in the global decision
set is calculated and used to choose the best plans. The robustness
of an alternative is defined as the proportion of scenarios where it
belongs to the conditional set. That is, the alternatives with the
highest robustness are those which belong to the Pareto front in
most of the possible futures (scenarios).

The double-trade-off method is based on the trade-off analysis
proposed by Burke et al. in 1988 [46] and it is a practical way to
deal with uncertainties under a multi-objective perspective. The
scenario technique is considered by Willis [47] as the only valid
method to handle future uncertainties, especially in multi-
objective problems. The work of Carpinelli et al. [45] analyses
three minimization objectives: cost of energy losses, voltage
profile and total harmonic distortion. The voltage profile objective
is calculated as the mean deviation of voltage across the network.
However, this might obscure localized benefits of DG, or
alternatively, hide problems that are not solved by DG.

Subsequently in 2007, Carpinelli et al. [48] apply the double
trade-off approach to the optimal sizing and siting of power-
electronic interfaced (controllable DG). An inner optimization is
used in every evaluation step of the Genetic Algorithm to
determine the best operation mode of the power-electronic
interface. This inner optimization has the objective of reducing
harmonic distortion and improving voltage profile by managing
reactive power. In this approach, the variability of DG is not
addressed. Though, importantly, this paper illustrates the possi-
bility of GA to accommodate inner optimization algorithms to
handle controllable DER. It proposes the use of reactive power
management to control voltage profiles. Nonetheless, because of
the high R/X ratio of distribution lines, voltage magnitudes are also
dependant on active power injections [49]. Hence, active power
management of DG/DER could also be considered to manage
voltage profiles [50].

Until 2008, largely all the multi-objective formulations
proposed by the power systems research group of the University
of Cagliari were based on the e-constrained method. In
Carpinelli et al. [45] the authors already recognized that a

priori preferences could notably affect the final solutions.
Moreover, in the 2008 PMAPS conference, Celli et al. [51]
acknowledged that the use of true multi-objective approaches
seems more effective than the e-constrained method. So, in this
latter work [51] the planning approach previously proposed in
[35] is updated to a state-of-the-art Multi-objective Evolution-
ary Algorithm (NSGA-II [42]).

Celli et al. [51] also propose a problem formulation that can
handle different types of generators simultaneously, and can
incorporate optimization constraints using the concept of ‘‘con-
straint-dominance’’, proposed by Deb et al. [42]. Constraint-
dominance extends the concept of dominance, discussed at the
start of Section 3. A solution a is said to ‘‘constraint-dominate’’ a
solution b, if any of the following conditions is true:
- S
olution a is feasible and solution b is not.

- S
olutions a and b are both infeasible, but solution a has a smaller

overall constraint violation.

- S
olutions a and b are feasible and solution a dominates solution b.

This concept provides a useful and parameter-less constraint
handling technique that can be applied to other Multi-objective
Evolutionary Algorithm.
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Celli et al. [51] recognize that one of the drivers for DG is the
environmental benefits that some DG technologies can provide; so,
an environmental objective (minimization of total CO2 emissions)
is explicitly included. Hence, in this work, the authors provide a
comprehensive formulation of the problem from the DSO
perspective, which includes technical, economic and environmen-
tal objectives. DG and load time-variability are acknowledged, and
DG production and load is evaluated using a probabilistic approach
although, in the case study presented in the paper only simplistic
daily load curves are used, ignoring seasonal variations of DG and
load.

In the 2009 CIRED conference Celli et al. [33] argue, realistically,
that DG investments are not decided by DSOs, in the current
regulatory environment. As a result, they propose a multi-attribute
analysis of random DG configurations. In this analysis no
optimization is performed, but the dominance relationships
between thousands of random solutions is evaluated to determine
a sub-optimal Pareto front. Three objectives are chosen, one to
represent the DSOs perspective, another one representing the DER
developer point-of-view, and one representing civil society.
Importantly, they incorporate diverse ANM schemes into the
analysis. However, the probabilistic representation of wind
production is simplified as a normal distribution, which will only
provide approximate results, as already discussed at the start of
this section. The multi-attribute analysis of random configurations
provides a more realistic picture of possible DER developments.
However, the optimization of DER configuration could inform
DSOs and the regulator to encourage developments in an optimal
manner, as initially discussed by Celli et al. [32].

In summary, through all the publications reviewed Celli,
Carpinelli et al. highlight the advantages of using a multi-objective
approach; they recognize that a multi-objective approach permits a
better simulation of reality and that it can help in the decision-
making process. They mention a key aspect: ‘‘a (planning) tool should
leave the planner the faculty of choosing which aspects to consider in
his search of the optimal solution’’ [35]. These publications brought
the research community’s attention towards the multi-objective
nature of the DER planning problem. As a result, [35] is frequently
cited in recent works in the area. Conversely, these approaches have
some limitations. For example, the probabilistic approach used [44]
cannot handle controllable DER units, and provides only an
approximated representation of wind generation. Furthermore,
while probabilistic information is available, the use of the probability
of constraint violation as a planning objective/constraint is not
investigated, even when new regulations favor the use of probabilis-
tic treatment of constraints, for example the European Standard EN
50160 [52].

4.2. A multi-objective performance index

The work of Ochoa et al. [53] focuses on the technical impacts
of DG. In 2005 the authors propose the use of a ‘‘multi-objective
performance index’’ to evaluate various technical impacts of DG in
unbalanced distribution networks: active power losses, maximum
voltage drop and short circuit currents. This performance index is
calculated as a weighted-sum of these technical impacts. In order
to find the best locations for DG connections in distribution
networks, Ochoa et al. [53] propose the use of a single-objective
GA, and employ the weighted-sum index as the objective function.
In this was the best locations that minimize DG impacts are
determined. This paper recognizes that DSOs might not have
control over DG investments, but that information about optimal
DG locations could shape the nature of the contract between the
DSO and the DER developer.

Subsequently, Ochoa et al. demonstrate the applicability of the
multi-objective performance index to single DG/load scenarios
[54] and to scenarios that include time-varying generation [55].
The analysis of two additional impacts is added: reserve capacity of
conductors and reactive power losses. However, in both of these
papers, the approach is limited to an evaluation of possible DG
connections (exhaustive location of DG units in diverse nodes),
rather than applying an optimization algorithm to find the best
locations/sizes for DG. Even so, the approach is a powerful tool for
DG impacts evaluation as it considers unbalanced networks, load
and DG variability. Moreover, the authors acknowledge that other
impacts (economic and environmental) could be included in the
evaluation.

The multi-objective index evaluates several impacts. However,
in the case of radial networks (as are most distribution networks in
normal operation), it can be demonstrated that most of the impacts
have a high positive correlation. For example, active and reactive
line losses are concurrent. Similarly, line losses (active and
reactive) and reserve capacity of conductors both depend on line
flows. Likewise, line losses and maximum voltage levels have a
positive correlation. As a result, the weighted-sum is measuring
several times the same basic effect, i.e. the reduction of line flows. A
‘‘true’’ multi-objective formulation of the problem, explained in a
previous section, and an analysis of objectives correlation (e.g. by
means of Principal Component Analysis [56]) could identify these
relationships and determine the minimum number of impacts that
need to be analyzed [57].

The multi-objective index is a weighted-sum of the technical
impacts; that is, a single value that represents not only the
technical impacts of DG but also the point-of-view of the planner.
The implications of using this weighted-sum are discussed in
Ochoa’s doctoral thesis [58], published in 2006. In this work, it is
discussed that the major drawback of the weighted-sum approach
is the difficulty of determining appropriate values for the weights
when there is not enough information about the problem. So,
Ochoa proposes a true multi-objective formulation of the problem.
In this case, the first-generation Non Sorting Genetic Algorithm
(NGSA) is used to locate a small number of fixed size wind turbines
in order to maximize/minimize energy exports (for profit or energy
independence, respectively) and minimize energy losses and short
circuit limits. In this way, it is possible to investigate a compromise
between DG benefits, and impacts. Ochoa mentions that while
more objectives could be included in the formulation, care must be
taken to guarantee that objectives are not concurrent.

The multi-objective index proposed by Ochoa et al. [54] was
recently applied by Singh et al. [59] to investigate the effect of five
different load models on the optimal placement of DG. This study
used a snapshot analysis of the system, with a simplified
representation of DG (constant power, at unity power factor).
Results showed that different optimal locations and sizes were
obtained with different load models. It concluded that the load
model has ‘‘a decisive role’’ on the optimal placement and sizing of
DG, demonstrating the importance of using an accurate model of
the system being studied.

4.3. Multi-objective planning of stochastic DER and storage

Haesen et al. [60] discuss the drawbacks of single-objective
formulations and recognize the advantages of a true multi-
objective approach. Accordingly, in 2006 Haesen et al. [60] propose
a multi-objective DER optimization based on the first-generation
Strength Pareto Evolutionary Algorithm (SPEA). The objective
function evaluation includes a simplistic simulation of daily DER
production and load profiles; though the method permits the
optimization of several types of DER simultaneously. This multi-
objective DER planning approach is compared with the iterative
use of a single-objective method, previously proposed by Haesen
et al. [61]. The comparison shows that single weighted-sum
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solutions are better than the ones found in the Pareto front by
SPEA, but that in contrast the whole Pareto front provides a wider
range of possible solutions to choose from. Also, each weighted-
sum solution is highly sensitive to the set of parameters chosen.
Therefore, if a single solution is sought, inaccuracy in any weight
will lead the search towards mistaken regions of the Pareto set and
produce a sub-optimal plan. As a result, Haesen et al. suggest the
use of both methods to gain insight into the planning problem.
However, finding each single weighted-sum solution requires as
many iterations as finding the whole Pareto front using SPEA.

Importantly, in this work, Haesen et al. recognize that in cases
when attributes cannot be converted to cost accurately, when all
costs cannot be aggregated into a single parameter or when a larger
number of objectives are analyzed, the ‘‘true’’ multi-objective
optimization becomes essential. This argument is exemplified by a
case study that analyses four very distinct planning objectives: line
loss minimization, minimization of the main grid energy flow (as a
proportional measure of reliability), DER installation cost and the
gas distribution grid investments. Finally, this paper proposes the
use of bi-objective plots [36] to examine correlations or conflicts
between objectives. This visualization technique becomes ex-
tremely useful when the number of objectives is greater than three.

In the next paper of Haesen et al. [62], the use of traditional
mathematical optimization techniques for planning time-variant
DER is studied. The DER planning problem is formulated as an
iterative Mixed Integer Quadratic Programming problem. Tradi-
tional optimization techniques require mathematical formulations
of the objective functions. These formulations can only include
deterministic profiles. As a result, the authors conclude that
traditional optimization techniques cannot model the stochastic
aspects of DER and load effectively. In addition, the authors
identify that some objectives (e.g. voltage sags, reliability) cannot
be formulated as a mathematical function of DER type, placement
and size.

As a result, Haesen et al. [62] highlight that GA can handle
objectives that are too complex to be reasonably formulated in an
analytical expression. So, the use of Monte Carlo Simulation (MCS)
in the objective evaluation is suggested, instead of the daily
profiles simulation used in [59]. The MCS method produces an
accurate evaluation of the stochastic performance of DER (e.g.
wind production) and load without the need for an analytical
formulation. Moreover, it permits the evaluation of other
objectives that are difficult to formulate analytically (e.g.
reliability). In the approach proposed, MCS consists of the
simulation of a number of different yearly profiles. The planning
methodology for stochastic DER is summarized in a further paper
[63] published in 2007. In this work, the authors recognize that an
optimization approach should be as adapted to the problem as
possible, a clear reference to the optimization/modeling dilemma
already discussed.

The GA-MCS approach provides a practical way of evaluating
topologies with stochastic DER, however two trade-offs can be
identified. First, the optimization/modeling trade-off [15]: GA
permit the evaluation of more realistic models, but the conver-
gence towards global optima cannot be reached in limited time. In
contrast, analytical expressions are able to find the global optima
(with appropriate parameters), yet, they are limited to evaluate
simplified models. The second trade-off relates to the accuracy of
the MCS. The accuracy of MCS evaluations depends on the number
of trials or years simulated [18]. So, accuracy improves but to the
detriment of the speed of the GA, and vice versa. Though, the GA-
MCS evaluation time needs to be put in perspective. First, planning
is not an ‘‘online’’ task and optimization studies can be performed
at the same time as other studies. Second, and more importantly, it
is possible to get results and insights that otherwise would have
never been obtained.
The SPEA planning approach is used by Haesen et al. [64] to
analyze the incorporation of a single controllable energy storage
unit into a distribution grid with stochastic DER. This work was
presented in the CIRED 2007 conference. In this case, an inner
optimization algorithm is used in the objective evaluation stage of
the GA to optimize the operation of the storage unit. Simulta-
neously, the external multi-objective optimization is used to
optimize the rating (power) and capacity (energy) of the storage
unit. This inner optimization offers a practical method to optimize
controllable energy storage when DER units are already installed.
However, the approach is not able to optimize stochastic units that
can be controlled (e.g. curtailment of wind generators, dispatch of
CHP units), or the simultaneous optimization of stochastic and
controllable units.

In the CIRED 2007 conference presentation [65], Haesen
proposed the use of Principal Component Analysis (PCA) [66], a
powerful method to reduce the dimensions of a multi-objective
problem and analyze multiple objective correlations. Moreover,
Haesen et al. [64] explore the use of probabilistic measures of DER
impacts; it uses the 95-percentile of the probability distribution for
the maximum voltage deviation as one of the planning objectives.

In summary, the method proposed by Haesen et al. permits the
multi-objective optimization of diverse types of time-variant DER
or controllable energy storage. It provides a flexible platform in
which different planning objectives can be formulated. Though, it
is not possible to infer from the works published how network
constraints are treated in the multi-objective formulation. No
constraint management under the multi-objective formulation is
described.

4.4. A multi-objective planning framework for controllable and

stochastic DER

In a work published in 2009, Alarcon-Rodriguez et al. [50]
extend the framework proposed by Haesen et al., reviewed in the
previous section. Alarcon-Rodriguez et al. [50] present a flexible
planning framework for optimizing controllable and stochastic
DER. The method has three key elements:
- A
n outer multi-objective optimization algorithm based on the
second-generation SPEA2. Previous studies had shown that the
SPEA algorithm is outperformed by both the NSGA-II [42] and
SPEA2 [43].
- A
 stochastic simulation algorithm for the evaluation of stochastic
DER.
- A
n inner optimization algorithm for the evaluation of controlla-
ble DER, formulated as a linear Optimal Power Flow.

In this work, the formulation of the outer optimization
algorithm (SPEA2) permits the optimization of different types of
stochastic and controllable DER simultaneously. The stochastic
simulation algorithm permits the evaluation of stochastic DER,
either using historical data of DER production, or using weather
models to produce this data. The accuracy of the stochastic
evaluation will depend on the number of events evaluated [18].
Hence, accurate evaluations will require longer computation
times. The inner OPF can be adapted to evaluate energy storage
or different ANM schemes (e.g. active power dispatch, reactive
power dispatch, active voltage control). Moreover, Alarcon-
Rodriguez et al. [50] use the probability of voltage violations in
the system as one of the planning objectives. It has been suggested
that a probabilistic analysis permits a more objective evaluation of
DER impacts [4]. In addition, the minimization of carbon emissions
is explicitly formulated as a planning objective. Previous work of
Alarcon-Rodriguez et al. presented in 2006 [67] and published
later in 2008 [68] proposed a multi-attribute analysis of DER, using
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a MCS evaluation, with a flexible treatment of constraints, and the
explicit formulation of environmental objectives.

Other planning objectives considered in the case study in [50]
are: the minimization of line losses, the minimization of extra
energy dispatch, the minimization of energy curtailment, and the
minimization of the DER penetration level. This last objective
might seem counterintuitive, as single-objective techniques aim to
maximize DER penetration; nonetheless, it is necessary in a multi-
objective approach to determine the optimal attainment level of
each of the planning objectives for each level of penetration of DER
[12].

The planning framework proposed in [50] was extended by
Haesen et al. [69] to compare network reinforcement and DER as
alternative planning options. The effects of different tariff schemes
in the objectives of the DSO and DER developers were examined.
This work was presented in 2009. The concept of constraint-
dominance, already discussed in a previous section, was incorpo-
rated in the SPEA2 fitness evaluation step. Constraint-dominance
permits the formulation of any planning attribute as a planning
constraint, extending the flexibility of the framework. In the case
study presented by Haesen et al. [69], the use of probabilistic
constraints is proposed, following recent European Regulations.
The EN50160 Power Quality norm which has to be guaranteed by
the DSO in many European countries requires the grid voltage at LV
to remain within 10% of the nominal voltage for 95% of the time
[52].

In summary, the planning framework proposed by Alarcon-
Rodriguez, Haesen et al., which is extensively discussed in [12,70],
provides a flexible platform, in which diverse impacts of DER
integration can be analyzed, either as planning objectives or
planning constraints. Probabilistic measures of DER impact can be
evaluated, and any number of DER types can be incorporated in the
analysis. The framework can be modified to analyze different ANM
schemes.

A drawback of the proposed methodology is that it is inherently
computationally expensive. Though, this can be said of any
approach based on EA with inner MCS objective evaluations, as
mentioned in a previous section. SPEA2 requires the evaluation of
thousands of potential solutions (i.e. chromosomes) to obtain a
good approximation of the Pareto set. At the same time, the
stochastic simulation of each chromosome requires from hundreds
to thousands of evaluations to get accurate estimations of the
planning attributes. Moreover, OPF evaluations (for controllable
DER units) tend to take more than simple power flows to analyze
uncontrollable units. Though, this long evaluation time needs to be
considered in perspective, as already discussed, the method
enables to produce information that cannot be obtained with
simplified approaches.

4.5. Other multi-objective approaches

The methods reviewed next do not belong to any of the
‘‘schools’’ previously introduced. Their key contributions and
limitations are highlighted:

Pelet et al. [71] study the optimization of the design parameters
of an integrated energy system (diesel and PV generators) for a
remote community. Detailed analytical formulations are used for
the diesel engines and PV operation, cost and emissions calcula-
tion. Two objectives are used: total cost and CO2 emissions. The
authors use a ‘‘true’’ multi-objective formulation, based on a
second-generation MOEA. They argue that keeping the two
objectives separated enables more informed design decisions, as
it is possible to find and rank the best integrated solutions, which
are both cost effective and less polluting. Moreover, the conflict
between cost and environmental benefits is recognized with the
conclusion that clean solutions are more expensive.
Harrison et al. [34] use the OPF approach presented in [11] to
evaluate the incentives provided to DSOs and DER developers for
loss reduction and reinforcement deferral. Two different objective
functions are analyzed. Each one reflects the point-of-view of a DG
developer and a DSO, respectively, both trying to maximize their
net benefits. A multi-objective formulation based on the e-
constrained method is presented. Moreover, a multi-period OPF
is proposed, which evaluates a load duration curve to provide a
better estimation of losses. Harrison et al. show that DG
developers and DSOs have conflicting objectives and that a
multi-objective formulation can effectively replicate different
perspectives of the DG planning problem. Moreover, this work
demonstrates that incentives do have a major impact on
stakeholders’ optimal locations and sizes for DG. For example,
DG developers are not directly exposed to the effect of losses, so
they try to maximize capacity and profit. On the other hand, DSOs
have a loss reduction incentive that outweighs the benefit of
connecting DG. Subsequently, they would prefer smaller DG
investments that provide a larger reduction in losses, to the
detriment of a DG developer’s profit. A trade-off analysis enables
the identification of several possible compromise solutions. A
similar analysis is made for reinforcement deferral incentives. A
limitation of the proposed approach is that DG is considered as a
firm supply of energy, operating constantly at rated power. This
restricts the analysis of time-variant generators such as renewable
DG and heat-led CHP. In addition, the e-constrained method has
some drawbacks, which were already discussed.

Mori and Yamada [72] present an approach based on SPEA2 to
optimize distribution network expansion planning. This approach
considers DG as an option for the planner, together with possible
substations and lines. It aims at minimizing three objectives:
power losses, cost of new equipment and voltage deviation. The
cost objective only considers installation costs and it does not take
into account operating costs of DG (fuel, O&M). So, the optimal
solution could be more expensive in the long-term. In addition, the
problem disregards the time-variability of DG. The whole planning
exercise is made in terms of peak power. As a result, only a single
type of DG can be handled by the formulation (i.e. constant power).
Nonetheless, an important point of this work is that it demon-
strates that SPEA2 provides better solutions than NSGA-II in the
case study presented, although SPEA2 computational time is
slightly higher than NSGA-II.

Haghifam et al. [73] also assume that DG is a constant power
source. The authors propose an approach based on NSGA-II. The
planning objectives include total cost (net present value of energy
bought from the transmission system, DG installation and
operation), technical and economic risks. The novelty of this work
is that it proposes to minimize the maximum risk of constraint
violation as one of the planning objectives. In this case, load
behavior uncertainty is modeled using fuzzy numbers. The risk of
voltage constraint violations is calculated as the fuzzy possibility of
voltage constraint violation. The economic risk is treated similarly:
the uncertainty of market price of energy is modeled using fuzzy
numbers. Then, the fuzzy possibility of DG being a more expensive
solution is calculated and minimized. Fuzzy numbers permit the
representation of uncertain variables for which limited informa-
tion is available. Therefore, a quasi-probabilistic formulation of the
problem is possible. An analogy can be made between the fuzzy
‘‘possibility’’ of constraint violation and the more elaborated
‘‘probability’’ of constraint violation. However, the calculation of
this latter requires more detailed information about the load
behavior (e.g. load curve duration, load profile, load model).

Ahmadi et al. [74] also propose to use the NSGA-II algorithm to
find the optimal combination of DG units in a network. Three
planning objectives are optimized: to minimize total cost, to
minimize line losses and to improve voltage profile. Though, the
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approach is simplistic. The case study mentions five types of DG,
including PV generators, though, the time-variability of DG is not
mentioned in the paper, nor modeled in the approach proposed.
Since only snapshot analyses are used results can be expected to be
unrealistic.

Zangeneh et al. [75] base the optimization on the NSGA-II
method. The approach includes the minimization of economic
objectives: the total cost of DER installation and operation, the cost
of losses and the cost of extra purchased power. It also formulates
an environmental objective: the maximization of avoided emis-
sions. In addition, this work outlines a simple methodology for
choosing a single solution from the Pareto set, i.e. the decision-
making process, discussed in the next section. After the optimiza-
tion, all objectives are aggregated into a single parameter. Hence,
the multi-objective problem is formulated from the perspective of
a DSO that can invest in DER as a planning option. It also includes a
budget constraint, reflecting that the planner must make the best
use of scarce resources. Although the authors decide to use
numerically similar weights, it is clear that the weights could
reflect the planner’s preferences more strongly. Monte Carlo
Simulation is proposed as a means to evaluate the uncertainty in
some parameters, such as DER costs and energy prices, prior to the
decision-making process. This use of MCS must not be confused
with the use of MCS to evaluate the stochastic behavior of DER,
mentioned in previous sections. A critical shortcoming of this work
is that it does not model the variability of DER. It fails to
acknowledge that some DER, such as PV and wind turbines, might
not be available at peak demand times with any level of certainty.

4.6. Multi-criteria decision-making methods

The review of the previous sections shows that most of the
approaches aim at generating a large number of non-dominated
solutions, namely the multi-objective optimization process. The
decision-making process of choosing correct a priori weights or
selecting a single solution a posteriori is only explored briefly, or
not mentioned at all. Several decision-making techniques exist in
literature. When a number of attributes are analyzed, these
techniques are referred as to Multi-criteria Decision Making
(MCDM), or Multi-criteria Decision Analysis (MCDA). This is a vast
research area. A recent review of the state-of-the-art of MCDA
techniques was compiled by Figueria et al. [76]. Also, the
application of MCDM to energy planning problems is studied by
Hobbs and Meier [77]. Similarly, Loken [78] and Pohekar and
Ramachandran [79] have reviewed the use of MCDM for energy
planning.

There are some examples of application of MCDA and MCDM
techniques to multi-objective DER planning. Tang and Tang [80]
propose a weighted-sum for the optimization of DG location and
size. It analyses four distinctive objectives. Although the DG
modeling is still simplistic (a snapshot analysis), the authors
addressed the problem of how to chose appropriate weights,
depending on the planner preferences. They propose to use the
Analytical Hierarchy Process (AHP) for this purpose, a recognized
decision-making method [77]. Zangeneh and Jadid [81] in
contrast, focus on how to obtain diverse solutions of the Pareto
front using a single-objective minimization. They propose to use
the Normal Boundary Intersection method to generate evenly
distributed solutions in the Pareto set. They consider three
objective functions, the total cost of DG (installation and
operation), the cost of energy losses and the cost of energy not
served. The modeling of the DG planning problem is still very
simplified. Moreover, it is not clear from the case study proposed if
this approach would be more effective than specialized MOEA
(such as SPEA2 or NSGA-II) in finding a well spread, diverse and
accurate Pareto front.
Barin et al. [82] explore the problem of choosing the best
planning option from a ‘‘previous list of viable places for
installation’’. Hence, they focus on the a posteriori multi-criteria
decision-making problem, assuming that the multi-objective
optimization problem has already been solved. They propose to
use the Bellman–Zadeh algorithm. Following this algorithm, each
objective of every solution is normalized to obtain a normalized

membership value between 0 and 1 (0 been the worst performance,
and 1 being the best performance). Weights are assigned to each
membership value, according to its importance. Then, solutions are
ranked according to the highest value of its worst normalized
membership. This can be understood as a mini–max approach, in
which the maximum distance to the goal (i.e. the worse
performance in a weighted and normalized objective) is mini-
mized. An interesting aspect is that the method facilitates the use
of qualitative criteria for DG planning, such as security, physical
space and vandalism. Qualitative criteria, such as social accept-
ability, are commonly hard to quantify numerically, but important
to consider in some DG developments.

5. Discussion and conclusions

5.1. Discussion

From the review in Section 4, some trends can be identified in
terms of the optimization methods utilized and the detail of the
DER model. It can be observed that ‘‘classical’’ approaches, such
as weighted-sum or the e-constrained method are being
gradually replaced by state-of-the-art MOEA, particularly sec-
ond-generation SPEA2 and NSGA-II (Fig. 5). Classical approaches
remain a useful option when detailed preference information is
known a priori, and when the objective of the planning exercise is
to find a single solution that represents a single point-of-view.
The use of multi-attribute analysis has been proposed when the
exogenous nature of DER investments is recognized. Multi-
attribute analysis is not an optimization method, though it can be
used to evaluate multiple impacts of unplanned (or random) DER
developments.

The key characteristic of second-generation MOEA is the use of
elitism [36], as already mentioned. Elitist MOEA have been
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demonstrated to out-perform non-elitist MOEA, hence, it is
expected that in the coming years specialized MOEA of the second
generation will be used widely in this area, while the use of first-
generation MOEA should diminish. The concept of ‘‘constraint-
dominance’’ permits the handling of constraints within the multi-
objective formulation. Although initially proposed to be used with
NSGA-II, this concept can be applied to any MOEA. At present it is
used only by a small number of authors, though, it is expected that
‘‘constraint-dominance’’ will be more widely adopted in coming
years.

MOEA permit the identification of a large number of Pareto
front solutions, and provide information on the trade-offs and
correlations between planning objectives. Moreover, EA permit the
evaluation of complex models of DER. As a result, it is possible to
observe that the detail of the DER models has evolved together
with the use of MOEA. For example, most publications reviewed
propose methods to evaluate the stochastic behavior of DER and
load, either by means of probabilistic load flow, MCS, or stochastic
simulation. Probabilistic load flow provides a fast evaluation of the
stochastic behavior of the power system, though it limits the
evaluation of controllable DER, and requires simplifying assump-
tions of the PDF of some DER, as already discussed. In contrast, the
use of MCS and stochastic simulation permits a more accurate
representation of some DER, such as wind generation, and can
evaluate controllable DER. Though, a major drawback of the
MOEA-MCS framework is the long computational evaluation time
required. Hence, a key avenue for research is the parallel-
computing implementation of MOEA-MCS DER planning
approaches, and the use of clustering techniques to reduce the
number of power flow evaluations.

Some authors still base the analysis of one unique DER solution
on a single snapshot analysis of the power system. It must be
emphasized that snapshot analyses are not appropriate to model
most DER, which are variable in nature. Hence, these approaches
are limited and only applicable to very specific DER types and
circumstances (e.g. back-up DG units, capacity assessment of
networks). As the use of renewable energy resources (most of
which are variable in nature), heat-led CHP and Demand Side
Management (DSM) become more widespread, simplistic models
for DER planning will not be sufficient to generate useful
knowledge.

Few techniques consider the controllability of DER. The few
approaches that do illustrate that the use of MOEA permits the
incorporation of ‘‘inner optimization’’ algorithms in the objective
evaluation. The inner optimization algorithms, formulated com-
monly as an Optimal Power Flow algorithm, facilitate the
simulation of controllable energy storage, controllable loads and
controllable DER units. It is expected that the possibility of inner
optimization algorithms will be exploited more widely, as the
concept of active management of DER, Demand Side Management
(DSM), and smart networks becomes widespread.

The papers reviewed highlight the benefits of a multi-
objective formulation, and a wide range of technical and
economical objectives are formulated. This demonstrates the
flexibility provided by the multi-objective approach. Most of the
authors recognize that one of the drivers for DER development is
the environmental benefit(s) that can be obtained from an
adequate integration of these technologies. As a result, new
approaches incorporate explicitly environmental objectives.
Moreover, the variety of case studies proposed highlight that
multi-objective DER planning can be used to study different
incentives schemes, analyze different impacts from a single
stakeholder perspective or to determine compromise solutions
that benefit different stakeholders. However, evidence of real
applications in support of decision-making has still to be
published.
5.2. Conclusions

In a future where a larger share of energy will be supplied from
distributed sources, and where potentially a larger number of
stakeholders will be involved, multi-objective planning tools will
be needed to provide compromise solutions, and guide the optimal
development of the system. Hence, multi-objective DER planning
is a novel area that has gathered increased interest in recent years.
This paper has presented a critical review of the state-of-the-art of
multi-objective DER planning methods. Key aspects of the
techniques that need to be considered in implementation have
been highlighted and recent trends in the area have been
discussed.

Some future avenues for the research in multi-objective DER
planning can be identified. For example, multi-objective DER
planning methods have yet to be applied to analyze the wide
implementation of controllable loads and DSM. DSM and load
controllability will gain prominence in a future where the
impacts of energy use will be more carefully scrutinized and
managed. Moreover, the use of electric vehicles (EVs) has been
proposed as one solution to reduce carbon emissions from
transport. EVs can be utilized as a sizeable and distributed form
of electrical energy storage. The analysis of the impacts of EVs in
the power system can be formulated within the multi-objective
framework, where different perspectives of the problem can be
represented.

In all cases, an adequate level of detail must be provided in the
optimization models of active DER and active networks, in order to
provide realistic solutions. Moreover, the focus must lie not only in
the supply of electricity; as the interaction of electricity networks,
gas networks, heat networks and DER will be essential in a future
with a more decentralized and decarbonized energy supply. In
addition, this research area will benefit greatly from publications
that study real case studies in which the support to multifaceted
decision-making scenarios is demonstrated.
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Abstract

Multi-Criteria Decision Making (MCDM) techniques are gaining popularity in sustain-
able energy management. The techniques provide solutions to the problems involving con-
flicting and multiple objectives. Several methods based on weighted averages, priority
setting, outranking, fuzzy principles and their combinations are employed for energy plan-
ning decisions. A review of more than 90 published papers is presented here to analyze the
applicability of various methods discussed. A classification on application areas and the year
of application is presented to highlight the trends. It is observed that Analytical Hierarchy
Process is the most popular technique followed by outranking techniques PROMETHEE
and ELECTRE. Validation of results with multiple methods, development of interactive
decision support systems and application of fuzzy methods to tackle uncertainties in the data
is observed in the published literature.
# 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Energy planning using multi-criteria analysis has attracted the attention of
decision makers for a long time. The methods can provide solutions to increasing
complex energy management problems. Traditional single criteria decision making
is normally aimed at maximization of benefits with minimization of costs. These
methods provide better understanding of inherent features of decision problem,
promote the role of participants in decision making processes, facilitate compro-
mise and collective decisions and provide a good platform to understanding the

perception of models’ and analysts’ in a realistic scenario. The methods help to
improve quality of decisions by making them more explicit, rational and efficient.
Negotiating, quantifying and communicating the priorities are also facilitated with
the use of these methods.
During the 1970s, energy planning efforts were directed primarily towards energy

models aimed at exploring the energy–economy relationships established in the
energy sector. The main objectives followed were to accurately estimate future
energy demand. A single criteria approach aimed at identifying the most efficient
supply options at a low cost was popular [1,2]. In the 1980s, growing environmen-
tal awareness has slightly modified the above decision framework [3]. The need to
incorporate environmental and social considerations in energy planning resulted in
the increasing use of multicriteria approaches.
Multi-objective linear programming is another planning methodology used for

illustrating the trade-off between environmental and economic parameters and for
assisting in the selection of a compromise solution [4,5]. It was popular in energy
planning with conventional fuels in the 1970s. However, after the oil shock of
1973, a thought was given for energy conservation and energy substitution. Renew-
able energy sources are being promoted for a wide variety of applications world-
wide. They are free from any form of pollution and are capable of substituting for
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conventional fuels in most of the applications. However, the contribution of these
sources is very low, despite considerable technological development and their
increasing competitiveness with respect to conventional fuels. This compels the
planners and decision makers to identify the barriers for penetration and suggest
interventions to overcome them. It is therefore felt that, along with the necessary
policy measures, the wide exploitation of sustainable energy should be based on a
completely different conception of energy planning procedure. The role of different
actors in decision making thus becomes important. Methods of group decision are
therefore of primary interest for the implementation of decision sciences in real-life
problems.
Multi-criteria decision making (MCDM) methods deal with the process of mak-

ing decisions in the presence of multiple objectives. A decision-maker is required to
choose among quantifiable or non-quantifiable and multiple criteria. The objectives
are usually conflicting and therefore, the solution is highly dependent on the pre-
ferences of the decision-maker and must be a compromise. In most of the cases,
different groups of decision-makers are involved in the process. Each group brings
along different criteria and points of view, which must be resolved within a frame-
work of understanding and mutual compromise. Applications of MCDM include
areas such as integrated manufacturing systems [6], evaluations of technology
investment [7], water and agriculture management [8,9] in addition to energy plan-
ning [10–12].
2. Overview of multi-criteria decision making (MCDM) methods

Multi-Criteria Decision Making is a well known branch of decision making. It is
a branch of a general class of operations research models which deal with decision
problems under the presence of a number of decision criteria. This major class of
models is very often called MCDM. This class is further divided into multi-
objective decision making (MODM) and multi-attribute decision making (MADM)
[13]. There are several methods in each of the above categories. Priority based, out-
ranking, distance based and mixed methods are also applied to various problems.
Each method has its own characteristics and the methods can also be classified as
deterministic, stochastic and fuzzy methods. There may be combinations of the
above methods. Depending upon the number of decision makers, the methods can
be classified as single or group decision making methods. Decision making under
uncertainty and decision support systems are also prominent decision making tech-
niques [14].
These methodologies share common characteristics of conflict among criteria,

incomparable units, and difficulties in selection of alternatives. In multiple objec-
tive decision making, the alternatives are not predetermined but instead a set of
objective functions is optimized subject to a set of constraints. The most satisfac-
tory and efficient solution is sought. In this identified efficient solution it is not
possible to improve the performance of any objective without degrading the per-
formance of at least one other objective. In multiple attribute decision making, a
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small number of alternatives are to be evaluated against a set of attributes which

are often hard to quantify. The best alternative is usually selected by making com-

parisons between alternatives with respect to each attribute. The multicriteria

decision process is as shown in Fig. 1. The different methods are described as fol-

lows.
2.1. Weighted sum method (WSM)

The WSM is the most commonly used approach, especially in single dimensional

problems. If there are M alternatives and N criteria then the best alternative is the
Fig. 1. Multicriteria decision process.
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one that satisfies the following expression:

A�WSM ¼Max
Xj

i

aijwj for i ¼ 1; 2; 3; :::M ð1Þ

where A�WSM is the WSM score of the best alternative, N is the number of
decision criteria, aij is the actual value of the ith alternative in terms of the jth cri-
terion, and wj is the weight of importance of the jth criterion. The total value of
each alternative is equal to the sum of products. Difficulty with this method emer-
ges when it is applied to multi-dimensional decision-making problems. In combin-
ing different dimensions, and consequently different units, the additive utility
assumption is violated [15].

2.2. Weighted product method (WPM)

The WPM is very similar to WSM. The main difference is that instead of
addition in the model there is multiplication. Each alternative is compared with the
others by multiplying a number of ratios, one for each criterion. Each ratio is
raised to the power equivalent to the relative weight of the corresponding criterion.
In general, in order to compare the alternatives AK and AL the following product is
obtained:

RðAK=ALÞ ¼
XN

j¼1
ðakj=aLjÞwj ð2Þ

where N is the number of criteria, aij is the actual value of the ith alternative in
terms of the jth criterion, and wj is the weight of importance of the jth criterion. If
R (AK/AL) is greater than one, then alternative AK is more desirable than alterna-
tive AL (in the maximization case). The best alternative is the one that is better
than or at least equal to all the other alternatives [16].

2.3. Analytical hierarchy process (AHP)

Analytical Hierarchy Process (AHP) is developed by Saaty [17,18]. The essence
of the process is decomposition of a complex problem into a hierarchy with goal
(objective) at the top of the hierarchy, criterions and sub-criterions at levels and
sub-levels of the hierarchy, and decision alternatives at the bottom of the hier-
archy. Elements at given hierarchy level are compared in pairs to assess their rela-
tive preference with respect to each of the elements at the next higher level. The
verbal terms of the Saaty’s fundamental scale of 1–9 is used to assess the intensity
of preference between two elements. The value of 1 indicates equal importance, 3
moderately more, 5 strongly more, 7 very strongly and 9 indicates extremely more
importance. The values of 2, 4, 6, and 8 are allotted to indicate compromise values
of importance. Ratio scale and the use of verbal comparisons are used for weight-
ing of quantifiable and non-quantifiable elements. The method computes and
aggregates their eigenvectors until the composite final vector of weight coefficients
for alternatives is obtained. The entries of final weight coefficients vector reflect the
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relative importance (value) of each alternative with respect to the goal stated at the

top of hierarchy. A decision maker may use this vector due to his particular needs

and interests. To elicit pair wise comparisons performed at a given level, a matrix

A is created in turn by putting the result of pair wise comparison of element i with

element j into the position aji as below.

A ¼
a11 a12 : a1n
a21 a21 : a2n
an1 an2 : ann

2
4

3
5 ð3Þ

After obtaining the weight vector, it is then multiplied with the weight coefficient

of the element at a higher level (that was used as criterion for pair wise compar-

isons). The procedure is repeated upward for each level, until the top of the hier-

archy is reached. The overall weight coefficient, with respect to goal for each

decision alternative is then obtained. The alternative with the highest weight coef-

ficient value should be taken as the best alternative. One of the major advantages

of AHP is that it calculates the inconsistency index as a ratio of the decision

maker’s inconsistency and randomly generated index. This index is important for

the decision maker to assure him that his judgments were consistent and that the

final decision is made well. The inconsistency index should be lower than 0.10.

Although a higher value of inconsistency index requires re-evaluation of pair wise

comparisons, decisions obtained in certain cases could also be taken as the best

alternative.
2.4. Preference ranking organization method for enrichment evaluation
(PROMETHEE)

This method uses the outranking principle to rank the alternatives, combined

with the ease of use and decreased complexity. It performs a pair-wise comparison

of alternatives in order to rank them with respect to a number of criteria. Brans

et al. [19] have offered six generalized criteria functions for reference namely, usual

criterion, quasi criterion, criterion with linear preference, level criterion, criterion

with linear preference and indifference area, and Gaussian criterion. The method

uses preference function Pj (a, b) which is a function of the difference dj between

two alternatives for any criterion j, i. e. dj ¼ f ða; jÞ � f ðb; jÞ, where f(a, j) and

f(b, j) are values of two alternatives a and b for criterion j. The indifference and

preference thresholds q’ and p’ are also defined depending upon the type of cri-

terion function. Two alternatives are indifferent for criterion j as long as dj does

not exceed the indifference threshold q’. If dj becomes greater than p’, there is a

strict preference. Multi-criteria preference index, pða; bÞ a weighted average of the
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preference functions Pj (a, b) for all the criteria is defined as

pða; bÞ ¼
PJ

j¼1 wjPjða; bÞPJ
j¼1 wj

ð4Þ

/þðaÞ ¼
X
A

pða; bÞ ð5Þ

/�ðaÞ ¼
X
A

pðb; aÞ ð6Þ

/ðaÞ ¼ /þðaÞ � /�ðaÞ ð7Þ

where wj is the weight assigned to the criterion j; /þðaÞ is the outranking index of a

in the alternative set A; /�ðaÞ is the outranked index of a in the alternative set A;

/ðaÞ is the net ranking of a in the alternative set A. The value having maximum

/ðaÞ is considered as the best.

a outranks b iff /ðaÞ > /ðbÞ; a is indifferent to b iff /ðaÞ ¼ /ðbÞ

2.5. The elimination and choice translating reality (ELECTRE)

This method is capable of handling discrete criteria of both quantitative and

qualitative in nature and provides complete ordering of the alternatives. The prob-

lem is to be so formulated that it chooses alternatives that are preferred over most

of the criteria and that do not cause an unacceptable level of discontent for any of

the criteria. The concordance, discordance indices and threshold values are used in

this technique. Based on these indices, graphs for strong and weak relationships

are developed. These graphs are used in an iterative procedure to obtain the rank-

ing of alternatives [20]. This index is defined in the range (0–1), provides a judg-

ment on degree of credibility of each outranking relation and represents a test to

verify the performance of each alternative. The index of global concordance Cik

represents the amount of evidence to support the concordance among all criteria,

under the hypothesis that Ai outranks Ak. It is defined as follows.

Cik ¼
Xm

j¼1
WjcjðAiAkÞ=

Xm

j¼1
Wj ð8Þ

where Wj is the weight associated with jth criteria. Finally, the ELECTRE method

yields a whole system of binary outranking relations between the alternatives.

Because the system is not necessarily complete, the ELECTRE method is some-

times unable to identify the preferred alternative. It only produces a core of leading

alternatives. This method has a clearer view of alternatives by eliminating less

favorable ones, especially convenient while encountering a few criteria with a large

number of alternatives in a decision making problem [21].
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2.6. The technique for order preference by similarity to ideal solutions (TOPSIS)

This method is developed by Huang and Yoon [22] as an alternative to ELEC-

TRE. The basic concept of this method is that the selected alternative should have

the shortest distance from the negative ideal solution in geometrical sense. The

method assumes that each attribute has a monotonically increasing or decreasing

utility. This makes it easy to locate the ideal and negative ideal solutions. Thus, the

preference order of alternatives is yielded through comparing the Euclidean dis-

tances. A decision matrix of M alternatives and N criteria is formulated firstly. The

normalized decision matrix and construction of the weighted decision matrix is car-

ried out. This is followed by the ideal and negative-ideal solutions. For benefit cri-

teria the decision maker wants to have maximum value among the alternatives and

for cost criteria he wants minimum values amongst alternatives. This is followed by

separation measure and calculating relative closeness to the ideal solution. The best

alternative is one which has the shortest distance to the ideal solution and longest

distance to negative ideal solution.

2.7. Compromise programming (CP)

Compromise Programming defines the best solution as the one in the set of

efficient solutions whose point is the least distance from an ideal point [23].The aim

is to obtain a solution that is as close as possible to ideal. The distance measure

used in CP is the family of Lp-metrics and is given as

LpðaÞ ¼
Xj

j¼1
w p

j f �j � f ðaÞ
���

���= Mj �mj

�� �� ð9Þ

where Lp ðaÞ is the Lp metric for alternative a, f (a) is the value of criterion j for

alternative a, Mj is the maximum (ideal) value of criterion j in set A, mj is the

minimum (anti ideal) value of criterion j in set A, fj
� is the ideal value of criterion

j, wj is the weight of the criterion j, p is the parameter reflecting the attitude of the

decision maker with respect to compensation between deviations. For p ¼ 1, all

deviations from fj� are taken into account in direct proportion to their magnitudes

meaning that there is full (weighted) compensation between deviations

2.8. Multi-attribute utility theory (MAUT)

Multi-attribute Utility Theory takes into consideration the decision maker’s pre-

ferences in the form of the utility function which is defined over a set of attributes

The utility value can be determined by determination of single attribute utility

functions followed by verification of preferential and utility independent conditions

and derivation of multi-attribute utility functions. The utility functions can be

either additively separable or multiplicatively separable with respect to single attri-

bute utility. The multiplicative form of equation for then utility value is defined as
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follows.

1þ kuðx1; x2; . . . xnÞ ¼
Yn

j¼1
ð1þ kkjujðxjÞÞ ð10Þ

Here j is the index of attribute, k is overall scaling constant (greater than or equal
to �1), kj is the scaling constant for attribute j, u(.) is the overall utility function
operator, uj(.) is the utility function operator for each attribute j [24].
3. Multi-criteria decision making applications in energy planning

The application areas of MCDM in energy planning presented in this section are
renewable energy planning, energy resource allocation, building energy manage-
ment, transportation energy management, planning for energy projects, electric
utility planning and other miscellaneous areas. The comparison of MCDM meth-
ods applicable to energy planning are discussed in the literature. Hobbs and Meirer
[25] compared the methods with respect to simplicity of applications and feasible
expected outcomes, Huang and Poh [26] discussed the methods used in energy and
environmental modeling under uncertainties, Lahdelma et al. [27] discussed these
methods for environmental planning and management. The commonly applied
MCDM methods out of the above are multi-objective optimization, AHP, PRO-
METHEE, ELECTRE, MAUT, fuzzy methods and decision support systems
(DSS). More than one MCDM method is also applied in many application areas
to validate the results [28–30].
A review of the published literature is presented here with a view to highlighting

the applications areas and trends. A classification of published literature before
1990 and beyond 1990 is also presented to highlight suitability of the methods in
changed global scenario. Six generalized application areas and a miscellaneous area
presented here have common features of minimization of cost benefit ratios, high
degrees of uncertainties in formulating the problems, incommensurable units and
the need to handle socio-economic aspects in planning. Renewable energy planning
and energy resource allocation refers to compilation of feasible energy plan and
dissemination of various renewable energy options. The key factors applicable are
investment planning, energy capacity expansion planning and evaluation of alter-
native energies. Building energy management refers to design, selection, installation
and building energy management options in a multi-criteria environment. The
application normally deals with quantitative issues. Transportation system applica-
tions include evaluation of alternative strategies for pollution control, elimination
of old polluting vehicles, choosing between private and public transport etc. The
key features of transportation applications are of a high concern for socio-
economic reasons. Project planning refers to site selection, technology selection and
decision support in renewable energy harnessing projects. The objectives are arriv-
ing at a Pareto optimal solution for technology selection, sizing, execution, invest-
ment planning. Optimal electrical dispatch scheduling, deciding power generation
mix, optimum electricity supply planning are the applications of electric utility
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planning using MCDM. Miscellaneous applications include desalination plant
selection, solid waste management.
It can be observed from the surveyed literature that AHP is the most popular

method for prioritizing the alternatives, followed by PROMETHEE and ELEC-
TRE. Multi-objective programming is also very widely used to formulate alterna-
tive plans. Fuzzy MCDM methods are also adopted for considering the
uncertainties in energy planning. Decision support systems are becoming popular
in energy planning and resource allocation with the advent of the latest computa-
tional aids.

3.1. Multi-objective optimization

This method is very widely used in energy resource allocation, energy planning
and electric utility applications. Maximization of cost benefit ratio to arrive at opti-
mum resource allocation in rural areas [31], national level energy planning [32] are
amongst a few applications. The application areas have common features of higher
investment costs, higher project durations, conflicting objectives and uncertainty.
Energy security and social benefits are prominent objectives in energy planning
with these methods. These techniques are also used for sustainability evaluation of
power plants [33], deciding optimum mix of renewable energy technologies at vari-
ous sectors [34–37]. Renewable energy planning with energy environment linkages
[38], economic constraints, technology limitations etc. are the main features of
applications surveyed . Applications to various national level issues [39–42] and
household energy issues [43,44] are also among the prominent application areas.
Multi-objective optimization also finds applications in building energy management
[45]. The issues identified are building material design [46], building performance
design [47,48], building arrangement design [49], and building shape design [50,51].
Regional energy supply optimization [52,53], desalination power plant selection
[54,55], electricity distribution planning using fuzzy approaches [56,57] are also
worth mentioning. Genetic algorithms are also applied to electric utility planning
and building energy management problems [46]. An analysis of utilizing multi-
objective optimization reveals that the methods are being used for a wide variety of
applications after 1990. These may be due to the advent of sophisticated computa-
tional aids available and increased need for larger socio-economic considerations in
energy planning.

3.2. Decision Support System (DSS)

These are sophisticated, interactive and computer aided techniques for aiding the
decisions [58]. These can support complex problems that would be otherwise diffi-
cult to handle. Knowledge based DSS can support the decision makers in selecting
criteria, alternatives and trade-offs, thus making the energy planning simple. The
identified DSS use MCDM methods for arriving at interim results. The applica-
tions of DSS in energy planning developed are solid waste management [59], trans-
portation energy management [60], electricity production alternatives [61], building
energy management [62] and renewable energy project planning [63].
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3.3. Multi-criteria decision making methods

The Multi Attribute Utility Theory is developed to help decision makers assign
utility values to outcomes by evaluating these in terms of multiple attributes and
combining individual assignments to obtain overall utility values. It is observed
that MAUT is not very extensively used in energy planning. This may be due to
requirements of interactive decision environment required in formulating utility
functions, complexity of computing scaling constants using the algorithm [64].
Selecting portfolios for solar energy projects [65], energy policy making [66],
environmental impact assessment [67] and electric power system expansion plan-
ning [68] are the applications identified in the literature. A few numbers of studies
are observed using this method after 1990.
The outranking methods belonging to ELECTRE family are popularly used in

energy planning. These methods are also used in renewable energy DSS after 1990
[62,69,70].Other common application areas include electric utility planning, build-
ing energy management and project planning. These methods are also applied to
selection of thermal power plant location by eliminating certain sites [71], renew-
able energy plant selection [72,73], selecting pollution control technologies [74] and
transportation energy planning [75,76]. Though various versions of ELECTRE are
developed ELECTRE III is found to be widely used in energy planning applications.
Outranking methods belonging to PROMETHEE category are also extensively

used in energy planning. These methods provide a scientific basis to arrive at multi-
criteria preference index by calculating the strengths and weaknesses of alternative
actions. This method is used in energy project planning and applications to geo-
thermal site selection [77,78] and small hydro site selections [79]. Other application
areas are impact analysis of energy alternatives [80,81], old vehicle elimination
[75,76] and building product designs [82]. Different versions of PROMETHEE are
in use and PROMETHEE II has been extensively used after 1990.
Analytical Hierarchy Process is very widely used in energy planning. This may

be due to provisions of converting a complex problem into a simple hierarchy,
flexibility, intuitive appeal, its ability to mix qualitative as well as quantitative cri-
teria in the same decision framework [83] and use of computational aids leading to
successful decisions in many domains [84]. Though a there are number of short-
comings [85], the method is popularly used in renewable energy planning [86–90],
energy resource allocation [91], transportation energy planning [92], project plan-
ning [93] and electric utility planning [94–96]. The applications surveyed have the
main objectives of priority setting and have features such as less number of criteria,
interaction with decision makers etc. The correctness of AHP has been established
by comparing it with other MCDM methods. The method is used with modifica-
tions during post 1990.
In addition to the above discussed methods, preference desegregation method is

also used for energy analysis and policy making studies [97]. Fuzzy set program-
ming is used for a variety of applications after 1990. A few of the application areas
surveyed are solar system evaluation [98,99], power systems [100–103] and wind
site selection [104].



T
a
b
le
1

C
la
ss
ifi
ca
ti
o
n
o
f
M
C
D
M

m
et
h
o
d
s
b
y
a
p
p
li
ca
ti
o
n
a
re
as

A
p
p
li
ca
ti
o
n
s

M
u
lt
i-
o
b
je
ct
iv
e

M
et
h
o
d
s

T
o
ta
l
n
u
m
b
er

M
A
U
T

A
H
P

P
R
O
M
E
T
H
E
E

E
L
E
C
T
R
E

O
th
er
s

R
en
ew

a
b
le

en
er
gy

p
la
n
n
in
g

[2
,3
3–
3
8
]

[6
5
,6
6
]

[8
7
,9
0
,9
5
,9
6
]

[7
0
,7
5
,7
9
]

[6
9
,7
0
]

[6
2
,9
7
–
9
9,
1
0
4
]

2
2

E
n
er
g
y

re
so
u
rc
e

a
ll
o
ca
ti
o
n

[4
3
,8
8
,8
9
,9
5
]

[8
8
–
9
1
]

[1
–
3
2
,3
9
]

1
0

B
u
il
d
in
g

en
er
gy

m
a
n
a
ge
m
en
t

[4
6
,4
7
,4
9
–5
1
]

[8
2
]

[4
5
,6
2
]

8

T
ra
n
sp
o
rt
a
ti
o
n

en
er
gy

sy
st
em

s

[7
6
,9
2
]

[7
6
]

[7
5
]

[6
0
]

5

P
ro
je
ct

p
la
n
n
in
g

[9
3
]

[7
7
,7
8
]

[7
1
–
74
]

7

E
le
ct
ri
c
u
ti
li
ty

p
la
n
n
in
g

[4
,5
,5
3
,1
0
1]

[6
7
,6
8
]

[9
4
–
9
6
]

[5
9
,9
8
,1
0
0,
1
0
2
]

1
2

O
th
er
s

[5
6
]

[7
4
]

2
i

T
o
ta
l
n
u
m
b
er

2
2

4
1
4

7
1
0

1
3

N
u
m
b
er
s
in

sq
u
a
re

b
ra
ck
et
s
re
fe
r
to

re
fe
re
n
ce

n
u
m
b
er
s.

S.D. Pohekar, M. Ramachandran / Renewable and Sustainable Energy Reviews 8 (2004) 365–381376



377S.D. Pohekar, M. Ramachandran / Renewable and Sustainable Energy Reviews 8 (2004) 365–381
It can be observed from the studies (Tables 1 and 2) that multi-objective optimi-
zation accounts for 29% of the identified studies, followed by AHP (20%), ELEC-
TRE (15%), PROMETHEE (10%). Miscellaneous methods including DSS and
fuzzy methods account for a share of 20% in energy decision making applications.
The number of MCDM applications surveyed upto 1990 is 29% and beyond 1990 is
69% approximately. The methods are observed to be highly popular for renewable
energy planning (34%), followed by electric utility planning (19%), energy resource
allocation (15%), building energy management (13%) and project planning (12%).

4. Conclusion

A feview of the published literature on sustainable energy planning presented
here indicates greater applicability of MCDM methods in changed socio-economic
scenario. The methods have been very widely used to take care of multiple, con-
flicting criteria to arrive at better solutions Increasing popularity and applicability
of these methods beyond 1990 indicate a paradigm shift in energy planning
approaches. The methods are observed to be most popular in renewable energy
planning followed by energy resource allocation. It is observed that Analytical
Hierarchy Process is the most popular technique followed by outranking techni-
ques PROMETHEE and ELECTRE. Validation of results with multiple methods,
development of interactive decision support systems and application of fuzzy meth-
ods to tackle uncertainties in the data is observed in the published literature.
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Abstract

Most decision making requires the consideration of several conflicting objectives. The term

multiple criteria decision analysis (MCDA) describes various methods developed for aiding decision

makers in reaching better decisions. Energy planning problems are complex problems with multiple

decision makers and multiple criteria. Therefore, these problems are quite suited to the use of

MCDA. A multitude of MCDA methods exists. These methods can be divided in three main groups;

value measurement models, goal, aspiration and reference level models, and outranking models.

Methods from all of these groups have been applied to energy planning problems, particularly in the

evaluation of alternative electricity supply strategies. Each of the methods has its advantages and

drawbacks. However, we cannot conclude that one method generally is better suited than the others

for energy planning problems. A good alternative might be to apply more than one method, either in

combination to make use of the strengths of both methods, or in parallel to get a broader decision

basis for the decision maker. Until now, studies of MCDA in energy planning have most often

considered energy networks with only one energy carrier. More advanced energy systems with

multiple energy carriers have been neglected, even though this field ought to be suitable for use of

MCDA due to its high complexity, many decision makers and many conflicting criteria.
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1. Introduction

When making decisions, decision makers (DMs) always try to choose the optimal
solution. Unfortunately, a true optimal solution only exists if you are considering a single
criterion. In most real decision situations, basing a decision solely on one criterion is
insufficient. Probably several conflicting and often non-commensurable objectives should
be considered. Because of this, it is impossible to find a genuine optimal solution, a
solution that is optimal for all DMs under each of the criteria considered [1].

Multiple criteria decision making (MCDM) is a generic term for all methods that exist
for helping people making decisions according to their preferences, in cases where there is
more than one conflicting criterion [2]. Using MCDM can be said to be a way of dealing
with complex problems by breaking the problems into smaller pieces. After weighing some
considerations and making judgments about smaller components, the pieces are
reassembled to present an overall picture to the DMs [3].

Another term which is often used is multiple criteria decision analysis (or aid) (MCDA).
The reason for using ‘decision analysis’ or ‘decision aid’ instead of ‘decision making’ is to
emphasize that the methods should aid DMs in making better decisions. The methods
themselves cannot make the actual decisions. The aim of MCDA methods is to help DMs
organize and synthesize the information they have collected, so that they feel comfortable
with and confident in their decisions. By using MCDA methods, DMs should feel that all
important criteria have been properly accounted for. This should help to reduce the post-
decision regret [4]. Ideally, the MCDA methods will help the DMs to understand and
identify the fundamental criteria in the decision problem, and avoid making important
decisions out of habit.

Energy planning is a field that is quite suitable for MCDA methods because it is subject
to many sources of uncertainty, long time frames and capital-intensive investments [5],
along with featuring multiple DMs and many conflicting criteria. The complexity in the
planning of local energy systems is discussed in more detail in Ref. [6]. Before the 1970s,
little effort was made in the formal planning of energy systems. The oil crisis in the 1970s
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resulted in more emphasis being placed on identifying efficient supply options. However,
most studies were based only on cost minimization [7]. In the 1980s, the public started to
become more aware of environmental issues. Consequently, it was necessary to start
incorporating environmental considerations in energy planning [8]. This led to a more
comprehensive use of MCDA methods. Subsequently, it has become common to include
other criteria in the studies, such as reliability, land use, aesthetics and human health
concerns [9].
The purpose of this review article is to provide an overview of some of the most

important MCDA methods that have been proposed over the years. I will present
examples of how different methods have been applied for energy planning purposes. The
examples have been chosen to give a broad overview of all the methods that have been used
for energy planning. The main advantages of the different methods, as well as the
difficulties that they may be subject to, will also be evaluated. In the end, I will argue that
MCDA can be a very useful tool for the planning of local energy systems with multiple
energy carriers and multiple energy resources, even though no MCDA studies have
examined this type of problem until now.

2. Multicriteria decision analysis methods

Over the years, hundreds of MCDA methods have been proposed [10]. The methods
differ in many areas—theoretical background, type of questions asked and type of results
given [11]. Some methods have been created particularly for one specific problem, and are
not useful for other problems. Other methods are more universal, and many of them have
attained popularity in various areas. The main idea for all the methods is to create a more
formalized and better-informed decision making process.
I will start this section by providing guidelines on the selection of the most appropriate

method for a given problem. Thereafter, I will present some of the most well known
MCDA methods.

2.1. Choosing an MCDA method

When choosing an MCDA method, there are many criteria to consider. The most
important is to find a method that measures what it is supposed to measure (validity).
Different methods are likely to give different results, so a method that reflects the user’s
‘true values’ in the best possible way should be chosen. In addition, the method must
provide the DMs with all the information they need, and the method must be compatible
with the accessible data (appropriateness). The method must also be easy to use and easy
to understand [10]. If the DMs do not understand what is happening inside the
methodology, they perceive the methodology like a black box. The result may be that the
DMs do not trust in the recommendations from the method. In that case, it is meaningless
to spend time applying this method.

2.2. Classifying MCDA methods

There are many possible ways to classify the existing MCDA methods. In this review, I
have chosen the same classification as Belton and Stewart used in their book [4]. According
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to Ref. [4], there are three broad categories (or schools of thought):
�
 Value measurement models.

�
 Goal, aspiration and reference level models.

�
 Outranking models (the French school).
In the next sections, I will describe the main characteristics of the three categories, and I
will present some of the most important methods that belong to each group. For more
detailed descriptions of the methods, I recommend Ref. [4], or specific literature for each
method written by the developers of the various methods.

2.2.1. Value measurement models

When using value measurement methods, a numerical score (or value) V is assigned to
each alternative. These scores produce a preference order for the alternatives such that a is
preferred to b ða � bÞ if and only if V ðaÞ4V ðbÞ. When using this approach, the various
criteria are given weights w that represent their partial contribution to the overall score,
based on how important this criterion is for the DM(s). Ideally, the weights should indicate
how much the DM is willing to accept in the tradeoff between two criteria [4,12,13].

The most commonly used approach is an additive value function (multiattribute value
theory (MAVT)):

V ðaÞ ¼
Xm

i¼1

wi viðaÞ, (1)

where vi(a) is a partial value function reflecting alternative a’s performance on criterion i.
The partial value function must be normalized to some convenient scale (e.g. 0–100). Using
Eq. (1), a total value score V(a) is found for each alternative a. The alternative with the
highest value score is preferred. MAVT is a pretty simple and user-friendly approach
where the DM—in cooperation with the analyst—only needs to specify value functions
and define weights for the criteria to get very useful help with his decision [4].

The multiattribute utility theory (MAUT) first proposed in detail by Keeney and Raiffa
[14] can be said to be an extension of MAVT. MAUT is a more rigorous methodology for
how to incorporate risk preferences and uncertainty into multicriteria decision support
methods. When using this approach, multiattribute utility functions U(a)—where the risk
preferences are directly reflected in the values—must be established instead of value
functions [4,14].

The analytical hierarchy process (AHP) developed by Saaty [15] has many similarities to
the multiattribute value function approach. Belton and Stewart [4] described AHP ‘‘as an
alternative means of eliciting a value function’’. However, they pointed out that the two
methods rest on different assumptions on value measurements, and that AHP is developed
independently of other decision theories. Of these reasons, many of the proponents of
AHP claim that AHP is not a value function method [4]. However, both MAUT and AHP
present their results as cardinal rankings, which mean that each alternative is given a
numerical desirability score. Consequently, the results from the two methods are directly
comparable.

The major characteristic of the AHP method is the use of pair-wise comparisons, which
are used both to compare the alternatives with respect to the various criteria and to
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Table 1

Fundamental scale

1 Equally preferred

3 Weak preference

5 Strong preference

7 Very strong or demonstrated preference

9 Extreme importance

2, 4, 6, 8 Intermediate values
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estimate criteria weights [4,13]. In the pair-wise comparisons, a special ratio scale (Table 1)
constructed by Saaty [15,16] is used:
The results from all the comparisons are put into matrices. From these matrixes, an

overall ranking of the alternatives can be aggregated. The alternative with the highest
overall ranking is preferred to the others [13]. The mathematical procedure that is used to
calculate the overall rankings is quite complex (more details can be found for instance in
Ref. [15]), and the procedure is, therefore, normally performed with specially designed
computer programs.

2.2.2. Goal, aspiration and reference level models

Alternatives to value measurement methods are goal programming (GP), the aspiration
level and the reference level methods. Often GP is used as a common abbreviation for all
these approaches, and this simplification is used also in this article. When using GP
approaches, we try to determine the alternatives that in some sense are the closest to
achieve a determined goal or aspiration level [4]. Often the GP approach is used as a first
phase of a multicriteria process where there are many alternatives. In that case, GP is used
to filter out the most unsuitable alternatives in an efficient way.
Mathematically, we can say that the idea in the GP methods is to solve the inequalities

zi þ diXgi, where zi is the attribute values, di is the non-negative deviational variables and
gi is the goals (a desirable level of performance) for each criterion i. The aim is to find a
feasible solution that minimizes the vector of deviational variables. If it is possible to find a
solution where di ¼ 0 for all i, this will be the recommended solution. In most cases, this is
not the case, and another solution must be found. The simplest method for this purpose is
to minimize the weighted sum of deviations

Pm
i¼1 wi di [4], where wi is the importance

weight and di is the deviation of criterion i.
A more advanced possibility is to use the so-called Tchebycheff norm, where the aim is

to minimize the maximum weighted deviation, i.e. to minimize max
i
fwi dig. It means that

the focus is always placed on the relatively worst performance area [4].
GP methods are well-suited for the use of interactivity. There are many possible

methods. I will only give a brief explanation of some of them. A well-used interactive
method is the method of displaced ideals, as proposed by Zeleny [17]. The concept in this
method is to minimize

Xm

i¼1

½wi di�
p

" #1
p

, (2)
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for different values of p. p is a constant that decides the penalty for greater deviations
compared to smaller deviations. After the DM has been presented for solutions for various
values of p, he is supposed to eliminate clearly undesirable solutions. This is called
displacement of ideals. After the displacement, the procedure will be repeated until the
difference between the ideal solution1 and compromise solution are acceptably small [4,11].

In the STEM approach (also called the step method) proposed by Benayoun [18],
the ideal solution is used as a goal for each criterion, and deviations are found by the
Tchebycheff norm explained above. The weights for the criteria are not specified by the
DM, but are calculated by the relative range of values available on each criterion.
Consequently, the weights are only giving a normalization of the objective function to
some convenient scale, i.e. 0–100. When a possible solution is found, the DM is asked
which of the calculated values he finds satisfactory and which he finds unsatisfactory. In
the next loop, the unsatisfactory values will be improved, while the satisfactory values are
‘‘sacrificed’’. This is repeated until the DM is happy with the proposed solution [4].

The basic idea in the technique for order preference by similarity to ideal solutions
(TOPSIS) method is to compare the alternative solutions with the ideal and anti-ideal
solutions. The best solution is the solution with the highest so-called ‘‘relative closeness to
the ideal solution,’’ which is a proportion between the Euclidean distances to the ideal and
anti-ideal solutions [8,19].
2.2.3. Outranking models

In outranking models, the alternatives are compared pair-wise to check which of them is
preferred regarding each criterion. When aggregating the preference information for all the
relevant criteria, the model determines to what extent one of the alternatives can be said to
outrank another. We can say that an alternative a outranks an alternative b if there is
enough evidence to conclude that a is at least as good as b when taking all criteria into
account [4]. The methods based on this way of thinking are often called the French school.
The two main families of methods in the French school are ELECTRE and
PROMETHEE. Below, I will give a brief explanation of these methods.

The family of ELECTRE methods was developed as an alternative to the utility function
and value function methods. Details of the ELECTRE methods can, e.g. be found in Ref.
[20]. The most common ELECTRE method in energy planning problems is ELECTRE III,
so I will concentrate on that one is this review. The main idea in ELECTRE III is to choose
alternatives that are preferred for most of the criteria. However, alternatives which are very
unfavorable for any of the criteria should not be chosen, even if this alternative is favorable
for most of the other criteria. The method makes use of the so-called indifference
thresholds and strict preference thresholds. These thresholds are used to calculate
concordance and discordance indices. From these indices, we can calculate graphs for
strong and weak relationships, and these graphs are used to rank the alternatives through
an iterative process. The method is sometimes not able to find the best alternative.
However, it is often useful to apply the ELECTRE III method in the beginning of the
decision process to produce a shortlist of the best alternatives. These alternatives can then
go through further analysis by using another, more detailed method [4,21].
1In the world of multicriteria, an ideal solution is a theoretical solution where all the criteria have been

respectively maximized or minimized.
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An alternative outranking approach is the PROMETHEE method, developed by Brans
and his co-workers [22]. In this method, a pair-wise comparison of alternatives is
performed to make up a preference function for each criterion. Based on the preference
function, a preference index for a over b is determined. This index is a measure of support
for the hypothesis that a is preferred to b. It is defined as a weighted average of preferences
on the individual criteria. The preference index is used to make a valued outranking
relation which determines a ranking of the alternatives [4,8].

3. MCDA in energy planning

As mentioned in the introduction, energy planning is a field very suitable for MCDA
methods. Over the last years, many applications of MCDA methods for energy planning
problems have been published. In this section, I will give some examples that describe use
of various MCDA methods for energy planning problems.

3.1. Value measurement models

Value measurement models have been used in various application areas in energy
planning problems, especially for choosing/ranking energy strategies or technologies.
Some of the applications have been evaluating alternative electricity supply strategies,
using either analytical hierarchical process (AHP) [17,19], an AHP-similar method [23] or
MAUT [24,25]. MAUT has also been used for an energy supply optimization process [26].
Hobbs et al. have done some interesting studies where they have compared various
methods for collecting weights in MAVT analyses for evaluating demand-side manage-
ment (DSM)2 programs [10], and in the choice of an energy resource portfolio [11]. In
Ref. [11], the MAVT approaches were also compared to a GP approach.
Buehring et al. [24] emphasized that the MAUT process in itself has many benefits for

the DMs. They claimed that the process of assessing utility functions will help the DMs to
identify the most important issues, generate and evaluate alternatives, resolve judgment
and preference conflicts among the DMs and identify improvements to the impact. Siskos
and Hubert [27] were more concerned about the drawbacks of the MAUT approach in
their description of various MCDA methods. They claimed that MAUT presents many
complications in the decision process, especially concerning the assessment of probabilities
and attaching utilities to the criteria. To establish utility functions is a difficult and
cumbersome task, because most DMs do not have a good perception of their own risk
preferences [28]. However, MAUT is one of few MCDA methods designed especially for
handling risk and uncertainties.
Advantages and shortcomings of the AHP method were discussed by Ramanathan and

Ganesh [29]. They claimed that the main reasons for the AHP method’s popularity are its
simplicity, flexibility, intuitive appeal and its ability to handle both quantitative and
qualitative criteria in the same framework. However, the method also has some
drawbacks. According to Ref. [29], the main disadvantage is that AHP is very time-
consuming when the number of alternatives and/or criteria is large, as is often the case in
2DSM activities are designed to encourage the customers to reduce their energy consumption and/or change

their energy usage pattern. Such activities can to some extent be introduced as an alternative to increase the energy

production.
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energy problems. Another, often criticized problem, for instance Refs. [30–34], with the
AHP method is the conversion from verbal to numerical judgments given by the
fundamental scale (Table 1). It seems like the conversion table tends to overestimate
preference differences [33]. There is also a lot of other criticism raised against the AHP
method which are covered in more detail, e.g. in Ref. [32].

3.2. Goal, aspiration and reference level models

Another approach that has been used for energy planning studies is goal programming.
The most commonly used GP method in energy planning problems seems to be the method
of displaced ideals. The method has, e.g. been used for energy supply optimization [35],
comparing different electricity generations systems from an environmental point of view
[36] and for choosing an energy resource portfolio [11]. In these last two studies, the
method of displaced ideals was compared to a monetization method3 [36] and to a number
of value-based methods [11], respectively.

Other GP methods that have been used for energy planning are the STEP method,
which was used for energy resource allocation [37], and the TOPIS method, which was
used for evaluation of alternative electricity supply strategies [19]. Ramanathan and
Ganesh [29] has used the weighted sum of deviations to solve an energy resource allocation
problem.

A reason to use GP techniques is that GP is less subjective than value theory and utility
theory. In addition, GP offers a very straightforward procedure that DMs find easy to
understand [29]. A third advantage is that many of the GP methods are suitable for being
implemented directly into LP solvers [35]. It means that MCDA can be included into
already existing one-criterion optimization models in a simple way. However, there is also
a lot of criticism raised of GP, especially regarding the assignment of weights, the
determination of goals and the normalization of the variables [29]. Another main
disadvantage with the GP approach is that each criterion needs to be associated with an
attribute defined on a measurable scale, which means that the methods are generally not
able to handle non-quantitative criteria [4,29]. Therefore, GP must be combined with other
techniques if qualitative criteria are going to be included in a study.

Pokharel and Chandrashekar [8] presented some advantages of the STEP method.
According to them, the STEP method is the only method that allows direct comparison
among the alternate solutions. This is supposed to help DMs to be aware of ‘‘the impact of
a preference for an objective function on the solution’’. In addition, they found the STEP
method easy to understand and to implement. However, they also found some drawbacks
of the method. The main drawback is that the method requires that the DMs are able,
precisely, to define their goals at each iteration. Furthermore, the method will—as other
GP methods—in some cases present dominated solutions as being optimal.

3.3. Outranking models

Outranking models seems to be popular for energy planning problems. Outranking was
used in many studies for evaluation of alternative electricity supply strategies (demand
side management was also included in some of them). The most popular outranking
3In a monetization method, all criteria are translated into monetary values so that they can easily be compared.
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methods in these evaluations is PROMETHEE II [7,17] and ELECTRE III [27,38–40].
PROMETHEE II has also been used for evaluating alternative strategies concerning
geothermal energy usage [41].
Some of the main advantages of the outranking methods are that they provide a deep

insight in the problem structure, they model the DM’s preferences in a realistic way by
recognizing hesitations in the DM’s mind, and they are able to treat uncertainties in
various ways [7,41]. In addition, it is claimed that the representation of the results from the
outranking methods is simpler and easier to understand than the results from other
MCDA approaches, such as MAVT [40].
A main difference between PROMETHEE II and ELECTRE III is the calculation

procedure that is used. PROMETHEE II has a transparent calculation procedure, which is
easy for DMs to understand [7], while the DMs often find the calculations from
ELECTRE III too complex. Consequently, the ELECTRE method ends up as a ‘black
box’ which feels unsatisfactory for the DMs [40,41].
The outranking methods are normally not used for the actual selection of alter-

natives, but they are very suitable for the initial screening process (to categorize
alternatives into acceptable or unacceptable) [13]. After the screening process, another
method must be used to get a full ranking or actual recommendations among the
alternatives.

3.4. Combination of methods

Some researchers have tried to combine use of different MCDA methods. The AHP
method has been especially popular to combine with other methods. Tzeng et al. [17]
combined the use of AHP and PROMETHEE II, while Yang and Chen [19] combined
AHP and TOPSIS in their evaluations of energy strategies. Ramanthan and Ganesh [29]
integrated AHP and the GP method called the weighted sum of deviations for an energy
resource allocation problem in India.
A proper combination of two (or more) methods might be very favorable. Such

integration will help to make use of the strengths of both the methods. Moreover, even
though both methods have some limitations, their limitations might be complementary.
Ramanathan and Ganesh [29] argue that GP and AHP are well-suited to combine for a
resource allocation problem. It is likely that suitable combinations of MCDA methods can
be found also for other types of problems.

4. Conclusions and suggestions for further work

This literature review has shown that energy planning is a field that is quite suitable for
the use of MCDA. I have shown that there exists a multitude of MCDA methods, and that
many of these methods have been applied to energy planning purposes. Choosing among
all the MCDA methods that exist can be said to be a multicriteria problem. Each of the
methods has its own advantages and drawbacks, and it is not possible to claim that any
one of the methods is generally more suitable than the others are. Different DMs will
always disagree about which methods are most appropriate and valid.
The choice of method mostly depends on the preferences of the DM and the analyst. It is

important to consider the suitability, validity and user-friendliness of the methods. It is
also important to realize that use of different methods will most probably give different
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recommendations. This should not lead to the conclusion that there is anything wrong with
any of the methods. It just means that the different methods work in different ways.

Hobbs and Horn [10] emphasized that choice of method can significantly affect
judgment decisions. They claimed that change of method often makes more difference than
change of the person that is applying the method. Hobbs and Horn [10] and Hobbs and
Meier [11], therefore, concluded that ideally more than one multicriteria method should be
used in a decision making process. This will give the DMs a broader decision basis.
Additionally, DMs should be allowed to reflect upon and change their values after they get
the first results from the methods. Accordingly, Hobbs and his colleagues proposed an
interview process and a discussion among the DMs after the first collection of weights.
During the interview and discussion, inconsistencies among the methods should be
discovered. According to Buehring et al. [24], individuals will be more likely to discuss their
judgments after they have been through a formalized decision making process. The extra
effort required by the use of more than one method and the implementation of an
interview process is not large compared to the potential benefits, which include enhanced
confidence in the decision and a more reliable process [11].

In this review article, I have given many examples of how different MCDA methods
have been utilized for energy planning. All the studies I have presented consider different
aspects of energy networks with only one energy carrier (which was electricity in most of
the studies). The majority of the studies are at a high planning level, such as a regional or
even national level.

What seem to be missing in the research until now, are multicriteria studies on local
energy systems with multiple energy carriers. Such combined energy systems with
infrastructure such as networks for electricity, district heating and natural gas are common
all over the world. In the past, these infrastructures were normally planned and
commissioned by independent companies. It is believed that synergetic effects might be lost
when such infrastructures are planned independently. Consequently, planning tools that
can evaluate and analyze alternative energy carriers in mutual combination will give some
benefits.

There is no doubt that if properly applied, MCDA can be a valuable tool also for
planning of combined energy systems. Such systems may include several energy resources
(hydro, oil, gas, garbage, etc.) and several energy carriers (electricity, district heating,
natural gas, hydrogen, etc.) combined in a complex network with various conversion,
storage and transportation technologies [6]. Often, there is more than one DM in such
systems, and each of them will probably have many conflicting objectives which
they would want to include in the study. In sum, these aspects make for a very complex
problem. Because of this complexity, it is difficult for the DMs to get the full over-
view of their problem without using some decision-aid systems. Due to the conflicting
objectives, some kind of MCDA should be well-suited. The problem, however, will be to
choose which of the multitude of MCDA methods are most suitable for this type of
problem.
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District energy systems, in which renewable energy sources may be utilized, are centralized systems to
provide energy to residential and commercial buildings. The aim of this paper is to evaluate and rank
energy sources available for a case of district heating system in Vancouver, Canada, based on multiple
criteria and the view points of different stakeholders, and to show how communication would affect
the ranking of alternatives. The available energy sources are natural gas, biomass (wood pellets), sewer
heat, and geothermal heat. The evaluation criteria include GHG emissions, particulate matter emissions,
maturity of technology, traffic load, and local source. In order to rank the energy options the PROMETHEE
method is used. In this paper, two different scenarios were developed to indicate how the communication
between the stakeholders would affect their preferences about criteria weights and would change the
ranking of alternatives. The result of this study shows that without communication the best energy
source for the considered district energy system is different for different stakeholders. While, addressing
concerns through efficient communication would result in a general consensus. In this case, wood pellet
is the best energy alternative for all the stakeholders.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

The total primary and secondary energy consumption in Canada
was 7643.2 petajoules in 2006 [1]. Long travel distances, cold cli-
mate, energy-intensive industrial base, relatively low energy
prices, and a high standard of living were the main reasons for high
consumption of energy [2]. Space and water heating account for
60–80% of the energy consumed in the residential, commercial,
institutional, and public administration sectors [3]. Energy con-
sumption in these sectors represents 36% of the total energy use
in Canada [1]. Energy strategies regarding space and hot water
heating in Canadian provinces have remarkable impact on the total
consumed energy and consequently on the resulted environmental
impacts.

District energy systems, which provide energy for space and hot
water heating to buildings, have several advantages compared to
the decentralized ones. These advantages include: (1) increased
energy and performance efficiencies through implementing ad-
vanced equipment and maintaining them professionally, (2) re-
duced life cycle costs, and (3) augmented control over
ll rights reserved.

i).
environmental impacts [4]. Although the history of district energy
systems in Canada goes back to the 19th century, this sector is still
growing in Canada as more municipalities and communities turn
to district energy each year in order to conserve energy, mitigate
climate change, and secure supply of energy [5].

District energy systems can have access to a wider range of en-
ergy sources compared to decentralized systems. Renewable en-
ergy sources such as wood biomass, sewer heat and geothermal
heat can be more economically and efficiently exploited in larger
systems in district energy systems. The type of energy to be used
in a district energy system broadly identifies the characteristics
of the system, such as the heating technology, system efficiency,
capital investment, operating costs, system emissions, etc. The
suitability of a district energy system, which depends on the type
of energy source, characteristics of the system, and district’s objec-
tives and requirements, should be assessed carefully. Typically, dif-
ferent alternatives are available for district energy systems that
should be evaluated based on economic, technical, environmental
and social factors. These factors may be quantitative or qualitative.
Moreover, the importance of these factors may be different for var-
ious stakeholder groups involved in the decision making, as they
may have different and sometimes conflicting interests and objec-
tives. The need to incorporate different factors and the viewpoints
of various actors in the analysis has promoted the use of multicri-
teria approaches in energy planning. These approaches provide a

http://dx.doi.org/10.1016/j.apenergy.2009.06.021
mailto:taraneh.sowlati@ubc.ca
http://www.sciencedirect.com/science/journal/03062619
http://www.elsevier.com/locate/apenergy
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better understanding of the decision problem, help reaching a
compromised decision, and facilitate the negotiation and commu-
nication among different stakeholders [6].

Various multicriteria decision making (MCDM) methods have
been applied in energy planning. Review of more than 90 pub-
lished papers in the energy planning field by Pohekar and Rama-
chandran [6] showed that beyond 1990, and especially in the
area of renewable energy planning, Analytic Hierarchy Process
(AHP), PROMETHEE and ELECTRE were the most commonly used
MCDM methods.

This study focuses on the utilization of different energy sources,
including renewable ones, in a district heating system in Vancou-
ver, Canada. Four energy options of natural gas, biomass (wood
pellets), sewer heat, and geothermal heat are ranked based on six
important criteria using the PROMETHEE method. Two different
scenarios are considered to show how the ranking of alternatives
for stakeholder groups would change when communication among
them is facilitated. It is assumed that communication between the
stakeholders would change their preferences about the criteria
which eventually would affect the ranking of alternatives. The
objective of this study is to assess the effect of communication be-
tween legitimate stakeholders in the decision making process
when multiple decision criteria exist, using the considered case
as an example.

1.2. Literature review

Traditionally, the selection of energy alternatives was based only
on cost minimization [7]. However, the need to incorporate the
environmental and social impacts of energy options and viewpoints
of different actors in the analysis promoted the use of multicriteria
decision making (MCDM) methods [8]. A wide range of MCDM
methods have been applied in the energy planning area. Selection
of an appropriate MCDM method is an MCDM problem itself [9].
In an MCDM approach, first it is necessary to define the problem
clearly, then identify realistic alternatives. It is important to define
the actors involved in the decision making, select the evaluation cri-
teria, and evaluate each alternative according to the set of criteria.
Next, an MCDM method is selected to aggregate the performance of
each alternative. Most MCDM methods require weighting of the
selection criteria. In real-life problems, a weighting method that
is reliable and easy to apply should be used. The application of
the MCDM method provides a ranking of alternatives [7].

AHP, PROMETHEE and ELECTRE are the most common MCDM
methods used in energy planning. AHP has been used successfully
for alternative energy source selection [10–12], and energy re-
source allocation [13,14].

The ELECTRE method has been applied for renewable energy
planning [7], energy planning [15], choosing the most suitable
heating system for buildings [16], and community energy modern-
ization and development planning [17].

Pohekar and Ramachandran [18] used the PROMETHEE method
to rank alternative cooking energy sources in India. Through sensi-
tivity analysis, they concluded that dissemination of a parabolic so-
lar cooker in India was not merely upon its economic appeal, but
several technical, social, and behavioral factors should also be ad-
dressed simultaneously. Haralambopoulos and Polatidis [19] used
the PROMETHEE II method to rank exploitation scenarios for geo-
thermal resources in the island of Chios, Greece. The emphasis
has been on finding the agreement and conflicting points among
different stakeholders. The PROMETHEE method is also used in
ranking sustainable electricity generation technologies and energy
exploitation scenarios of low temperature geothermal fields in
Greece [20,21]. A group decision support system in which PROM-
ETHEE is used for ranking the renewable energy sources is de-
signed and presented by Georgopoulou et al. [8].
2. Methods

2.1. The PROMETHEE method

In this paper, the PROMETHEE II method is used to rank the en-
ergy sources available for the considered case based on stakehold-
ers’ preferences. The PROMETHEE method introduced by Brans and
Vincke [22] belongs to the group of outranking methods.

In order to better explain the PROMETHEE method, suppose a
multicriteria problem as:

ff1ðaÞ; f2ðaÞ; . . . ; fhðaÞ; . . . ; fkðaÞ a 2 Kj g ð1Þ

where K is a (finite) set of possible alternatives, and fhðaÞ; h ¼
1;2; . . . ; k, is the value of alternative a for criterion h. Ideally, a deci-
sion maker is interested in finding an optimal alternative â which
dominates all other alternatives (has the highest value for all crite-
ria compared to other alternatives) so fhðâÞP fhðaÞ;8a 2 K;8h. In
general, such an optimal solution does not exist, and indeed the
dominance relationship between the alternatives defined as: a
dominates b iff fhðaÞP fhðbÞ;8h 2 f1;2; . . . ; kg is poor between all
the two-by-two alternatives. Outranking methods such as PROM-
ETHEE try to enrich the dominance relationship between the
alternatives.

Considering two alternatives a and b, the preference structure
can be defined as:

aPb iff f hðaÞ > fhðbÞ
aIb iff f hðaÞ ¼ fhðbÞ

�
ð2Þ

aPb means that alternative a is preferred over alternative b, if alter-
native a is performing better than alternative b with regard to crite-
rion h, and aIb means that alternatives a and b are indifferent with
regard to criterion h.

The PROMETHEE method gives a numerical value between 0
and 1 to the preference relationship in Eq. (2) by introducing the
preference function P(a, b) such that:

Pða; bÞ ¼
0 if f hðaÞ 6 fhðbÞ
p½fhðaÞ; fhðbÞ� if f hðaÞ > fhðbÞ

�
ð3Þ

where 0 < p½fhðaÞ; fhðbÞ� 6 1. For practical applications, it is then rea-
sonable to assume that:

p½fhðaÞ; fhðbÞ� ¼ p½fhðaÞ � fhðbÞ� ð4Þ

Let Dh(a, b) be the difference between alternative a and alternative b
for criterion h as shown in Eq. (5):

Dhða; bÞ ¼ fhðaÞ � fhðbÞ ð5Þ

Brans and Vincke [22] recognized six types of preference functions
that are most common in the real case situations. In this paper, the
usual preference function is used, which is:

p½fhðaÞ; fhðbÞ� ¼
0 if Dhða; bÞ 6 0
1 if Dhða; bÞ > 0

�
ð6Þ

As an example, suppose that the cost of energy for option a is
$1000,000 less than that for option b, then preference of alternative
a over alternative b is 1 and preference of alternative b over a is 0.

Then, the PROMETHEE method uses the weighted preference in-
dex p(a, b) to give an integrated overall preference of alternative a
over b, shown in Eq. (7):

pða; bÞ ¼
Pk

h¼1whPhða; bÞPk
h¼1wh

ð7Þ

where wh is the relative importance of criterion h, which is defined
by the decision makers. To build the outranking relation among the
alternatives, PROMETHEE introduces three outranking measures for
each alternative as follows:
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� Outgoing flow /þðaÞ ¼
P

x2Kpða; xÞ. The larger /þðaÞ, the more
alternative a outranks the other alternatives in the set K,
� Incoming flow /�ðaÞ ¼
P

x2Kpðx; aÞ. The smaller /�ðaÞ, the less
alternative a has been outranked by other alternatives in the
set K.,

� Net flow /ðaÞ ¼ /þðaÞ � /�ðaÞ.

PROMETHEE II considers the net flow for each alternative a 2 K
to find the total preorder (complete ranking) such that:

� a outranks bðaPbÞ iff /ðaÞ > /ðbÞ,
� a is indifferent to bðaIbÞ iff /ðaÞ ¼ /ðbÞ.

In summary, to rank alternatives using the PROMETHEE II
method, the analyst needs to identify the alternatives/criteria ma-
trix, which is called the decision matrix, the relative importance of
criteria over each other, and the preference functions for each
criterion.

In this study, Decision Lab. 2000 software [23] is used which of-
fers the PROMETHEE I and II methods and provides graphical inter-
face for these methods.

2.2. The expected value method to determine criteria weights

The selected criteria usually do not have equal importance and
different actors may perceive their importance differently. Differ-
ent methods may be used to extract the decision makers’ prefer-
ences. The direct method of assigning weights to criteria is the
simplest one. Georgopoulou et al. [8] used an indirect method
based on a hierarchical ranking of criteria. In this paper, the Ex-
pected Value method [24] is used to extract the criteria weights.
This method estimates the weights based on the decision makers’
preferred ranking of the criteria. If there are k criteria in the anal-
ysis which are ranked in ascending order of importance based on
the decision maker’s preference, then the expected values in Eq.
(8) are assigned as criteria weights.

Eðw1Þ ¼
1

k2

Eðw2Þ ¼
1

k2 þ
1

kðk� 1Þ
..
.

Eðwk�1Þ ¼
1

k2 þ
1

kðk� 1Þ þ � � � þ
1

k � 2

EðwkÞ ¼
1

k2 þ
1

kðk� 1Þ þ � � � þ
1

k � 2þ
1

k � 1

ð8Þ

where E(wi) is the expected value of the ith criterion and is used as
the weight for that criterion, and k is the number of criteria.

3. Case study

A district heating system to provide hot water to 350,000 m2

floor area of a newly developed community in the city of Van-
couver, British Columbia (BC) was evaluated by the City.1 The
supplied hot water would be used for space heating and providing
hot water to the buildings within the community. The share of
floor area usage for this community is approximately 40% residen-
tial, 40% office area and the rest would be hospital, commercial re-
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1 The data and information used in this paper regarding the considered district
energy center were provided to the authors by the City of Vancouver [25,26,28,31,32].
Since these references are internal reports and not available to the public, the
information from these reports which was used in this study is presented clearly in
the text (Section 3) and Table 1.
tail, and hotel/casino. The annual heat demand of the connected
buildings to the district heating system was estimated to be
28,000 MWh, with the peak demand to be 10 MW [25]. It was con-
sidered to install a base-load system to provide about 68% of the
annual heat demand and to use a low capital cost system with se-
cure technology and fuel supply such as a natural gas boiler along-
side the base-load system for peaking and backup. The considered
split of energy supply between the two systems was 2.5 MW for
the base-load system and a 10 MW natural gas boiler be used
for peaking and backup [26]. Having a separate base-load system
would give the opportunity of exploiting alternative energy
sources to meet the majority of the community’s energy demand
throughout the year. Moreover, using alternative renewable ener-
gies for the base-load system in district energy centers help the
province meet its greenhouse gas (GHG) reduction plan. Specifi-
cally, it conforms to the actions (4) ‘‘Evaluate opportunities for
renewable energy in public facilities” and (13) ‘‘Encourage the
use of district energy systems” of British Columbia’s GHG Action
Plan [27].

BC’s municipalities have access to a wide range of energy
sources. Natural gas is one of the most popular sources of energy
all around BC. Its utilization is both cheap and easy because of the
well developed network and infrastructure available in the prov-
ince. There are also other locally available energy sources to the
communities in BC such as sewer heat, geothermal, and biomass.
Sewer heat recovery and geothermal heat exchange systems are
new, yet proven technologies. Wood biomass, as a renewable en-
ergy source, is getting increasing attention in BC. Relatively cheap
fuel price, low capital intensive equipment, GHG neutrality, and
abundant resources in the province are the advantages of wood
biomass which makes it a favorable energy source for energy
projects in BC. Clean electricity produced by hydro power plants
in the province also provides relatively cheap energy to
communities.

Waste incineration and waste energy from industrial processes
can be also utilized in district heating systems [28] provided that
these sources are practically available to the district heating center,
which was not the case for the considered district heating center.
Alternative energy production systems such as Combined Heat
and Power (CHP) systems would also enable district heating cen-
ters to produce heat as well as electricity more efficiently. Feasibil-
ity and performance of CHP systems with heat storage possibility
for district heating systems are confirmed [29,30]. None the less,
the focus of this study was only on heat generation and CHP option
was beyond the objectives set for the considered district heating
center.

Considering the available energy sources to energy centers in
Vancouver, BC, four energy options of sewer heat, geothermal heat,
biomass (wood pellets), and natural gas were evaluated by the City
of Vancouver to provide the base-load energy requirement of the
district heating system [31]. During the feasibility study stage, sev-
eral studies including heat demand, base-load and backup system
capacities, cost and emission analyses were performed by consul-
tants for the City. Several actors influenced the decision directly
and indirectly. The final decision, which was based partly on stud-
ies’ results and partly by the influence of different actors, was to
choose the sewer heat option.

In this study, the mentioned case with the same energy source
options is considered. Based on analyzing the study reports and
comprehending the actual decision making process and actors in-
volved, we specify six important criteria and three stakeholder
groups (actors). This paper presents the ranking of energy source
options for the district heating system considering all important
factors using PROMETHEE. Two different scenarios are examined
and indicate how consensus can be reached as the result of proper
communication between different actors.
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3.1. Stakeholders

Usually in the decision making process where multiple decision
makers with diverse backgrounds and viewpoints exist, if not
impossible, it is difficult to reach at a single, globally agreed upon
decision. Therefore, the decision makers and stakeholders should
be in communication with each other from the early stages of
the project in order to discuss their objectives, values and/or con-
cerns. MCDM methods can provide valuable basis for decision
makers’ discussions throughout this phase.

In deciding about projects with public benefits or those that
might be of public concern, such as energy decisions, it is impor-
tant to involve or open a discourse with the public. Some impor-
tant purposes of public involvement are: to inform the public, to
reflect public values in the decisions, to consider the impacts that
might be overlooked, and to provide ‘due process’ [13]. Moreover,
failure to involve the public in the decision process from the early
stages, sometimes results in strong oppositions at the final stages
of the decision making process from the public pressure groups
such as community associations, NGOs, and the media.

In this study, based on the real case, three groups are identified
who affect the decision on the base-load energy source for the dis-
trict energy system including: (1) developer, (2) environmental
group, and (3) community representative group. Developer is
responsible for the design and construction of the district energy
center. Technical information about the considered energy sources,
generated by the developer, would be reviewed by the environ-
mental group for obtaining any required permissions from the City.
Also, there has to be no objection from the community representa-
tive groups to issue permission on a selected energy source by the
City. Therefore, the decision authority situation in this case implies
that the decision on the choice of the base-load energy source is af-
fected by the environmental group and, to a greater extent, the
community representative group.

3.2. Alternative/criteria matrix

In order to compare energy systems against each other, various
criteria could be considered. Considered criteria depend to a large
degree on the situation and nature of the case, provided that the
performance of energy systems varies with regard to the consid-
ered criterion. Sometimes these criteria are referred to as ‘‘sustain-
ability indicators” meaning that these criteria identify the degree
of sustainability of the energy systems [32]. Usually these criteria
are classified into economic, environmental, technological, and so-
cial subgroups. They may be stated based on quantitative values or
a given qualitative measure. Normally, those with well established
quantitative measures such as investment cost, payback period,
efficiency rate, and system emissions are stated based on quantita-
tive units. Stakeholders’ judgmental values such as continuity and
predictability of an energy technology, contribution to regional
development, and contribution to employment opportunities crea-
tion can be shown on a scaled measure; for example, scale of 1–10,
1 being the worst and 10 being the best performance of an alterna-
tive [33].

In this research, four energy system alternatives are considered
which include biomass (wood pellets) combustion, sewer heat
recovery, geothermal exchange, and natural gas boiler systems.
For evaluation of energy systems, six criteria are considered as
follows:

� Costs (economic factor, quantitative value). Considered costs are
the present value (2005 base year) of the plants (including a
2.5 MW base-load system and a 10 MW peaking and backup
natural gas system) at 10% discount rate. The cost of the plant
includes land, building, major equipment, electrical and
mechanical installations, soft costs (engineering, construction
management and supervision), 7% provincial sales tax, contin-
gency cost at 10%, maintenance cost, and operating cost (fuel
and/or electricity cost and staffs’ salary) over the 25-year service
life of the system. Costs and benefits that are common and equal
for different energy alternatives such as grid development,
energy sales, and sale taxes are not considered [26]. For the bio-
mass energy source, wood pellet price is considered to be 6.5
(CAD/GJ) with an inflation rate of 2 (%/yr) [34]. For the sewer
heat option, the extra costs of the sewage system include:
redundant self cleaning screens, booster pumps, backwash pits,
transfer pumps, electrical infrastructure, incremental building,
stainless steel wetted interconnecting piping between treat-
ment system and heat pump evaporator. For geothermal option,
the cost of geothermal well includes wells, buried piping
between wells and plant, pumps, and electrical infrastructure
as required [26,31].

� Total GHG emission of the system (global environmental impact,
quantitative factor). This is the CO2 equivalent emission of the
2.5 MW base-load system and 10 MW peaking and backup nat-
ural gas system. Biomass is considered to be GHG neutral.
Reported number for biomass option also includes the GHG
emissions associated with the road transportation of biomass
(wood pellets) from the nearest producing facility (275 Kms)
to the district heating system. For the electricity used in sewer
heat and geothermal options heat pumps, a GHG factor of 205
(tonnes GHG/GWh) is considered for 30% of the electricity con-
sumed [26]; that is, 70% of the generated electricity is assumed
to come from GHG free hydro generators while 30% of it is gen-
erated in power plants with GHG emission equal to 205 (tones
GHG/GWh).

� Particulate Matter (PM) emission of the system (local environmen-
tal impact, quantitative factor). This includes particulate matter
less than or equal to 2.5 lm in diameter. Number reported is
the total PM2.5 emission produced by the facility without emis-
sion control system [35].

� Maturity of the technology (qualitative factor). This is a technical
factor which shows the risks associated with the installation,
handling and future break downs of the system [33]. This crite-
rion is considered as a qualitative measure based on a five-point
scale (1 = very low, 5 = very high).

� Local source (qualitative factor). Whether or not the energy
source is available within the community was considered as a
binary criterion (0 = locally not available, 1 = locally available).
The community representative group saw geothermal heat and
sewer heat options as local energy sources that would have
secure supply over the service life of the facility and if not imple-
mented, would be wasted.

� Traffic load (qualitative factor). One of the community’s concerns,
raised particularly about the biomass option, was trucking in the
biomass to the facility and taking out the remained ash. The
community representative group was concerned whether truck-
ing of this fuel would have major traffic burden for the commu-
nity. Therefore, this factor is considered as a binary value which
is 1 for the biomass option and 0 for other options.

Table 1 shows the alternatives/criteria matrix of the decision
problem.
4. Scenarios

In this paper, two scenarios are examined to evaluate the im-
pact of communication and transparency of information among
the stakeholders on the final decision about the most suitable en-
ergy option of a district energy center. The first scenario represents



Table 1
Alternatives/criteria matrix.

Criteria Units Alternatives

Natural gas Biomass Sewer heat Geothermal

Cost 103 CAD $ 16,875 14,688 19,041 23,521
GHG emission Tonne/yr 7875 2564 3635.2 4081.28
PM2.5 Tonne/yr 0.14 2.40 0.04 0.04
Maturity of technology Qualitative scale (1–5) 5 4 1 2
Local source Binary value (0, 1) 0 0 1 1
Traffic load Binary value (0, 1) 0 1 0 0
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the actual decision process for selecting the energy option for the
district heating system. In this scenario, criteria weights are ex-
tracted based on stakeholders’ preferences and ranking of criteria
using the Expected Value method. The second scenario assumes
there is communication between stakeholders and information
generated during the feasibility study is available to all stakehold-
ers. This would affect stakeholders’ preferences and their ranking
of criteria, and consequently the final decision in a multicriteria
analysis.

4.1. Scenario I

As the developer carried out the feasibility analysis of the dis-
trict energy center, studying the economics and GHG emissions
of different energy options available to the energy center, they
could confirm the superior performance of the biomass option.
The recommendation of the developer was to install a 2.5 MW bio-
mass combustion system for the base-load and a 10 MW natural
gas boiler for peaking and backup. In the beginning of the imple-
mentation phase when the developer required regulatory permis-
sions for the energy center, the environmental and the
community representative groups became more aware of the
planned energy facility. At this stage, the idea of utilizing biomass
in the energy center was rejected by both the environmental and
the community representative groups. Community representative
group’s concerns were mainly regarding the negative effect of bio-
mass utilization on the local air quality and traffic load due to bio-
mass transportation to the facility. Environmental group’s review
of the energy options identified that the feasibility study carried
out by the developer had not addressed such issues as particulate
matter emissions from the biomass combustion system which was
central for acquiring the air quality permission. Because of the time
limit the developer had in delivering the project, the public process
required for addressing the issues raised by other stakeholders
could not be fulfilled. Therefore, the next economic option which
did not have any objection from the other involved stakeholders,
i.e. sewer heat recovery system, was chosen to provide the base-
load heat for the energy center.

Based on the review of memorandums and comments received
from the three stakeholder groups involved in the decision process,
below ranking of decision criteria was inferred for each
stakeholder:
Table 2
Criteria weights considered in Scenario I.

Stakeholders Criteria

Cost Maturity of technology

Developera 0.41 0.24
Environmental groupb 0.0875 0.0875
Community representative groupc 0.06 0.06

a The criteria weights are obtained from Eq. (8) with k equals to 6 and ranking stated
b The criteria weights are obtained from Eq. (8) with k equals to 6 and ranking stated
c The criteria weights are obtained from Eq. (8) with k equals to 6 and ranking stated
1. Developer:

Cost > Maturity of technology > GHG emissions

> PM emissions > Local source ¼ Traffic load ð9Þ

2. Environmental group:

PM emissions > GHG emissions > Cost

¼ Maturity of technology ¼ Local source

¼ Traffic load ð10Þ

3. Community representative group:

PM emissions > Local source ¼ Traffic load > Cost

¼ Maturity of technology ¼ GHG emissions ð11Þ

Table 2 summarizes the criteria weights considered for each stake-
holder in scenario I using Eq. (8). In this scenario, the number of
criteria (k) is 6 and in a situation when criteria have equal impor-
tance, the average of weights is considered. For example, the crite-
ria weights for the two criteria ‘‘Local source” and ‘‘Traffic load”
considered for the developer based on the ranking expressed in
Eq. (8) would be the average of the criteria weights when Local
source > Traffic load and Local source < Traffic load.
4.2. Scenario II

In this scenario, in an ex-post attempt, it is tried to address and
evaluate the major concerns of the environmental and community
representative groups about the biomass burning facility, i.e. par-
ticulate matter emissions from the biomass burning facility and
traffic load due to biomass transportation.

The issue of traffic burden of biomass fuel supply over the ser-
vice life of the energy center which was of great importance for the
community representative group was evaluated based on a fuel
supply/ash disposal model [34]. The result of this analysis indi-
cated that the supply of wood pellets can be secured through long
term contract with a local wood pellet supplier. Moreover, the
amount of wood pellets required for the biomass plant with a boi-
ler of 2.5 MW would be about 5800 tonnes/year. This volume of
wood pellets could be scheduled for one truck of 40 tonnes capac-
ity every 3 days. Also, ash disposal could also be scheduled such
GHG emission PM2.5 emission Local source Traffic load

0.16 0.10 0.045 0.045
0.26 0.41 0.0875 0.0875
0.06 0.41 0.21 0.21

in Eq. (9).
in Eq. (10).
in Eq. (11).
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that the same truck is used so that no additional truck would be re-
quired to commute to the facility [34]. This result was communi-
cated to the authorities and the insignificant effect of biomass
transportation to the energy center on the local traffic was
confirmed.

In another study, air quality assessment of the surrounding area
of the biomass facility was carried out by the City [35]. It was
shown that with commitment to the air quality standards and with
the means of installing appropriate emission control systems, the
emissions of the district energy facility can be within the emission
guideline of Vancouver (BC). The considered emission control sys-
tem including a cyclone system coupled with an Electro Static Pre-
cipitator (ESP) would constitute about 5% of the total cost of the
biomass plant estimated in Table 1; while collection efficiency of
particulate matter emissions of this configuration is 93–98% [36].
This study estimated that through implementing the indicated
emission control system, the contribution of the biomass burning
facility to the ambient air level of particulate matter emission
would be, at the worst case, less than 2% and well below the most
stringent emission level [35].

The insignificant effect of the biomass burning activity on the
ambient air quality and traffic load, when communicated and ap-
proved by the stakeholder groups, was reflected in Scenario II by
omitting the two respective criteria from the decision matrix. Tak-
ing out the PM emissions and traffic load criteria from the criteria
list, the criteria ranking by each stakeholder would change as
follows:

1. Developer:

Cost > Maturity of technology > GHG emissions

> Local source ð12Þ

2. Environmental group:

GHG emissions > Local source ¼ Cost

¼ Maturity of technology ð13Þ

3. Community representative:

Local source ¼ Cost ¼ Maturity of technology

¼ GHG emissions ð14Þ
Table 3
Criteria weights considered in Scenario II.

Stakeholders Criteria

Cost Maturity

Developera 0.52 0.27
Environmental groupb 0.16 0.16
Community representative groupc 0.25 0.25

a The criteria weights are obtained from Eq. (8) with k equals to 4 and ranking stated
b The criteria weights are obtained from Eq. (8) with k equals to 4 and ranking stated
c The criteria weights are obtained from Eq. (8) with k equals to 4 and ranking stated

Table 4
Ranking of alternatives for each stakeholder based on PROMETHEE II.

Ranking

Stakeholders 1 2

Scenario I
Developer Biomass (U = 0.47) Natural gas (U =
Environmental group Sewer heat (U = 0.35) Geothermal (U =
Community group Biomass (U = 0.37) Natural gas (U =

Scenario II
Developer Biomass (U = 0.7) Sewer heat (U =
Environmental group Biomass (U = 0.63) Sewer heat (U =
Community group Biomass (U = 0.68) Sewer heat (U =
The criteria weights shown in Table 3 are obtained from Eq. (8)
with k equals to 4 and equally important criteria are averaged as
was done in the first scenario.
5. Results and discussion

Table 4 shows the ranking of the alternatives obtained by
PROMETHEE II method for the three stakeholder groups in Scenario
I and Scenario II. The outcome of the PROMETHEE II method for
Scenario I explicitly shows that stakeholders’ interpretations about
the best option are very diverse when communication is not facil-
itated and major concerns of the biomass burning facility is not ad-
dressed. The fact that biomass is the worst and second worst
option for the community representative and environmental
groups, respectively, stems from the concern of these groups about
the effects of biomass burning facility on the local activities. Also, it
can be seen that sewer heat recovery option is the best option for
the environmental and community representative groups. There-
fore, it can be expected that sewer heat recovery option be chosen
since, as mentioned, decision authority of these groups is higher
than that of the developer. This result was similar to what was ob-
served in reality. The ranking of alternatives in Scenario II has
changed, as the main points of conflict between the stakeholders
are addressed because of the proper communication among them.
This affected the stakeholders’ preferences and ranking of criteria
and resulted in a general agreement.

Therefore, to reach a consensus, all the legitimate stakeholders
should be identified accurately and their perceptions, viewpoints,
and concerns should be obtained and addressed in the feasibility
studies of potential district energy systems. The accurate data
and information produced during the feasibility study of the sys-
tem should then be conveyed to stakeholders properly. In order
to include all important factors in the analysis, a proper decision
making tool that can incorporate quantitative and qualitative fac-
tors should be applied.

6. Conclusions

In this paper, four energy options of natural gas, biomass (wood
pellets), sewer heat recovery, and geothermal exchange to provide
of technology GHG emission Local source

0.15 0.06
0.52 0.16
0.25 0.25

in Eq. (12).
in Eq. (13).
in Eq. (14).

3 4

0.21) Sewer heat (U = �0.13) Geothermal (U = �0.54)
0.14) Biomass (U = �0.17) Natural gas (U = �0.54)
0.30) Sewer heat (U = �0.27) Geothermal (U = �0.40)

0.22) Natural gas (U = �0.22) Geothermal (U = �0.71)
0.12) Geothermal (U = �0.31) Natural gas (U = �0.45)
�0.08) Natural gas (U = �0.22) Geothermal (U = �0.38)
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the base-load heat demand of a district energy system in Vancou-
ver (BC) were compared. The PROMETHEE II method was used to
rank the alternatives against six criteria of cost, GHG emissions,
PM emissions, maturity of technology, traffic load, and local source.
Two scenarios were investigated to indicate how the consensus be-
tween the stakeholder groups involved in the district energy pro-
ject can be reached through good communication during the
feasibility study and decision making process. The first scenario
represented the real case of decision making where there was no
communication between stakeholders. This fact was reflected in
the analysis by the decision makers’ preferences and ranking of cri-
teria by them. Based on the ranking, criteria weights were assigned
using the Expected Value method. The PROMETHEE results con-
formed to the decision made in the real case. Despite advantages
of utilizing biomass in the considered district energy system, such
as low capital cost, advanced and low risk burning technology, and
GHG neutrality, it was not chosen as the best option since the con-
cerns of local groups were not addressed properly during the fea-
sibility study phase. The sewer heat option was selected due to
the higher decision authority of the opposing groups and the fact
that the information about biomass option was not communicated
to other stakeholders well. In the second scenario, it was assumed
that communication was facilitated among the stakeholders and
concerns of the stakeholders were addressed during the decision
process. Therefore, the traffic load and PM emission criteria were
omitted from the analysis. Based on the decision makers’ ranking
of criteria and applying the Expected Value method, the impor-
tance of criteria was derived. The PROMETHEE results showed a
general agreement among stakeholders. The top ranked alternative
in this scenario for all stakeholders were the same indicating that
transparency and communication would help reaching consensus.
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Abstract — We present a new multi-agent model of generation 

expansion in electricity markets. The model simulates generation 
investment decisions of decentralized generating companies 
(GenCos) interacting in a complex, multidimensional environ-
ment. A probabilistic dispatch algorithm calculates prices and 
profits for new candidate units in different future states of the 
system. Uncertainties in future load, hydropower conditions, and 
competitors’ actions are represented in a scenario tree, and deci-
sion analysis is used to identify the optimal expansion decision for 
each individual GenCo. We test the model using real data for the 
Korea power system under different assumptions about market 
design, market concentration, and GenCo’s assumed expecta-
tions about their competitors’ investment decisions. 
 

Index Terms—Electricity Markets, Generation Expansion, 
Agent-Based Modeling, Probabilistic Dispatch, Decision Analysis. 

I.  INTRODUCTION 
raditional generation expansion planning in electrical 
power systems is usually based on centralized least-cost 

planning, subject to reliability constraints. However, the cen-
tralized least-cost planning approach does not reflect how 
investment decisions are made in today’s electricity markets, 
where several generating companies (GenCos) are competing 
with each other, both in short-run operations and long-run 
investments. Some would argue that a well-functioning elec-
tricity market would converge toward the optimal expansion 
plan from a system’s perspective in the long run. A competi-
tive market should provide correct investment incentives 
through price signals in short- and long-term markets. Others, 
however, would contend that the independent and decentral-
ized decision-making process in restructured electricity mar-
kets leads to suboptimal expansion plans. Several important 
factors, such as market power, limited information about 
competitors current and future actions, low demand-side par-
ticipation, inadequate market design, and increased financial 
risk, cause the expansion decisions to deviate from the optimal 
plan.  
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It is still too early to judge all the long-term consequences 

of power industry restructuring from historical data, because 
of the large time horizon involved in capacity expansion. 
However, there is clearly a need to develop new modeling 
approaches to improve our understanding of the long-term 
price and investment dynamics in restructured electricity mar-
kets.  

From a modeling point of view, the centralized least-cost 
expansion planning perspective is convenient, since one ob-
jective function can be used to optimize the entire system. The 
generation planning problem can then be solved using stan-
dard optimization methods, such as dynamic programming. 
Several models have been developed for traditional least-cost 
generation planning, e.g. the WASP model [1]. Modeling of 
generation investments in restructured electricity markets is a 
fairly new area of research. It is a challenge to model the stra-
tegic business interactions between competing GenCos, and at 
the same time include sufficient detail in the technical repre-
sentation of the power system. In the literature we find some 
examples of generation planning models for restructured elec-
tricity markets based on game theory [2]. System dynamics 
[3], real options theory [4], and agent-based modeling [5] 
have also been applied to analyze GenCos’ investment deci-
sions.  

In this paper we, present a novel model for analyzing gen-
eration expansion decisions in electricity markets. We use 
agent-based modeling to simulate the decentralized decision-
making processes underlying GenCos’ investment decisions. 
In the model, GenCos are represented as independent and de-
centralized agents interacting with each other in a complex, 
multidimensional environment. A convolution algorithm is 
used to simulate the market operation of current and future 
generation system configurations, taking into account thermal 
generators’ forced outage rates and scheduled maintenance 
needs. A peak-shaving algorithm is used to represent hydro-
power dispatch. Uncertainties in future load growth, hydro-
power availability, and competitors’ expected future invest-
ment decisions are represented with scenario trees. Finally, 
decision analysis is used to model each individual GenCo’s 
investment decision. The model can simulate generation ex-
pansion decisions over a multiyear time period. 

The paper has the following structure. First, we describe 
the algorithm of the new multi-agent generation expansion 
model. We then present results from testing of the model us-
ing realistic data for the power system in South Korea, where 
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generation expansion decisions are simulated under a number 
of different assumptions about market structure and design. 
Conclusions and directions for future work are provided in the 
end. 

II.  MODEL DESCRIPTION 
Argonne National Laboratory has spent several years de-

veloping an agent-based model for electricity markets. So far, 
the main focus of the Electricity Market Complex Adaptive 
Systems (EMCAS) model has been on short-term hourly 
simulations (see [6] and [7] for a description of EMCAS, with 
an example of an application in [8]). The development of the 
expansion model presented in this paper facilitates analysis of 
long-term investment aspects within the same multi-agent 
modeling framework.  

A.  Overview of the Expansion Model 
The overall structure of the simulated decision making 

process is illustrated in Fig. 1. The model runs for a number of 
decision years. Within each decision year, each GenCo makes 
a forecast of future market conditions, in which it assesses 
potential investments in new generation capacity, taking into 
account the impact on the profitability of its own existing 
portfolio of plants. The actual system developments may devi-
ate from the GenCos’ expectations. Hence, as in the real mar-
kets, optimality is not guaranteed, neither from a GenCo nor 
from a system perspective. Currently, the GenCos consider 
investments only in thermal generation during the simulation. 
However, investments in other technologies, such as hydro- 
and wind-power, may be specified as external inputs. Plant 
retirements, regardless of the technology type, can also be 
specified as external inputs. 

After GenCos have formulated expansion plans in a deci-
sion year, the plans are made publicly available. Based on an 
assumed technology-specific construction period, the new 
units come online in the system at a future date. For each deci-
sion year, the GenCos learn about the actions of their competi-
tors through their announcements of new investment projects. 
The latest information about the current system, capacity re-
tirements, and announced capacity additions are always taken 
into account by the GenCos in the assessment of new invest-
ment alternatives. However, information about expansion 
plans is not shared among the GenCos within the decision 
year. Hence, competitors’ expansion decisions may be very 
different from what the individual GenCos originally fore-
casted. 

A decision year simulation is performed to evaluate prices, 
GenCo profits, and generation system reliability within the 
decision year, based on the current system configuration. At 
the end of the decision year, expansion decisions of all Gen-
Cos are aggregated and the system is updated with the latest 
information about completed projects, retirements, and new 
announcements. Load growth rates are exogenous inputs to 
the model. There are two types of load growth rates: the first 
is the actual load growth rate, which is simulated for each de-
cision year. This rate is unknown to the GenCos, until the af-

ter a decision year has been simulated. The second rate is used 
by the GenCos in their forecasts and investment decision mak-
ing and can consist of several scenarios, as explained below. It 
may deviate from the actual simulated load growth. 
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Fig. 1. Overview of simulated decision-making process in multi-agent expan-
sion model. 

 
Each GenCo uses the same general decision model. How-

ever, several of the parameters that go into the model, such as 
a GenCo’s decision preferences, the probabilities of load and 
hydropower scenarios, and available investment alternatives 
may vary among the companies. At the same time, the Gen-
Cos will learn about the decisions of their competitors during 
the simulation. This will also contribute to differentiate the 
investment strategies applied by the various companies in the 
system. Another key component to investment decisions is 
that GenCos may have distinctly different portfolios of exist-
ing supply assets. One GenCo may estimate that it is profit-
able to build a certain new technology because it will have 
little or no impact on the profitability of its existing supply 
portfolio, while another GenCo may estimate that the same 
technology would not be profitable because it would have a 
large detrimental impact on its existing assets. 

B.  Uncertainty in Load Growth and Hydropower Generation 
Load growth is an important driver for future prices and the 

need for capacity expansion in the system. There is usually 
considerable uncertainty regarding future load levels in the 
system. This uncertainty is represented in the model through 
scenarios describing the annual percentage change in the sys-
tem load for each year in the forecast period. The hourly loads 
specified for the initial year are scaled for each forecast year 
depending on the load growth scenario. 

In a system with considerable hydropower, the uncertain 
inflow of water into the system is also an important factor that 
must be considered. This uncertainty can be modeled by 
specifying a number of hydropower availability scenarios for 
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all hydropower plants in the system. In the dispatch algorithm, 
the hydro generation is modeled with a peak-shaving logic, 
where the amount of peak-shaving within each week depends 
on the hydropower scenario. Other renewable and non-
dispatchable resources (e.g. wind, biomass, waste) are repre-
sented with an hourly time series for generation that is sub-
tracted from the forecasted loads. 

C.  Competitor Expectations 
In a decision year, the GenCos know all the existing capac-

ity in the system and what has been announced by their com-
petitors in previous years. However, when forecasting prices 
and profits over the lifetime of a new unit, the GenCos also 
need to anticipate what investments their competitors are 
likely to make further into the future, i.e. beyond what has 
already been announced. To model future investments from 
other GenCos, we assume that each GenCo has an aggregate 
view of how much new capacity the rest of the market will 
add to the system over time. The representation of others’ 
anticipated investments consists of the total installed capacity 
and the technology mix of the new competitor plants. Both of 
these characteristics are, of course, highly uncertain at the 
time a GenCo makes its investment decision. We, therefore, 
model the anticipated installed capacity and technology mix 
from others as scenarios. The first competition layer repre-
sents the anticipated total amount of new installed capacity 
that competitors will build over time. The second competition 
layer represents the technological composition of this new 
competitor capacity. The result is a scenario-tree structure 
used to represent uncertainties in load growth, hydropower 
conditions, and competitors’ expansions (Fig. 2). 

The new capacity built by others is linked to a GenCo-
specific system reserve margin target that represents a 
GenCo’s expectation about future system reserve margins. A 
GenCo assumes that the total investments from the competi-
tors will cover a certain percentage of the required capacity 
needed to maintain the system reserve target. The competitor 
capacity type can be one of several specified candidate tech-
nologies. Hence, each GenCo can derive a complete competi-
tor expansion plan based on the parameters described above 
for all scenarios in Fig. 2.  

 
 

high 

med 

low 

p11 

p12 

p13 

p22 

p21 

p23 

Load Hydro Capacity Type 
Competitors’ Expansion

p22 

p21 

p23 

p22 

p21 

p23 

P31 

P32 

P33 

p42 

p41 

p43 

p42 

p41 

p43 

p42 

p41 

p43 

high 

med 

low 

 
Fig. 2. Scenario tree for uncertainties in load growth, hydro conditions, and 
competitors’ expectations. 

 
To save computation time in the dispatch simulation we as-

sume that all GenCos use the same scenario definitions for 
load growth and hydropower conditions. In the GenCos’ rep-
resentation of competitors’ decisions, the capacity levels are 
defined individually for each GenCo, as explained above, 
whereas the definition of capacity types is the same for all 
GenCos. However, the probabilities are specified individually 
for each GenCo over all four layers in the scenario tree. The 
scenario probabilities are currently exogenous inputs to the 
model and kept constant during the simulation. However, in 
future versions the idea is that the GenCos can learn and up-
date these probabilities during the simulation. 

Prices and profits must be calculated for all GenCos’ units 
over all leaves in the scenario tree. Computational efficiency 
is, therefore, of major importance in the dispatch algorithm, 
which is outlined below. 

D.  Probabilistic Dispatch: Prices, Profits, Reliability 
A probabilistic dispatch algorithm based on the traditional 

Baleriaux-Booth method [9] is used to model forced outages 
in thermal units and their impact on prices and reliability for a 
given system configuration. An equivalent load, Le, represents 
the load that a unit will serve accounting for outages of units 
that are lower in the merit order dispatch. Le can be defined as: 

 
 Le = Ls + Lr (1) 

 

where     
Ls original system load [MW]
Lr forced (random) component of unit outages [MW]

 
The cumulative probability distribution of the equivalent 

load is found by convoluting each thermal unit’s forced out-
ages into the original system load. This is done in merit order, 
based on the units’ marginal production cost. A single load 
level is evaluated at a time. Hence, the cumulative distribution 
for the initial load is a vertical line (Fig. 3). As units are con-
voluted into this curve, the resulting equivalent load curve is 
transformed into one that has an upper elongated tail. The 
resulting cumulative probability distribution function for Le is 
calculated recursively, based on (2). The probability of a ther-
mal unit being the marginal producer in the system is also 
determined. We assume that all thermal units bid their mar-
ginal production cost. Therefore, the price probability is given 
by (3). The probability of having energy not served (ENS) 
and, therefore, price being equal to a regulatory price cap, 
PCAP, is given by (4). An illustration of the convolution proc-
ess and the price distribution calculation for a given load 
level, Ls, in a simple system with two units of equal size is 
shown in Fig. 3. 
 

 Fn(Le) = pn Fn-1(Le) + qn Fn-1(Le – Cn) (2) 
 f(MCn) = Fn-1(TCn-1) – Fn(TCn) (3) 
 f(PCAP) = FN(TCN) (4) 

 

where  
Fn(Le) cumulative probability distribution for Le, 

F0(Le≤Ls) = 1, F0(Le>Ls) = 0 
f(MCn) probability price equals marg. cost unit n, MCn 
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f(PCAP) probability price equals price cap, PCAP 
Cn capacity of generating unit n, n = 1..N [MW]
TCn sum capacity of generating units 1.. n [MW]
pn probability unit n in operation 
qn probability unit n on forced outage (pn+qn=1) 

Unit 1 Unit 2 

Le Ls 
0 

1 
F(Le) 

MC2 

MC1 

F(Le) 
1

PCAP 

LeUnit 1 Unit 2 ENS  
Fig. 3. Calculation of cumulative distribution for equivalent load (left), and 
price distribution (right) for a given load level, Ls. ENS = Energy Not Served. 
 

Probabilistic convolution is done for each month. Planned 
maintenance of the thermal units is taken into account. A 
monthly maintenance scheduling routine is used, which mini-
mizes the maximum monthly loss of load probability in each 
year. Hydropower and non-dispatchable generation is sub-
tracted from the original hourly loads within the month, using 
a peak-shaving algorithm for hydro power. Price distributions 
are calculated for a sample of the resulting thermal loads, and 
the results are aggregated into a monthly price distribution. 
Note that it is necessary to perform the recursive convolution 
only for the maximum thermal load in the month over all 
load/hydro scenarios. The resulting convolution curves are 
stored in tables with small discrete load steps. The price dis-
tribution for lower load levels can easily be derived from the 
probabilities stored in the convolution table for the maximum 
thermal load. Monthly price distributions are calculated for 
each load/hydropower scenario throughout the planning pe-
riod, taking into account the monthly maintenance plan. How-
ever, the underlying convolution tables need to be updated 
only for each new forecast period (i.e. when the portfolio of 
thermal plants in the system changes, due to either retirements 
or new announced capacity). Furthermore, all GenCos use the 
same convolution tables when evaluating profitability of new 
units. This greatly improves the computational efficiency of 
the model. 

The aggregated monthly price distributions are used to cal-
culate the profitability of new candidate units. In addition, the 
impact of a new unit on the profitability of a GenCo’s existing 
thermal and hydropower units due to potential reduction in 
prices is also estimated. The resulting cost and revenues for a 
new candidate plant, discounted over all months in the pay-
back period and calculated for all scenarios in the scenario 
tree (Fig. 2), are used as input to the GenCo’s investment de-
cision. 

The unannounced capacity in the GenCos’ expectations 
about competitors’ future investments is not included in the 
convolution procedure described above, as this information is 
GenCo specific. However, an approximation is made to take 
into account how this capacity influences prices and candidate 
unit profit in the different competitor expectation scenarios for 
each GenCo. A GenCo’s own unannounced new capacity is 
handled in a similar manner within each decision year.  

E.  Decision Analysis 
Decision analysis is used to identify the preferred invest-

ment decision for each individual GenCo. Multi-attribute util-
ity theory (MAUT) is used to calculate the expected utility 
from all possible investment decisions, including not investing 
at all. The optimal decision according to MAUT is to choose 
the alternative with the highest expected utility. The underly-
ing assumption is that a decision maker’s preferences can be 
quantified in terms of a multi-attribute utility function. The 
utility function takes into account the decision maker’s risk 
preferences and the trade-offs between different objectives. 
The theoretical background for MAUT is thoroughly de-
scribed by Keeney and Raiffa in [10]. 

We use the additive form of the multi-attribute utility func-
tion, i.e., the total utility for an alternative equals the weighted 
sum of the single attribute utilities, as shown in (5). An expo-
nential form is used for the single-attribute utility functions, as 
shown in (6). The corresponding risk parameters indicate risk 
preferences for the individual attributes. If β is zero, the deci-
sion maker is risk-neutral. A negative β means risk aversion, 
whereas a positive β means a risk-seeking attitude. The upper 
and lower limits of each attribute refer to the maximum and 
minimum values considering all candidate technologies. 

The trade-off weights and the risk parameters are specified 
as input for each GenCo and can be used to represent different 
preferences among the market participants. 

 

 
1

( x ) ( )
m

i i i
i

u k u
=

= ⋅∑ x  (5) 

 { })/()(1)1/(1)( iiiiii xxxx
ii eexu −−−⋅−= ββ  (6) 

 

where  
u(x) total utility for attribute set x = x1, x2, ..., xm 
ui(xi)  utility for single attribute, i = 1,2, ..., m 
ki trade-off weight, attribute i 
βi risk parameter, attribute i 

ix  upper limit, attribute i 

ix  lower limit, attribute i 
 
Currently, three attributes can be taken into account in the 

model: 1) Profit over unit payback period, i.e. (discounted 
revenue) – (discounted cost); 2) Profit ratio over unit payback 
period, i.e. (discounted profit)/(discounted cost); and 3) Mar-
ket share, measured in terms of capacity at a certain time in 
the future. These attributes are calculated for all the leaves in 
the scenario tree (Fig. 2). The expected utility for an alterna-
tive is then calculated over all leaf scenarios based on the 
probabilities in the tree. 

In each decision year, a GenCo must decide how many 
units to build of each candidate unit technology type. The 
number of possible alternatives can therefore become very 
high. To reduce the discrete search space, we limit the GenCo 
to choose only one plant at a time. In the algorithm, the 
GenCo therefore calculates the expected utility for one unit of 
all its candidate technologies. The unit with the highest ex-
pected utility is chosen. The process is repeated with plants 
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already selected added to the GenCo’s fleet of existing units. 
The iterative selection process continues within the same deci-
sion year until the GenCo’s choice is to not build more plants, 
or until an imposed constraint on the GenCo’s annual capacity 
expansion is reached. 

F.  Flowchart of Expansion Code 
A flowchart describing the main parts of the multi-agent 

expansion code is given in Fig. 4. Note that in the decision 
year loop, steps 3–6 are done only once in each decision year, 
and the results are used by all GenCos. In contrast, the calcu-
lation of competitor expectations (step 2) and candidate unit 
evaluation and decision analysis (step 7) are done individually 
for each GenCo. 
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Fig. 4. Flowchart of multi-agent expansion algorithm. 

III.  CASE STUDY: KOREA POWER SYSTEM 
We have tested the new expansion model in collaboration 

with Korea Power Exchange (KPX), using real data for the 
Korea power system. A selection of results is presented be-
low. Note that the only purpose of the case study was to test 
the new EMCAS expansion model. None of the results are 

used for actual planning purposes by KPX. 

 projections, are set to 2.5% 
un  2014 and 2.0% afterw

 

LONG M LOAD FORECAST FOR KOREA POWE YSTEM 
Growth te 

A.  Assumptions for Korea Power System 
The technical specifications for the power system and the 

load forecast assumptions are based on the 3rd Basic Plan for 
Korea Long-Term Power Supply and Demand [11]. A 15 year 
simulation period is used, starting from 2006. Table 1 shows 
the expected long-term load growth for the Korea power sys-
tem within this period. The peak load is expected to be gradu-
ally saturated in the far future. In the expansion model, we use 
the growth rates in Table 1 in the decision year simulations, 
whereas the GenCos’ forecasted growth rates, which are used 
as nput to their price and profiti

til ards. 

TABLE 1 
-TER R S

Year Peak(MW) Ra
’05 
’06 
’08 
’10 
’12 
’14 
’16 
’18 71,025 0.7% 
’20 71,809 0.6% 

54,631 
56,681 
61,132 
64,605 
67,120 
68,832 
70,049 

- 
3.8% 
3.5% 
2.6% 
1.8% 
1.1% 
0.8% 

 
The installed capacity in the Korea power system in 2005 

was about 62.7GW. An additional 20.8GW is under planning 
and construction and will be built by 2020 (Table 2). Nuclear 
and coal capacity each account for about 30% of total capac-
ity. About 20 % of capacity consists of Natural Gas Combined 
Cycle (NGCC) plants. There is also a small amount of hydro-
power generation and other renewable generation in the sys-
tem. The capacity in Table 2 comprises a total of 127 units, 
wh h are all represented in y in the input data. 

 
T

EXISTING CA NITS UN ONSTRUCT W, %
Technology Existing Cap. 

(as of 2005) 
U

(until 2020) 

Retiring 
Cap. 

Share 

ic dividuall

ABLE 2 
DER CPACITY AND U ION   [M ] 

nder Construc-
tion (%) 

Nuclear 
Coal 

NGCC 
Oil 

Hydro 
COGEN 

Renewable 
1,  1,  

1, 7 
2, 3 

2.1 
Other. 

17,716 
17,965 
16,449 
4,662 
3,829 

382
210 
52 

6,800 
6,540 
1,500 
200 

2,400 
983

1,433 
9 

- 
1,525 

53
64
- 
- 
- 
- 

31.7 
29.7 
21.2 
2.9 
8.0 
4.3 

0.1 
Sum 62,265 5,705 20,865 

TOTAL SUM 
100 

77,425 

 
There are many existing GenCos in the Korea power mar-

ket. As shown in Table 3, the share of the nuclear company, 
KHNP, is about 32%, and the share of the five major coal 
companies is about 53% of the installed capacity. The capac-
ity shares of the other existing companies are small. For sim-
plicity, we use an aggregate representation for the small com-
panies. In addition to the existing companies, we also include 
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two new GenCos (new entrants) in the expansion simulations.  
We used five candidate units (Table 4), whose bid prices 

are based on the production cost. It is assumed that the nuclear 
company can build only Nuclear 1400. The five coal compa-
nies can build both Coal (870, 1000) and NGCC (500, 700). 
The NGCC companies and the new entrants can build NGCC 
(500, 700) only. The technical data of candidate units is 
shown in Table 4. Nuclear units have the highest capital and 
lowest operating cost, and vice versa for the NGCC unit. The 
expected forced outage rates (EFOR) are around 5% for all 
candidate units. A 7.5 % di te was used for all candi-
dat

XISTING IES A SHAR  OF  20
Ent nts #of ts Sh ) 

scount ra
e units and GenCos. 

T
D THEIR CAPACITY

ABLE 3 
E COMPAN N  

Resource 
E  (AS 20) 

ra Name  uni are(%
 
 
 
 
 
 

Existing 
GenCos 

Renewable 

Coal & & PS 
Coal & & PS 

NG il 
Wind, LFG, etc. 

KHNP 
NADO 
JUBU 
SEBU 
NABU 
DOSE 
PSCP 
GSEP 
GSPW 
MYUC 
KPWR 
SUJA 

COGEN 

Others 

Nuclear & Hydro 
Coal & NGCC & PS 
Coal & NGCC & PS 
Coal &  & PS  NGCC

 NGCC 
 NGCC 
NGCC 
NGCC 
NGCC 
NGCC 
NGCC 
Hydro 
CC & O

Others 

26 
15 
14 
18 
19 
20 
4 
2 
2 
1 
2 
1 
1 
1 
1 

32.4 
12.4 
8.4 
10.0 
10.7 
11.5 
2.3 
1.3 
1.2 
0.7 
1.3 
1.3 
4  .3
2.1 
0.1 

New 
Entrants 

DARM NGCC 0 
0 

0 
SKES 0 NGCC 

 
TA

HA RIS
B

CAN S C T  R 1$. 
Fu t 

(kW al) 
Payback 

Perio ear) 
Cons tion 
Perio ear) 

LE 4 
ICS. E ANGEDIDATE UNIT RACTE XCH ATE: 1 WON ≈ K

Technology el Cos
on/Gc d(y

truc
d (Y

NGCC 500 
NGCC 700 
Coal 870 

Coal 1000 
Nuclear 1400 

9.5 
1.4 

25 
30 

7 
10 

35.4 
35.4 
9.5 

20 
20 
25 

3 
3 
7 

 
We used a simplified scenario tree structure in the simula-

tions presented here, with only one load growth scenario and 
one hydropower scenario (based on actual hydropower data 
for 2005). For the competitor expectations, we used one build 
level scenario, and three build type scenarios (NGCC 500, 
NGCC 700, and Coal 1000 with equal probability for each 
type). Other simulation parameters are summarized in Table 5 
(base case). The GenCo’s Own Build Limit is a constraint on 
how much each GenCo can build within each decision year, as 
a p rcentage of the total required in the system to 
meet the expected re

 

TA
ATIO ETERS

GenCo 

e capacity 
serve margin.  

BLE 5 
N P MSIMUL  ARA  

Parameter 
NGCC Coal Nuclear 

Reserve Margin Parameter 
Genco’s Own Build Limit 

Co n 
ecision Analysis Attribute 

Risk Preference 
Profit Ratio 

Neutral 
Profit Ratio 

Neutral 
Profit Ratio 

Neutral 

mpetitor Expansio
D

30% 
12% 
100% 

30% 
12% 
95% 

30% 
12% 
55% 

 

B.  Case Study Simulations and Results 
We first simulated a base scenario, where the input parame-

ters, as shown in Table 5, were calibrated to obtain results 
similar to a reference expansion plan for Korea from the 
WASP model [11]. A number of additional scenarios were 
simulated, where results were compared to the base case. Be-
low we present results from sensitivity analyses of the energy 
market price cap, the GenCo’s expectation about competitors’ 
fut re expansion decisions, and the u effect having no any new 

 in new capacity.  

serve margin grows towards a 
level of approximately 20%. 

entrants investing
 

    1)  Base Case 
The simulated generation capacity expansion in the base 

case is shown in Fig. 5. We can see that the GenCos invest in 
the NGCC 700, Coal 1000, and Nuclear 1400 technologies. 
The two new entrants (SKES, DARM) build most of the new 
NGCC capacity. JUBU is the GenCo with most coal expan-
sion, whereas KHNP builds two nuclear plants, which come 
online toward the end of the simulation period. From the 
simulated prices and reserve margin (Fig. 6), we see that the 
price gradually decreases and stabilizes around 60 
kWon/MWh, whereas the re
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Fig. 5. Base case expansion by technology, GenCo and online year. 
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margin. Base case. Fig. 6. Average monthly market price and annual reserve 
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    2)  Sensitivity to Lower Energy Price Cap 
The level of the energy price cap is very important for the 

incentive to invest in new generation capacity, since it deter-
mines the price and GenCos’ income during periods with 
shortage of supply. Ideally, the price cap should be set to a 
high value equal to the value of lost load. However, regulators 
tend to set a lower price cap in electricity markets to avoid 
very high prices. In the base case we used a price cap of 999 
kWon/MWh. We repeated the simulations with lower price 
caps to analyze the effect on expansion decisions, prices, and 
system reliability. Table 6 shows that a lower price cap re-
duces the investments in new generation capacity. This is be-
cause GenCos are less willing to invest in new generation 
capacity due to lower expected profitability. Investments in 
new NGCC plants seem to be most sensitive to the price cap,  
probably because this technology is dispatched less than coal 
and nuclear plants and is, therefore, more dependent on the 
profit during hours of scarcity. Furthermore, the investment 
decisions of new entrants are apparently more sensitive to the 
price cap than are those of the existing GenCos. 

 

EX E R

NG7/ CO10/ NU14 NG7/ CO10/ NU14 NG7/ CO10/ NU14 NG7/ CO10/ NU14 

TABLE 6 
DPANSION BY G

Base case 
NCO FOR IFFE

Price cap = 
ENT RICE CAPS
Price cap = 

P  
Price cap = 

Genco  750 500 300 

New 
Entrants 6 / 0 / 0 4 / 0 / 0 4 / 0 / 0 0 / 0 / 0 

Existing 
NGCC 2 / 0 / 0 2 / 0 / 0 1 / 0 / 0 0 / 0 / 0 

Existing 
Coal 0 / 6 / 0 0 / 6 / 0 0 / 4 / 0 0 / 1 / 0 

Existing 
Nuclear 0 / 0 / 2 0 / 0 / 2 0 / 0 / 2 0 / 0 / 1 

Sum(MW) 14,400 13,000 10,300 2,400 

 
Fig. 7 shows that simulated prices go up as a function of 

lower price cap, particularly with a price cap as low as 300 
kWon/MWh. Hence, the simulations show that a regulatory 
policy of setting a low price cap, which aims to protect the 
end-users from high prices in the short-run may, in fact, lead 
to increasing prices in the long run because of a lower rate of 
investments. The simulated reserve margin also goes down, 
and in the 300 kWon/MWh scenario it actually drops to a 
level close to zero. The results illustrate the importance of 
designing a market with adequate incentives for investments 
in new generation capacity. An interesting extension of the 
an ysis would be to consider the effect on investments from 
different capacity adequacy policies, such as capacity markets. 
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Fig. 7. Average monthly market price for different energy price caps. 
    3)  Sensitivity to Competitor Expansion Expectations 

The GenCos’ expectations about competitors’ expansion 
plans are important for their investment decisions, as outlined 
in Section II.C. To study the representation of competitor ex-
pectations in more detail, we changed the competitor unan-
nounced expansion level parameters for the six coal GenCos. 
It was set to 95% for these GenCos in the base case, i.e. each 
GenCo expects that future unannounced expansion from all 
competitors will add up to 95% of what is required to meet the 
expected system reserve margin of 30% (Table 5).  

When the competitor expansion parameter for coal GenCos 
is reduced to 90%, the level of investment for these companies 
increases compared to the base case (Fig. 8). This is because 
the coal GenCos now forecast lower rates of investment from 
their competitors, which in turn means that their projections of 
future prices and profits from ther own units increase. In con-
trast, when the competitor expansion expectation is increased 
to 100%, the coal GenCos build less capacity (Fig. 9). In fact, 
GenCo NADO and DOSE, whose existing capacities are 
higher than those of other coal GenCos, will build no new 
units. At the same time, other GenCos invest in more NGCC 
capacity than in the base case, which makes up for parts of the 
reduction in the new coal capacity.  

The simulated prices and reserve margins are also affected 
by the changes in the competitor expectation parameter. Prices 
go down and the reserve margin goes up compared to the base 
case in the 90 % competitor expectation scenario, and vice 
versa for the 100% scenario. 
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Fig. 8. Expansion by technology and GenCo with coal GencCs’ competitor 
expansion parameter reduced to 90%. 
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Fig. 9. Expansion by technology and GenCo with coal GenCos’ competitor 
expansion parameter increased to 100%. 
    4)  No New Entrants 

Finally, we looked at the effect of removing the two new 
entrants (DARM and SKES) from the expansion simulation. It 
turned out that this had a profound effect on the results; the 
total level of new investments decreased dramatically. No new 
NGCC plants were built (i.e., a reduction from eight to zero 
NGCC 700 plants compared to the base case). At the same 
time, the number of new Coal 1000 plants dropped from six to 
four. KHNP still builds the two new nuclear plants, although 
they come online one and two years later than in the base case.  

The reduction in new capacity leads to a major increase in 
prices, as shown in Fig. 10. The results from this scenario 
serve to illustrate the important role of new entrants in elec-
tricity markets. The new entrants can clearly lower the thresh-
olds for investment and thereby contribute to keep prices at a 
competitive level. 

 

0

50

100

150

200

250

300

20
06

20
06

20
07

20
08

20
08

20
09

20
10

20
10

20
11

20
12

20
12

20
13

20
14

20
14

20
15

20
16

20
16

20
17

20
18

20
18

20
19

20
20

20
20

kW
on

/M
W

h

Base case
w/o New entrants

 
Fig. 10. Simulated average market price in scenario without new entrants. 

IV.  CONCLUSION 
The multi-agent expansion model presented in this paper 

simulates the complex interaction between decentralized and 
profit-maximizing GenCos in restructured electricity markets. 
The presented results from test simulations of the Korea 
power system shows that the model can provide important 
insights into the long-term development of generation invest-
ments, prices, and reliability in real-world systems. Important 
issues regarding market design, GenCo decision preferences, 
and market concentration, can be analyzed. Such results can 

not be obtained with traditional generation expansion models.  
We see a number of interesting extensions to the model, in-

cluding: 1) Revision of the probabilistic dispatch logic to ac-
count for strategic bidding; 2) Simulate the effect of different 
capacity adequacy policies, such as installed capacity markets; 
3) Model transmission constraints and location of new gener-
ating plants; and 4) Introduce more advanced learning and 
adaptation, so that GenCos adjust their forecast of the future 
depending on what they learn during the simulation. 
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Abstract

The production of energy causes di!erent kinds of damage to the environment depending on the speci"c type of technology used in
producing a given energy supply. The common term that expresses the costs of these environmental damages is externalities. These
costs are not included in the cost and price structure faced by the producer and the consumer. During the last few years, external costs
related to power production technologies have been calculated making use of di!erent methodologies. The external costs may turn
out to be very di!erent for the same fuel cycle depending on the methodology that has been used to assess the externalities. The article
will focus on some of the most important reasons for di!erences in the numbers. To illustrate the importance of knowing the exact
data and assumptions used, two studies using the same approach and with integrated computer models are compared. The models are
based on the same concept with air dispersion modules and dose}response functions for the calculation of impacts. Although the
models are comparable, the resulting external costs turn out to di!er with a factor of "ve in the two studies for the same power plant
due to di!erent assumptions, di!erent dose}response functions used and di!erent impacts included in the studies. In the paper the
most important di!erences to be aware of will be illustrated. ( 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Externalities; Dispersion; Mortality

1. Introduction

Choosing one energy option over another may in#u-
ence many aspects of society and the environment, which
should be accounted for if we want to procure the highest
bene"ts for society. These impacts on society or environ-
ment, which have not previously been accounted for, are
termed externalities. Externalities related to energy pro-
duction are, in general, de"ned as the costs of the
damages the energy production give rise to, that are not
accounted for by the producers or consumers of energy.
In other words, damages not re#ected in the market
price. Normally, when one thinks of externalities related
to energy, the externalities are environmental. A fre-
quently cited example is the loss of production in "sheries
due to the spillage of pollutants in rivers, as a direct result
of energy use. Public health, agriculture and ecosystems
are other examples of aspects of society a!ected by the
use of energy by others. The e!ects may be positive
(external bene"ts) or negative (external costs), and their
consideration may make some energy options more

attractive than others in spite of their higher costs, or vice
versa.

During the past several years, external costs related
to power production technologies have been calcu-
lated using various methodologies. Some studies have
used a `top}downa approach, while others are based
on a `bottom}upa approach. Some studies are based on
a life cycle assessment, including all impacts from the
extraction of materials for manufacturing to disposal,
while others assess only impacts related to the fuel cycle.

Di!erences in methodologies may also be noticed in
the quanti"cation and valuation procedure. Some studies
rely on previous estimates, which are not site-speci"c;
others rely on abatement costs. Still other studies use the
damage function approach, where the impact from each
burden related to the technology is identi"ed, and the
damage caused by the burden is quanti"ed and monetised.

An important aspect to consider when estimating ex-
ternalities based on earlier studies is that some studies
include only regional and local impacts and do not take
into account the global impacts related to greenhouse
gases.

Considerable uncertainty arises when considering the
global externalities regarding the time horizon for the
greenhouse e!ect, choice of dose}response function and

0301-4215/00/$ - see front matter ( 2000 Elsevier Science Ltd. All rights reserved.
PII: S 0 3 0 1 - 4 2 1 5 ( 0 0 ) 0 0 0 8 4 - 7



Table 1
External costs in mECU/kWh year 1995 for di!erent fuel cycles for the studies chosen (1.2US$(1992)"1 ECU (1995))!

Coal /oil Natural gas Nuclear Wind Biomass

ExternE NGCC: 7.1}80 O!-shore: 0.7}3.6 Biogas: 4.4}16.1
(Schleisner and Nielsen,
1997a)

On land: 0.6}2.6

IEA PC: !0.6}5.4 NGCC: 0.6}2.3
(ETSU, 1994) IGCC: 1.6}3.9
New York PC: 4.5 NGCC: 0.2 Wood: 3.5
(Rowe et al., 1995) FB: 0.9
US-EC Coal: 0.4}1.0 0.01}0.2 0.1}0.2 Wood: 1.6
(Oak Ridge, 1992) Oil: 0.1}0.2
India Coal: 9.4
(Bhattacharyva, 1997)
Swiss Oil:99.6}158 NGCC: 68}101 4.8}11.5
(Ott, 1997)
Hohmeyer Fossil fuels: 7.4}40 Fossil fuels: 7.4}40 7.8}78.3 On land:0.1
(Hohmeyer, 1988)

!PC: pulverised coal, FB: #uidised-bed coal, NGCC: natural gas combined cycle, IGCC: integrated gasi"cation combined cycle.

monetisation values. Assumptions on famine and the
monetisation of human life may be the totally dominant
factor in estimating external costs.

The external costs may turn out to be very di!erent for
the same fuel cycle, depending on the methodology used to
assess the externalities. As a consequence of this, it seems
rather important to be aware of the methodology that is
made use of, which impacts are included and the monetary
values used in a given study before utilising the external
costs from a speci"c study as a policy measure.

2. External costs from di4erent studies

In Table 1, the external costs from seven studies have
been compared to show the large di!erences in results
from di!erent studies, assessing the same fuel cycle. The
studies have been chosen in order to cover old, well-
known studies as well as new, unknown, but interesting
ones. Some of the new studies are based on results from
earlier ones, while others implement new ideas concern-
ing the methodology. Most of the studies chosen are
bottom-up studies. In the table, the results from the
di!erent studies have been translated to mECU/kWh
year 1995.

The results from the US-EC study are very low. One
reason for this is that the global warming e!ect is not
included in the results. The results from the Swiss study
are rather high compared with those from the other
studies. Looking at the natural gas fuel cycle the results
in the ExternE study are high compared to the other
studies. The reason for this is that external costs related
to CO

2
are included in this study, while CO

2
is not

included in the New York study, and in the IEA study
CO

2
is captured. Both the Swiss and Hohmeyer studies

use a top-down approach, and both result in rather high
external costs.

The comparison shows the importance of possessing
knowledge of which kind of methodologies have been
used, which impacts are included, etc., to explain why the
numbers vary so much in di!erent studies for the same
fuel cycle. It is evident at the outset that the impacts,
damages and externalities are very project speci"c. For
example, emissions from an integrated gasi"cation com-
bined cycle coal plant are considerably lower than from
a pulverised fuel plant. The speci"cations of the plant to
be analysed will in this way a!ect the magnitude of the
externalities. The speci"cations include installed pollu-
tion abatement technologies and their e$ciencies as well
as stack height and other source parameters that are used
in atmospheric transport modelling. All of these para-
meters may be problematic when they are used to de"ne
future technologies.

3. Overview of two studies for detailed analysis

Two studies have been selected for detailed analysis.
The two studies use basically the same methodology and
include both computer models based on the same con-
cept. Nevertheless, the comparison will show large di!er-
ences in the external costs, pointing out the importance
of knowing which data and assumptions the study is
based upon.

The following overview gives a description of the two
studies in regard to which methodology has been used,
the impacts included, valuation methods, etc.

3.1. ExternE national implementation

The objective of the ExternE National Implementa-
tion project (CEC, 1995), (Schleisner and Nielsen, 1997a)
has been to establish a comprehensive and comparable
set of data on externalities of power generation for all EU
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member states and Norway. The tasks include the ap-
plication of the ExternE methodology to the most impor-
tant fuel cycles for each country. The study is from 1997.
A wide range of technologies has been analysed, cover-
ing more than 60 cases for 15 countries and 11 fuel
cycles, including fossil fuels, nuclear and renewable
technologies.

The methodology used for assessing externalities of the
fuel cycles selected is a bottom-up methodology with
a site-speci"c approach; i.e. it considers the e!ect of an
additional fuel cycle, located in a speci"c place. The study
estimates the damage costs related to di!erent fuel cycles.

Quanti"cation of impacts is achieved through the
damage function approach, an approach that proceeds
sequentially through a pathway, where emissions and
other types of burdens, such as risk of accident, are
quanti"ed and followed through to impact assessment
and valuation. The study employs a uni"ed approach to
ensure compatibility between results. This is being
achieved through the use of the EcoSense model, which
assesses the environmental impacts and resulting ex-
ternal costs from electricity generation systems. The com-
puter model includes an environment database at both
a local and regional level with data on population, crops,
building materials and forests. The model system also
incorporates two air transport models, enabling local
and regional scale modelling to be made. Also a set of
impact assessment modules, based on linear dose-re-
sponse relationships, and a database of monetary values
for di!erent impacts are included in the model. There is
no model for ozone included in the software, but ozone is
estimated by assuming a simple relationship to NO

x
.

Local, regional as well as global impacts are assessed.
The monetisation values used for CO

2
have been esti-

mated by employing two di!erent models (Schleisner and
Nielsen, 1997b, Appendix 1). Four di!erent values have
been used: 3.8 ECU/t CO

2
, 18 and 46 ECU/t and 139

ECU/t CO
2
. The estimate given in Table 1 is based on

a CO
2

value of 18 ECU/t.
The underlying principle behind the economic valu-

ation is to obtain the willingness to pay by the a!ected
individuals in order to avoid a negative impact, or the
willingness to accept the impact. A limited number of
goods * crops, timber, building materials, etc., * are
directly marketed. However, many of the more important
goods of concern are not directly marketed. These in-
clude human health, ecological systems and non-timber
bene"ts of forests. Alternative techniques have been de-
veloped for valuation of such goods, the main ones being
hedonic pricing, travel cost methods and contingent
valuation.

For the valuation of health risk, a value of 3.1 MECU
has been used for the value of a statistical life (VSL). This
value has been used for valuing fatal accidents and mor-
tality impacts in climate change modelling. In the case of
deaths arising from illness caused by air pollution, the

years of life lost (YOLL) approach has been used. YOLL
depends on a number of factors, such as how long it takes
for the exposure to result in illness and the survival time
for the individuals.

3.2. The New York electricity externality study

In this study (Rowe et al., 1995), the EXMOD model is
used, developed at the Tellus Institute in Boston. The
model is built up in the same way as the European
EcoSense model. The EXMOD model is an American
model, which models air dispersion from locations in
New York State to receptor cells throughout the north-
eastern US and eastern Canada. The study is from 1995.

It is a bottom}up study, also based upon `The damage
function approacha. Here damage costs are estimated for
23 new electric resource options within coal, oil, natural
gas, nuclear, municipal solid waste, hydroelectric,
biomass, wind, solar and demand side management.
Default air emission rates, land use and other character-
istics are speci"ed for each facility in the model; however,
these characteristics may be replaced. The air dispersion
models in EXMOD are annual average and simple peak
models used by US regulatory agencies. The two models
are used to predict short-range dispersion changes
((50 km) and long-range changes (50}1500km) cover-
ing local and regional ranges. Also, ozone models are
included driven by changes in NO

9
concentrations.

So far the model does not compute CO
2

damages (i.e.
EXMOD implicitly assumes 0$/t CO

2
). However, it is

possible to include other values for CO
2
.

Impact calculations are based on dose}response para-
meters in EXMOD with default high, central and low
parameter values. Based on a review of the literature,
EXMOD uses a central VSL estimate of 4.0million $ for
individuals under 65 years, and a central estimate of
3.0 million $ for those 65 years or older. The argument for
the decrease with age of VSL is that the years of expected
remaining life does decrease with age. Thus, life expect-
ancy and health status tend to decrease with age, so that
the quality of life is reduced. The model only includes
VSL for the valuation of health damages. YOLL is not
included.

The study uses control cost valuation to estimate the
environmental cost associated with various air emissions.
For other impacts the study uses the contingent valu-
ation method.

3.3. Comparison of results from ExternE and the
New York study

A comparison of the impacts and damage costs related
to air emissions calculated in the two studies using the
EXMOD model and the EcoSense model has been made
for the same plant. The plant is a pulverised coal-"red
plant with a capacity of 300MW. The impacts from this
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Table 2
Central estimates of external costs for a coal-"red plant

The New York study ExternE
Externalities (mECU/kWh) (mECU/kWh)

Human health 2.42 9.27
Mortality 1.71 7.97 (32.46)
Morbidity 0.70 1.30

Crops 0.002 0.134
Materials 0.10 0.22
Other impacts 0.32 0
Greenhouse gas e!ect 0 6.10

Total 2.84 15.72 (40.21)
Fig. 1. Di!erences in estimates of the e!ect on human health.

plant have been calculated in EXMOD as well as in
EcoSense. However, EXMOD only includes data for
emission levels and population for a part of the USA,
while EcoSense includes data only for Europe. Therefore,
the same plant has been located in two di!erent sites.
Using EXMOD, the plant is located in the Capital Dis-
trict of New York State, which is a suburban site outside
of Albany, while the same plant in EcoSense is located in
Roskilde, Denmark. The external costs have been esti-
mated using the methodologies and valuation methods
described above. The costs estimated in Table 2 are
central estimates.

Comparing the externalities for the same power plant
estimated in the two studies using models based on the
same concept, we see that the externalities are "ve times
higher in the ExternE study than in the New York study.
The di!erence in the external costs in the two studies
re#ects di!erences in impacts, di!erences in monetary
values included in the two studies, di!erences in
dose}response functions used, and "nally di!erences in
location of the plants.

The most apparent di!erences in the estimates are the
extent of the greenhouse gas e!ect and the estimation of
mortality. The greenhouse gas e!ect is not included in the
New York study (by default monetised to zero), but in the
ExternE study four di!erent values of CO

2
have been

estimated. In the above table a value of 18ECU/t CO
2

has been used. Excluding the global warming e!ect the
estimate in EcoSense is still three times higher than the
estimate in EXMOD.

The external costs of mortality are four times as high in
ExternE as in the New York study. EcoSense normally
uses the YOLL approach; the "gures in brackets are
based on the VSL approach. In EcoSense mortality in-
cludes as well chronic as acute mortality, while EXMOD
only covers acute mortality. Including as well chronic
mortality as the global warming e!ect in EXMOD, the
estimate in EcoSense becomes less than the estimate in
EXMOD.

The emission of ozone causes mortality as well as
morbidity cases for the population at large and also

a!ects crops. The quanti"cation and valuation of the
emission of ozone has been included in the US EXMOD
model, while in the case of the EU EcoSense model
quanti"cation and valuation of the emission of ozone has
not been included. Instead, damages due to ozone are
calculated based on the NO

x
emissions related to the

plant. The di!erence in crops is a result of ozone.
Other impacts are impacts like visibility loss, which is

included in EXMOD, but not in the EcoSense model.
Apart from global warming, human health is the domi-
nant impact in both models.

4. Harmonising the estimates of e4ects on human health

In the following, the reasons for the di!erences in the
estimates of the e!ect on human health using the two
models will be analysed. The estimate of EcoSense as well
as the estimate of EXMOD will be decomposed in order
to harmonise the external costs from the two models.

In Fig. 1 the estimates of the e!ect on human health
based on the two models have been decomposed in seven
steps. The steps correspond to seven categories of
di!erences:

f Inclusion of greenhouse gases.
f Inclusion of ozone.
f YOLL versus VSL.
f Inclusion of chronic mortality.
f Di!erence in monetised values.
f Di!erence in dose}response functions.
f Di!erence in morbidity impacts.

As illustrated in the "gure the "rst four steps are related
to the speci"c methodology and considerations used in
the two studies, while the last three steps are related to
the values used in the studies.
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Table 3
Mortality impacts and damages using EXMOD, central estimate

EXMOD EcoSense Eco/EXMOD

Impacts Mon value (ECU) Damage
(mECU/kWh)

Mon value (ECU) Damage
(mECU/kWh)

Mortality over 65 NO
x

0.377 2.497mio 0.5512 3.1mio 0.6843
PM

10
0.2139 2.497mio 0.3127 3.1mio 0.3882

SO
2

0.0764 2.497mio 0.1117 3.1mio 0.1387
Total 0.6673 0.9757 1.2111

Mortality under 65 NO
x

0.0336 3.330mio 0.0655 3.1mio 0.0610
PM

10
0.01845 3.330mio 0.0360 3.1mio 0.0335

SO
2

0.00453 3.330mio 0.0088 3.1mio 0.0082
Total 0.0566 0.1103 0.1027

Mortality Ozone 0.385 2.747mio 0.6192 3.1mio 0.6988

Mortality total 1.1089 1.7052 2.0126

Before decomposition EXMOD starts with a central
value of 2.84mECU/kWh, while EcoSense starts at
a value of 15.72mECU/kWh (Table 2).

The "rst step of harmonisation is the inclusion of
greenhouse gases in the EXMOD estimate. Including the
value of this impact from EcoSense makes the external
costs in the EXMOD line rise considerably. The next step
is the inclusion of ozone impacts in EcoSense; however,
including the value of this impact from EXMOD results
in only a small increase in the EcoSense line.

The third step of the harmonisation is estimating mor-
tality using YOLL. Using YOLL instead of VSL in
EXMOD lowers the external costs for EXMOD. The
fourth step of harmonisation, which seems to be a very
important methodological factor, is chronic mortality.
Chronic mortality is not included in EXMOD; including
the value of this impact from EcoSense increases the
external costs in the EXMOD line considerably, and the
external costs for EcoSense and EXMOD come rather
close to each other.

The monetary values used in the two models di!er in
some cases. The "fth step of harmonisation is therefore to
include the monetary values from EXMOD in EcoSense,
lowering the EcoSense value, and the EXMOD values
become higher than the EcoSense values. The "nal two
steps toward harmonisation are to include the same
dose-response functions and morbidity impacts in
the two models, which is shown in the last part of the
"gure. However, these di!erences are small compared to
the other di!erences.

Having adjusted for the above-mentioned parameters
there is a di!erence of 3mECU/kWh in the two esti-
mates. Most of this di!erence may be attributed to the
di!erent locations of the plants, which a!ect population
density and background level of emissions. This will be
analysed in a later paragraph.

4.1. Discussion of mortality and morbidity estimates

A more detailed explanation for the di!erences in
mortality and morbidity will be given below. The results
of including greenhouse gases on human health have
already been discussed above and will not be discussed in
this section.

4.2. Mortality

In Table 3, the mortality impacts, monetary values and
damage costs are shown as a central estimate for a pul-
verised coal-"red plant using the EXMOD model. For
comparison, the monetary values used in EcoSense are
used for the same impacts.

The last column shows the external costs for mortality
calculated in EXMOD using the monetary values from
EcoSense. Using these monetary values results in an
increase in mortality damage costs of 17%, verifying that
using the monetary value for VSL from EcoSense gives
higher results.

The mortality impacts and damages have been cal-
culated for the same plant using EcoSense (Table 4).
EcoSense normally uses the YOLL approach with much
smaller monetary values than VSL.

Comparing Tables 3 and 4, the external costs of mor-
tality are more than 4 times higher in the ExternE study,
although the YOLL approach is used. Using the VSL
approach would result in 19 times as high external costs
in ExternE as in the New York study.

Comparing the results the most obvious reason for the
large di!erence in mortality impacts for the two models,
beside the YOLL approach using other monetary values,
is the inclusion of chronic mortality in EcoSense. (Chro-
nic mortality is people dying from a long-cycle pain
evoked by emissions.). In EXMOD mortality is only
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Table 4
Mortality impacts using EcoSense, central estimate

EcoSense

Impacts Mon value
(ECU)

Damage
(mECU/kWh)

Chronic YOLL PM
10

5.73 84330 0.48
Nitrate 43.15 3.64
Sulphate 43.97 3.71

Total 92.85 7.83
Acute YOLL SO

2
0.90 84330 0.14

Mortality total 93.75 7.97

Fig. 2. Damage costs for morbidity calculated in EcoSense and EX-
MOD for the same power plant, central estimate.

related to acute mortality. Another important factor is
that impacts due to ozone are included in EXMOD, but
not in EcoSense (ozone has been included in a later
version of EcoSense).

4.3. Morbidity

In order to compare the di!erences in externalities
related to morbidity for the two computer models, the
morbidity impacts, monetary values and damage costs
have been analysed. The morbidity impacts caused by
ozone have been excluded from the analysis, as these
impacts are omitted in the EcoSense model.

In Fig. 2 the damage costs for the same plant are
compared using the EXMOD and EcoSense models. The
"rst two columns in the "gure represent the external
costs calculated in EXMOD, the "rst column with mon-
etary values from EXMOD, the second with monetary
values from EcoSense. The last two columns represent
the external costs calculated in EcoSense, the "rst col-
umn with monetary values from EXMOD, the second
with monetary values from EcoSense. The "gure shows
two important facts:

(1) The damage costs are higher when the EcoSense
model is used than when the EXMOD model is used

(2) The monetisation values in EXMOD are higher
than in EcoSense.

re(1) The "gure shows more than a doubling of the
damage costs using EcoSense rather than EX-
MOD. The most important di!erent is for chronic
bronchitis. However, chronic bronchitis is the
dominant impact in both models, but much larger
in EcoSense than in EXMOD. Also, restricted
activity days are important, having a higher e!ect
in EcoSense than in EXMOD. Restricted symp-
tom days account for 16% of the damage costs
using the EXMOD model, while they are

negligible using the EcoSense model. Other im-
pacts have lesser signi"cance in both models.

re(2) Analysing the results from the EcoSense model as
well as from EXMOD the externalities are around
30% higher using the EXMOD monetisation
values than using the EcoSense monetisation, ap-
plying that the monetary values used in EXMOD in
general are higher than the values used in EcoSense.
The most dominating monetary value is chronic
bronchitis, which results in a 66% higher damage
using EXMOD values than using EcoSense values.
However, when the same monetary values for the
two models are used, much higher morbidity costs
are encountered with the EcoSense model.

5. Why are the external costs di4erent for the same plant?

In the previous chapter the reasons for the di!erences
in the estimates of the e!ect on human health using two
comparable models have been analysed. Seven categories
of di!erences have been explained. After the above dis-
cussion these seven categories may be gathered in four
parameters of importance, as shown in Fig. 3:

f Di!erence in impacts.
f Di!erent dose}response functions.
f Di!erent monetary values.
f Di!erence in delta concentration and population for

the US and Europe.

The four parameters are depending on each other. How-
ever, in the following the importance of the parameters
has been explained individually.

5.1. Diwerence in impacts

The impacts included in two studies may di!er, which
may a!ect the total external costs estimated in the studies
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Table 5
Morbidity impacts in EcoSense and EXMOD, central estimate

EcoSense Impacts EXMOD Impacts

Congestive heart fail ('65) 0.54
Ischa. Heart disease ('65) 0.51
Restricted activity days 3215 Restricted activity days 3440
Chronic bronchitis, adults 6.19 Case of chronic bronchitis 2.95
Chronic bronchitis, children 88 Children, acute bronchitis 20
Bronchodilator use, adults 735 Asthma attack 1330
Bronchodilator use, children 147
Asthmatic cough, adults 756
Asthmatic cough, children 254
Low resp. symptom, adults 273
Low resp. symptom, children 195 Respiratory symptoms days 19460
Chronic cough, children 112
Respiratory hosp. Admission 0.47 Respiratory hosp. admission 2.5
Cerebrov. Hosp. Admission 1.14
hosp. Visits child. Croup 6.6
ERV for COPD 1.6 Emergency room visit 17
ERV for asthma 1.5
Cancer 0.001 Survivable cancer 0.0005

Lead health e!ects 1157
Mercury health e!ects 0 Mercury health e!ects 602

Radiation 0.025

Fig. 3. Important reasons for di!erences in external costs.

considerably. On a superior level mortality is included in
both studies. However, EXMOD includes only acute
mortality, while EcoSense includes acute as well as chro-
nic mortality. This results in 19 times larger externality
costs in EcoSense as in EXMOD concerning mortality.

Also in morbidity impacts there are di!erences be-
tween the two models. Table 5 shows the morbidity
impacts estimated in EcoSense and in EXMOD. The
table illustrates that more impacts are included in
EcoSense than in EXMOD. Looking closer at the im-
pacts it may be possible to make some assumptions in
order to analyse the results from the two models.

Restricted activity days and chronic bronchitis for
adults are directly comparable in the two models and the
amount of impacts is close to each other. Bronchodilator

usage does not exist in EXMOD, but is for comparison
regarded as an asthma attack in EXMOD, being some-
what higher in EXMOD.

For comparison of respiratory symptom days, in
EcoSense asthmatic cough for adults and children must
be included in respiratory symptoms days. Still the
amount of respiratory symptoms days is much larger in
EXMOD. Again NO

x
is the dominating source. Acute

bronchitis for children (EXMOD) does not exist in Eco-
Sense, however, analysing the dose-response functions
chronic bronchitis for children in EcoSense is similar to
acute bronchitis in EXMOD. The amount of impacts is
more than four times higher in EcoSense than in EX-
MOD, which apparently is a result of di!erences in
emission concentrations and population. The di!erence
in cases of impacts of chronic bronchitis is illustrated in
Fig. 1. Emergency room visits are comparable in the two
models; however, the number of visits is much smaller in
EcoSense. For respiratory hospital admission also cereb-
rovascular hospital admissions and hospital visits for
children with croup are included in EcoSense in order to
make the impacts comparable.

Lead health e!ects as well as radiation are impacts
only included in EXMOD, while congestive heart failure
('65) and ischaemic heart disease ('65) is represented
only in EcoSense.

5.2. Diwerent dose}response functions

It is not only necessary to check if the same impacts are
included in two studies or the impacts are comparable,
but also to analyse the dose}response functions used to
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Fig. 4. Cases of impacts calculated in EXMOD and EcoSense.

Fig. 5. Morbidity damages calculated in EXMOD using monetary
values of EXMOD and EcoSense.

estimate the damages. Looking at the above-mentioned
assumptions it is obvious that some of the compared
dose-response functions di!er, resulting in di!erences in
the amount of impacts.

Some of the morbidity impacts calculated for the same
plant in EcoSense as well as in EXMOD have been
compared in Fig. 4. The "gure shows the very large
di!erence in the cases of respiratory symptoms days in
the two models. This is also visible in Fig. 2, where
respiratory symptom days are important in EXMOD,
but not visible in EcoSense. The reason for the large
di!erence in impacts in the two models is the dose}re-
sponse functions used to de"ne the impacts. In EXMOD
the dose-response function for respiratory symptom days
is related to the total population, while in EcoSense the
function is related to the asthmatic population, being
3.5% of the total population. Taking the large number of
cases into consideration, the damage costs related to
respiratory symptom days are small due to a low monet-
ary value, illustrated as D}R functions in Fig. 1.

5.3. Diwerent monetary values

Comparing the morbidity results in Fig. 2 on a
superior level using the EXMOD model the total damage
costs caused by morbidity are 28% larger using the
EXMOD monetary values instead of using the values
from EcoSense. This shows the importance of consider-
ations concerning the monetary values used.

The morbidity damages estimated in EXMOD have
been decomposed in Fig. 5 using monetary values from
EXMOD as well as EcoSense. Comparing the results
from the two models the morbidity externalities are high-
er using EcoSense. However, many of the impacts are
monetised higher in EXMOD. Chronic bronchitis,
emergency room visits, respiratory symptom days and
respiratory hospital admissions are all monetised higher
in EXMOD than in EcoSense, while restricted activity
days and asthma attacks are valued highest using
EcoSense.

5.4. Diwerence in delta concentration and population
for US and Europe

As illustrated in Fig. 3 having adjusted for the above-
mentioned parameters, the external costs estimated in the
two studies still di!er. The reason for this di!erence is not
related to the models used, but is allocated to the location
of the plant. The air quality models predict the level of
the emissions in di!erent locations in#uenced by the
emissions from the plant. This level is called the delta
concentration. The delta concentration is the only factor
that is calculated in the models, and it is di!erent for the
involved emissions. Each impact is explained by the delta
concentration times the population multiplied by
a dose}response function. This is included in the models,
but may as well be calculated manually, having estimated
the delta concentration in the computer models. The
di!erence in delta concentration and population used in
the two models is a result of di!erent locations of the
same plant, and will result in di!erent amounts of im-
pacts for the two locations.

For PM
10

the delta concentration times the popula-
tion has been found to be a factor 1.75 higher in EX-
MOD than in EcoSense. This means that the impacts of
PM

10
estimated in EXMOD should be 1.75 larger than

the same impacts estimated in EcoSense. However, this is
only the case when using the same linear dose}response
functions in the two models.

As an example, restricted activity days are estimated in
EcoSense by the following function:

RAD
%#0

"25]delta concentration]population

]adults/1000,

where adults are de"ned as 57% of the total population.
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Fig. 6. The relative weighting factors of nitrate, PM
10

and sulphate on
the impacts in the two models.

In EXMOD the function is as follows:

RAD
%9
"58.4]delta concentration]population

]adults/1000.

Here adults are de"ned as 83% of the total population.
Giving that Delta Concentration]population is 1.75

times larger using EXMOD than using EcoSense and
merging the two functions results in the following:

RAD
%#0

"0.168]RAD
%9

The same calculations can be made for other impacts as
far as the dose}response functions are linear.

It must be noted that the delta concentration depends
on the emission, meaning that the impacts, which are 1.75
larger in EXMOD compared to EcoSense, only relate to
PM

10
emission. For other emissions, like nitrate and

sulphate, the situation is di!erent.
The damage costs of chronic bronchitis in Fig. 2 are

larger in EcoSense than in EXMOD. This is a result of
more cases of chronic bronchitis using EcoSense, al-
though the monetary value is larger in the EXMOD
model. Again, the reason for this is the di!erence in delta
concentration times the population in Europe and in US,
and is not related to the model used.

Fig. 6 shows the importance of the di!erence in emis-
sions in the two models. In EcoSense, the secondary
emissions sulphate and nitrate have nearly the same
weight, while PM

10
has much smaller weight on the

impacts. Comparing this with the weighting factors in
EXMOD, nitrate is the most dominant, followed by
PM

10
, while sulphate has a relatively small e!ect.

Using EXMOD the plant is situated in the New York
Capital District, which is a suburban site outside of
Albany, while the same plant in EcoSense is situated in
Roskilde, Denmark. Di!erences in the dispersion and
impacts of the emissions in the two cases may be caused
by di!erences in background levels of the emissions in the
two locations with di!erent surroundings and because of
di!erences in population size.

6. Conclusion

External costs may be used by politicians to assess the
importance of di!erent kinds of energy technologies and
also by the electricity utilities to choose between di!erent
technologies in capacity building. However, it is quite
important to note that external costs for power genera-
tion technologies may be assessed using di!erent ap-
proaches, and therefore the external costs may di!er for
the same technology depending on the approach used.

In this paper the same approach * the bottom}up
approach* has been used, but with two di!erent mod-
els. The models are in principle built up in the same way
as with air dispersion models and dose}response func-
tions for the calculation of impacts. These impacts are
multiplied with monetary values to calculate the external
costs. Although the models seem more or less similar,
the resulting external costs are "ve times larger in
the ExternE study using the EcoSense model than in the
New York study using the EXMOD model for the same
power plant.

The above paragraphs have demonstrated the import-
ance of the di!erence in impacts included, the dose-
response functions used and "nally the use of di!erent
monetary values in di!erent studies. A di!erence in the
above-mentioned parameters may give rise to large dif-
ferences in the external costs of the energy technologies
analysed. The resulting di!erence after harmonising the
models is not related to the model, but to the location of
the plant (expressed in delta concentration). Although the
parameters have been explained separately, the tables
and "gures have shown that the parameters have in#u-
ence on each other.

When politicians use externalities to assess the import-
ance of di!erent kinds of energy technologies, it is there-
fore quite important that they use external costs for the
technologies based on the same approach, i.e. calculating
the same impacts and using same monetary values and
dose-response functions. This is also the case when ex-
ternalities are used by the electricity utilities in order to
choose between di!erent technologies in capacity build-
ing; otherwise the comparison of the technologies may be
based on incorrect assumptions.
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Abstract

The Global MARKAL-Model (GMM), a multi-regional ‘‘bottom-up’’ partial equilibrium model of the global energy system with

endogenous technological learning, is used to address impacts of internalisation of external costs from power production. This modelling

approach imposes additional charges on electricity generation, which reflect the costs of environmental and health damages from local

pollutants (SO2, NOx) and climate change, wastes, occupational health, risk of accidents, noise and other burdens. Technologies allowing

abatement of pollutants emitted from power plants are rapidly introduced into the energy system, for example, desulphurisation, NOx

removal, and CO2 scrubbers. The modelling results indicate substantial changes in the electricity production system in favour of natural

gas combined cycle, nuclear power and renewables induced by internalisation of external costs and also efficiency loss due to the use of

scrubbers. Structural changes and fuel switching in the electricity sector result in significant reduction of emissions of both local pollution

and CO2 over the modelled time period. Strong decarbonisation impact of internalising local externalities suggests that ancillary benefits

can be expected from policies directly addressing other issues then CO2 mitigation. Finally, the detailed analysis of the total generation

cost of different technologies points out that inclusion of external cost in the price of electricity increases competitiveness of non-fossil

generation sources and fossil power plants with emission control.
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Fig. 1. Definition of the world regions in the GMM model.
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1. Introduction

Internalisation of external costs into the full energy
production cost is considered an efficient policy instrument
for reducing negative impacts of energy supply and use.
Approach of merging production (or generation) cost with
external cost into a total specific cost serves as a
comparative indicator for evaluation of economic and
environmental performance of optional energy technolo-
gies. Consideration of externalities, where quantified or
quantifiable, might be useful for providing an indication of
damages/benefits associated with different energy options,
for assessing trade-offs between different energy options,
and for ranking energy options, as well as serving as a basis
for the introduction of economic instruments to reflect
better the social costs of energy (Fouquet et al., 2001).

Although such an instrument omits other important
aspects of the policy- and decision-making processes, for
instance the political and social acceptance of certain
energy systems (Hirschberg et al., 2000), it is important to
analyse the possible impacts of internalising externalities in
the energy system.

This study has been performed with the Global Multi-
regional MARKAL (GMM) model with endogenous
technological learning (ETL) developed at Paul Scherrer
Institute. Since the GMM model has a rich representation
of the power generation sector (including ETL specification
of selected technologies), and because the assumptions on
the external cost from the electricity production were
provided (EC, 1998a), this analysis focuses primarily on the
electric power sector. This paper describes the economic,
environmental and structural impacts of a full internalisa-
tion of external costs in the electricity generation sector,
which are based on results of the EC ExternE project.
However, no attempt has been made to verify these costs as
fully representing the environmental and health damages.

Three scenarios were analysed with the research objec-
tive as specified above—the Baseline scenario without
inclusion of the external cost; Local externality scenario

with internalised external costs resulting from local air
pollution (SO2, NOx); and finally the Global externality

scenario where the external costs comprise both local air
pollutants (SO2, NOx) and emittants causing global climate
change (CO2).

1

2. Description of the modelling framework

The analysis presented in this paper has been executed by
using the GMM model with ETL, developed by Barreto
(2001), and further upgraded by the authors. MARKAL is
a dynamic linear programming, ‘‘bottom-up’’, energy
1In both scenarios with internalised external cost, impacts of the

following burdens are always included, besides the air emissions: solid

wastes, liquid wastes, risk of accidents, occupational exposure to

hazardous substances, noise, others, e.g., exposure to electro-magnetic

fields, emissions of heat (EC, 1998a).
planning model allowing detailed representation of energy
technology options on both demand and supply side of the
energy system (Fishbone and Abilock, 1981).
Five world regions are considered in the GMM model,

as shown in Fig. 1. Two regions shape industrialised
countries of North America (NAME) and the rest of the
OECD (OOECD). One region covers transition-economies
of Central & Eastern Europe and the Former Soviet Union
(EEFSU). Two additional regions represent the developing
world: the developing countries in Asia (ASIA) and Latin
America, Africa and the Middle East (LAFM).
There are six end-use demand sectors in the GMM

model. Industrial and residential & commercial sectors are
divided into thermal and electric (specific) uses. The
transportation sector merges together passenger and
freight transport. Finally, the non-commercial use of
biomass (i.e., fuel-wood) and non-energy feedstock is
represented. In each of the demand sectors, a set of generic
end-use devices is defined (e.g., coal-based heating in
industry, oil-based transport).
The supply sector and energy conversion processes are

represented with some detail. Technologies for the produc-
tion of electricity, heat and a variety of final fuels (e.g., oil
products, alcohol, hydrogen, natural gas) from different
fossil and non-fossil sources are included, as well as the
corresponding transport and distribution (T&D) chains.
Investment, fixed O&M and variable O&M costs are
specified for all supply technologies considered. A sche-
matic representation of the standard reference energy
system (RES) used for all the regions, containing all the
possible energy chains that can be chosen by the model is
shown in Fig. 2.
Levels of power generation based on renewable and

nuclear energy sources are controlled in GMM through the
imposition of exogenous bounds and annual growth/
declination rates for each technology. Bounds applied for
renewable resources reflect the regional technologically
achievable potential of each type of source and is provided
by IEA (2001), UNDP (2000), and Riahi and Roehrl
(2000). As indicated in Table 1, except for hydropower,
only upper bounds are applied in 2050 for renewable
power generation; the level of actual generation, therefore,
is not forced, but is left free for determination through
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Fig. 2. Reference energy system applied in GMM. Figure taken from Barreto (2001).

Table 1

Assumptions for renewable and nuclear electricity sources applied in GMM

Bounds for renewable electricity sources in 2050 (EJ)

Regions NAME OOECD EEFSU ASIA LAFM WORLD

Hydro max 2.8 3.4 5.8 7.6 8.5 28.1

Hydro min 2.2 2.0 1.1 1.2 2.4 8.9

Wind max 9.4 12.0 9.3 9.9 9.8 50.4

Solar PV max 3.6 2.2 1.6 14.6 5.2 27.3

Biomass maxa 8.4 3.3 10.8 53.5 112.4 188.4

Geothermal max 1.0 0.8 2.0 5.0 2.0 10.8

Bounds for nuclear power in 2050 (EJ)

Nuclear max 18.0 18.0 9.5 20.0 18.0 83.5

Nuclear min 2.0 2.9 0.9 1.5 0.1 7.4

aBiomass potential refers to both electricity and heat production.

P. Rafaj, S. Kypreos / Energy Policy 35 (2007) 828–843830
competition. Power-network stability aspects are taken
into account by assuming a maximum penetration fraction
of intermittent power generation (e.g., wind power, solar
photovoltaic) of 25% of total electricity production. In the
case of nuclear power, the lower bound in 2050 corre-
sponds to the present global level of generation. No limit is
provided for CO2 that can be stored in any type of
reservoirs. The level of carbon sequestration, however, is
controlled by annual growth rates of technologies being
operated with CO2 emissions removal.

An important characteristic of the GMM model is its
ability to treat technology dynamics in energy-system
development through the incorporation of learning curves
of selected technologies within the model. Endogenisation
of the technological learning (ETL) enables the modeller to
analyse how the specific investment cost of a ‘‘learning’’
technology declines with accumulated installed capacity of
the respective technology (Messner, 1997). No learning
spillovers across technology clusters are defined in the
model, instead spatial spillovers of separate learning
technologies are assumed. The detailed description and
mathematical formulation of the ‘learning-by-doing’
(LBD) modelling approach applied in GMM can be found
in Barreto and Kypreos (2002). The technological, cost,
and learning specification of electricity generation technol-
ogies represented in GMM are given in Table 2.
The GMM model version used for this analysis applies

the ETL option in combination with a partial equilibrium
algorithm, that adjusts demands for energy services to the
increased marginal cost of services that can result from the
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Table 3

Basic assumptions made for the external cost calculation

Region Population

density

Sulphur content

in coal [%]

Starting year of

externality

charges

NAME Medium 1 2010

OOECD High 1 2010

EEFSU Medium 1 2010

ASIA High 1 2010

LAFM Medium 1 2010
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imposition of a policy constraint (Loulou and Lavigne,
1996); in the analysis herein it is the external cost. The
MARKAL model with elastic demands (referred to as the
MARKAL-ED) makes use of a procedure whereby the
energy end-use demands are not fixed, but instead are
elastic to their own prices, endogenously computed by the
model in the baseline, and self-adjusted if modified scenario
conditions affect the prices. The model attains partial
energy equilibrium when the sum of producer and
consumer surpluses is maximised. Consequently, the model
objective function is comprised of two terms: the energy/
technology costs, and the loss of welfare associated with
demand reduction (Kanudia and Loulou, 1999). Inter-
nalisation of externalities results in allocation of resources
through the integration of externalities in energy prices.
Although not modelled explicitly within this study, in the
‘‘real-world’’ situation it can be expected that the extra
charge imposed on the power generation is recycled back
into economy and used for different purposes. The total
amount of externality charges levied on the electricity
sector is discussed separately in Section 5.3.2.

Additionally, the GMM model allows simulation of the
global trade of selected energy or environmental commod-
ities (e.g., fuels, emission permits, etc.) and defines a
shadow price of the commodity globally traded among
regions. In the scenarios reported herein, electricity is not
traded among regions or intra-regionally.
3. External cost specification

External cost values used in this study have been derived
from the outcomes of the European Commission (EC)
ExternE Project. The methodology used for this project
applies the impact pathway approach (i.e., the pathways of
polluting substances are followed from the release source
to the point of damage occurrence). The consecutive
negative impacts (damage) are quantified using a damage
function. Economic valuation of the damage is obtained by
the ‘‘willingness-to-pay’’ of the affected individual to avoid
a negative impact resulting from energy production from
an actual power plant.2 This ‘bottom-up’ approach
emphasizes detailed site-specific characterization of tech-
nologies, thereby enabling consideration of every impor-
tant stage in different energy chains and comparison
between different fuel-cycles and different kinds of burden
and impact within a fuel-cycle (EC, 1998a).
2The underlying principle of the ‘‘Willingness-to-pay’’ (WTP) concept is

to obtain a monetary valuation of preferences of affected individual to

avoid a negative impact (EC, 1998b). The main advantage of the WTP

approach relies in its foundation on the individual viewpoint of the

concerned population. This approach attempts to estimate the demand (or

WTP) for an improved environmental quality. WTP is measured by how

much the concerned individuals are ready to pay in order to improve their

own life-quality or the one of other people. Adding the amounts of all

concerned individuals results in a value that a group of individuals

attributes to the reduction of environmental impacts.
For the purpose of internalisation of the external cost
within the total electricity cost in different world regions,
the ExternE results were adjusted to reflect the GMM level
of aggregation. The determinants for scaling the external-
ities were the population density in regions; fuel quality
expressed as the content of the sulphur in coal and oil;
technology specification with respect to installation of the
emissions control systems; and finally, the possible
improvement in conversion efficiency over the modelled
time horizon.
Table 3 summarises basic assumptions made for the

adjustment of external cost. The world regions are grouped
in two population density categories according to present
statistical data (GeoHive, 2003). ASIA and OOECD are
located within the category of High density of population,
and the remaining regions are assumed to have Medium
population density. Changes in the population density over
time are not considered. Sulphur content in coal is assumed
to be 1% in all world regions. Even though standardised
statistical data are not available, a literature survey
indicates, that this value represents the typical average of
all different coal types used for power production
(Hinrichs, 1999). An optimistic assumption has been made,
that a global policy of imposing the external costs on the
electricity production starts from the same period (2010) in
all regions. Simultaneously, it is expected that a global spill
over of experience and know-how transfer from North to
the South takes place.
External cost was further scaled as a function of

conversion efficiency so that exogenously given efficiency
improvements could be taken into consideration. The
following formula has been used:

ExtCostt ¼ ExtCostoriginal;t¼0 �
Zorig;t¼0

Zt

if

Zt4Zorig;t¼0,

where Z is the conversion efficiency of respective power
plant.3
3Sample calculation for a pulverised coal power plant with 0% DeSOx,

50% DeNOx, 80% DEDUST, Z2010 ¼ 37%, Z2050 ¼ 38%, sulphur
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Table 4

Scenarios definition

Scenario name Scenario definition

Baseline Business-as-usual, no local, no global externalities,

ETL

Local externality External cost from local air pollution (SO2, NOx)

internalised in the electricity sector, Partial

equilibrium, ETL

Global externality External cost from local air pollution (SO2, NOx)

and emissions causing global climate change (CO2)

internalised in the electricity sector, Partial

equilibrium, ETL
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The resulting external costs applied for five world
regions in GMM are displayed in Appendix II. Two
different kinds of externalities were considered: external
cost associated with local air pollutants (SO2, NOx,
particulates) but excluding CO2 impacts, and external cost
that merges damages from local pollutants and global
climate change (CO2) (see also Note 1 on p. 2). While
evaluation of externalities for local pollutants within the
ExternE project is based on detailed bottom-up analysis,
valuation of external cost for CO2 emissions bears much
larger level of uncertainty. External cost of global warming
used in this study refers to the global warming damage cost
of 25$ per tonne of CO2 (91$/tC). This value lays at the
lower end of a range of recommended global-warming
damage estimates reported by the ExternE project (EC,
1998b). Ranges in the values of external cost, as shown in
Appendix II, represent regional differences resulting from
assumptions and scaling, as explained above. For further
details on assumptions and external cost calculation, see
ACROPOLIS (2003).

3.1. Treatment of external costs in MARKAL model

External costs are implemented in the GMM model by
multiplying the amount of electric power generated (i.e.,
kWh) from each power plant during each time period in
each region with corresponding external cost (i.e., b/kWh).
In this way, it is assured that the matching external costs
are directly charged to every unit of output from each
power plant. The sum of discounted annual externality
charges for every region in GMM is reflected in the total
discounted system cost (i.e., objective function used in
GMM).

An alternative approach that could be used is to apply
the damage costs for different pollutants as an environ-
mental tax levied on the entire energy system. The
environmental tax would be charged per unit of pollutant
emitted (e.g., 8000$/tSO2), which would affect all emitting
technologies in all sectors present in the energy system of
each region (i.e., including refineries, demand devices,
transport sector, etc.). Because this analysis is explicitly
focused on the externality impacts on the power generation
sector, the approach explained in the previous paragraph
has been chosen.

The GMM model has different response options for the
extra charges imposed on the electricity sector with the aim
of minimising the total energy system cost: (a) to pay (or
(footnote continued)

content ¼ 1%.

Low population density ðAdjustment factor AF ¼ 1Þ

Ext2010 ¼ 9:9b=kWh � 1 ¼ 9:9b=kWh

Ext2050 ¼ Ext2010 � ð0:37=0:38Þ � 1 ¼ 9:6b=kWh

High population density ðAdjustment factor AF ¼ 1:5Þ

Ext2010 ¼ 9:9b=kWh � 1:5 ¼ 14:8b=kWh

Ext2050 ¼ Ext2010 � ð0:37=0:38Þ � 1:5 ¼ 14:4b=kWh
not) an external charge on power production from a
technology; (b) to install (or not) a (costly) system with
DeNOx, DeSOx, or CO2-capture & sequestration; (c) to
reduce (or not) the energy/electricity consumption in
different demand sectors and to substitute the electricity
by other fuels; (d) to apply (or not) the inter-fossil fuel
switching and technological change for technologies with
lower external cost (renewables and nuclear power plants).
4. Scenarios analysed

As already mentioned in Section 1 and summarised in
Table 4, three scenarios were explored in this study, all of
which include ETL and partial equilibrium:
The underlying story-line for the Baseline scenario refers

to the B2 scenario reported by the IPCC/SRES (Inter-
governmental Panel on Climate Change/Special Report on
Emission Scenarios) project4 (IPCC, 2000).
The base year in GMM is 1990. The model time horizon

is 1990–2050. Ten-year periods are considered. A discount
rate of 5%/year is applied to the calculations. Availability
of fossil fuel resources by different cost categories is based
on Rogner (1997). The demand projections and potentials
for renewable resources correspond to those of the
characterisation of the B2 storyline performed with the
MESSAGE model (IPCC, 2000; Riahi and Roehrl, 2000).
However, no attempt has been undertaken to calibrate the
baseline scenario to match the results of the SRES-B2
scenario. In this respect, the baseline development corre-
sponds to a PSI scenario, since the allocation of resources
is based on an optimisation performed under conditions of
perfect foresight with ETL considerations.
4The B2 scenario is a ‘‘dynamics-as-usual’’ scenario where differences in

the economic growth across regions are gradually reduced, and concerns

for environmental and social sustainability at the local and regional levels

rise along the time horizon. Population growth is consistent with the

United Nations median projection increasing to 9.4 billion people in 2050,

which is a continuation of historical trends. Economic growth is gradual,

with world GDP increasing at an average rate of 2.8% per annum between

1990 and 2050. Income per capita grows at a global average of 1.8% per

year for the same period reaching an average value of 11700 USD (1990)

per capita in the year 2050 (at market exchange rates) (IPCC, 2000).



ARTICLE IN PRESS
P. Rafaj, S. Kypreos / Energy Policy 35 (2007) 828–843834
5. Results

Although the energy system of five world regions is fully
modelled, results presented here emphasize the global
electric power generation sector (e.g., fuel mix, choice of
technologies, costs) and the environmental impacts (SO2

and NOx emissions from the power production, and CO2

emissions from the entire energy system). Changes in the
rest of the energy system are summarised and reported in
the form of primary and final energy use and the system
costs.

5.1. System changes

Based on the analysis of structural changes induced by
inclusion of external costs in the electricity sector, the
following findings are identified:
�
 There is a significant change in the electricity generation
mix. Conventional coal systems without emission
control are eliminated early after policy implementation
and are replaced by advanced coal technologies (SO2/
NOx scrubbers, carbon capture).

�
 Natural gas combined cycle, nuclear power and

renewables increase their shares in the electricity
market.

�
 External charges imposed result in a decrease of total

power generation. The reduction in final demand for
electricity occurs in both industrial and residential/
commercial sectors. The industrial sector shows the
greatest ability to switch.

�
 The role of coal in the primary energy demand is

significantly reduced in the externality scenarios. De-
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Fig. 3. Development in the ele
crease in coal is balanced with increased importance of
nuclear and renewable energy sources.

5.1.1. Electricity production

The power generation in the Baseline scenario is
dominated by systems based on coal combustion. Different
types of coal power plants contribute by 50% to the
total global power generation at the end of the time
horizon (2050). From the year 2030, the conventional
coal plants are replaced by advanced coal ‘learning’
systems (i.e., supercritical plants, pressurized fluidised-bed
combustion—PFBC), and integrated coal gasification
combined cycle (IGCC). The second most competitive
system in 2050 is the NGCC, which contributes more than
31% of total power production. Approximately 20% of the
electric power is supplied by the carbon-free nuclear and
renewable energy sources in the year 2050, as is shown in
Fig. 3.
Introduction of external costs into total production cost

influences significantly the structure of the power genera-
tion mix. In the local externality scenario, coal remains the
major contributor to total power production; however, its
share is reduced in 2050 by 15% relative to the Baseline (in
absolute terms by 11 000TWh/yr). Moreover, the conven-
tional pulverised coal combustion is steadily being replaced
by advanced coal plants and pulverised coal systems with
SO2 and NOx emissions control, i.e., flue gas desulphurisa-
tion-FGD, low-NOx burners, etc. The NGCC plants with
other natural gas based systems increase their relative share
in power production to a level of 35% of the total
electricity supply by 2050, although in absolute terms
reduction in the total power generation from NGCC by
900TWh/yr is reported. The share of renewables and
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nuclear plants is increased by 10% relative to the Baseline
because of lower external cost charged on these systems.

Changes in electric power mix become more pronounced
in the Global externality scenario. The generation from
coal reaches only 26% while natural gas fired power
stations produce around 32% of total electricity in 2050.
The advanced coal and IGCC systems with CO2-capture
become competitive and penetrate the market between
2030 and 2050 at considerable levels. Nuclear energy
supplies 14% of electricity in 2050; both the light water
reactor (LWR) and advanced nuclear plants (NNU) play
more significant role in the power supply during the whole
time horizon after implementing external cost as compared
to the Baseline. In the Global externality scenario,
technologies based on renewable sources contribute 25%
of total generation by the year 2050.

Because of rising cost of electricity, the overall power
generation in 2050 is decreased by 7% in the Local
externality scenario and by 14% in the Global externality
scenario, relative to the Baseline (effect of reduced demand
for electricity due to partial equilibrium).

Fig. 4 illustrates the power generation profile in 2050 for
scenarios considered. Coal technologies with DeSOx/
DeNOx systems produce a considerable amount of
electricity in the case where local external cost are incurred,
but this amount is almost halved in the Global externality
scenario. On the other hand, when global external costs are
imposed, the systems with CO2-capture become competi-
tive, and the IGCC technology with carbon capturing and
sequestration is the second largest coal-based power
producer at the global level. This finding suggests, that
internalised external cost makes the IGCC with CO2-
removal an attractive technological option for carbon
mitigation strategies.

In both externality scenarios is the growth in renewable
and nuclear electricity sources limited by the exogenous
bounds and assumed growth rates, as is described in
Section 2. The results of this analysis indicate a substantial
increase in generation from advanced nuclear power plants
in all regions modelled in GMM. On the other hand, the
growth in hydropower production is most pronounced in
the ASIA and LAFM regions, where the total generation is
close to assumed exploitable limits. Similarly, the power
production from wind turbines in externality scenarios is
approaching its technical potential specified as an upper
bound in GMM. Furthermore, the growth in generation
from wind turbines is bounded by the constraint imposed
on generation from intermittent sources of electricity,
which explains a slightly lower contribution of wind power
to the generation profile in 2050 in absolute terms in
externality scenarios relative to the Baseline.

5.1.2. Primary energy consumption

Total global primary energy consumption decreases if
external costs of power generation are included. In the year
2050, reductions by 4–5% in total primary energy
consumption relative to the Baseline in the externality
scenarios, are reported. This behaviour is a result of the use
of fossil equivalent for calculation of the contribution of
non-fossil sources to primary energy consumption and
because of the switch to other fuels than electricity in the
final energy demand. As shown in Fig. 5, the Local
externality scenario is characterised by a large reduction in
coal use, which is replaced by mainly by renewable and
nuclear energy. This trend becomes even more obvious in
the case of global externalities, where coal use (primarily
for power generation) is substituted with nuclear energy
(partly also by natural gas and oil between 2010 and 2030),
and a large increase in renewable electricity consumption at
the end of the time horizon is projected. Reductions in
natural gas use in the end of modelled horizon under the
externality scenarios are associated with a decrease in
power generation from the NGCC systems. The consump-
tion of oil is slightly lowered in the Local externality
scenario, but its contribution is increased again in the
global externalities case, which is again related to inter-
fossil fuel substitution.
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Changes and fuel switching in the primary energy
demand are most significant towards the end of time
horizon. This observation is related to a larger penetration
of low-emitting technologies induced by externality
charges, and further accelerated by cost reducing effects
of ETL. Furthermore, the replacement of coal use for
power generation goes along with given declination rates
assumed for retirement of conventional coal plants without
emission control.
Local externality - Industry

Global externality - Industry
Local externality - Comm&resid

Global externality - Comm&resid

-30

Fig. 7. Change in electricity consumption in the industrial and residen-

tial&commercial demand sectors relative to the Baseline.
5.1.3. Final energy demand

In both externality scenarios the total final energy
consumption decreases (4–5%) compared to the Baseline
in 2050. Comparison of shares in the final-demand fuel mix
summarised in Fig. 6 shows, that the consumption of heat,
biomass and other fuels increases towards the end of
horizon relative to the Baseline, while the demand share of
electricity, natural gas, coal and oil is reduced.

The induced electricity-price increase results in electricity
demand reductions and substitution of electricity for other
fuels by the end-users. The price elasticity for the attendant
end-use demand reductions is �0.30 for all demand sectors
represented in GMM. Fig. 7 illustrates changes of the final
electricity demand in externality scenarios compared to the
Baseline. While the consumption of electricity is reduced in
both industrial and residential & commercial sectors, the
transport sector is not affected. The largest reduction is
projected in the industrial sector, since this sector has the
greatest ability to switch from electricity to other fuels. The
most significant electricity-demand reductions are observed
between 2020 and 2040 and are associated with premature
closing of existing electricity sources based of coal
combustion during this period. The electricity-demand
reductions are lowered in 2050, and represent for the
industrial sector a relative decrease over the Baseline of 9%
in the Local and 24% in the Global externality scenario.
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scenarios.
5.2. Environmental impacts

Internalisation of external cost into the total production
cost of electricity leads to rapid emission-reducing effect in
both externality scenarios. Fig. 8 represents the relative
change of global air emission over the Baseline. For all
considered emissions (CO2, SO2, NOx), the most significant
reduction occurs within the period 2000–2030 and is
associated with a substantial fallback of coal-based power
generation implicit to the premature retirement of coal
plants without SO2/NOx control. Until the year 2040, the
emission reduction is partly stabilised. At the end of the
time horizon, different developments can be observed in
CO2 emissions and local pollutants. As the (learning)
technologies based on fossil fuels coupled with CO2-
removal start to penetrate the market between 2040 and
2050, total CO2 emissions are reduced by 25% in the
Global externality scenario, as compared to the Baseline.
On the other hand, substantial decrease in SO2 and NOx

emissions relative to the Baseline scenario, reported for
periods by 2040, is less pronounced in the end of horizon.
By 2050, the advanced fossil systems with ETL option
(NGCC, advanced coal, IGCC) increase the market share
as compared to the earlier periods.
Significant CO2-emission reduction for the Local extern-

ality scenario suggests, that important ancillary benefits
can be expected from policies that directly address other
environmental issues than CO2-mitigation.

5.2.1. Emissions of local air pollutants (SO2/ NOx)

Fig. 9 shows total SO2 and NOx emissions from the
power production. To illustrate the effect of external cost
on the emission reduction, no local or regional pollution
mitigation policies are considered across the world regions
in the Baseline scenario. The SO2 emissions peak in the
period 2030–2040 at the rate of 140Mt SO2 per year in the
Baseline scenario, with region of ASIA being the main
contributor to the emissions level. With lowered share of
conventional coal plants, the sulphur emissions decrease
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5To eliminate the adverse effects of global climate change, the 550 ppmv

CO2-concentration target is frequently used as a precautionary, but

attainable level and represent the middle value of stabilisation level

identified by Wigley et al. (1996). Global carbon-emission trajectory aimed

to achieve the 550 ppmv target in the long run, as indicated by IPCC

(2001), implies the maximum energy related CO2 emissions of 10GtC/yr

by �2050. The results presented in this section indicate that the policies

internalising external cost only to the power sector, as formulated in this

modelling exercise, might not be sufficient to reduce global carbon

emissions to levels needed for 550 ppmv target, or, that the efforts to curb

CO2 emissions will have to be further accelerated in the second half of the

21st century.
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significantly until 2050. Since the desulphurisation systems
together with advanced coal and IGCC displace the
conventional coal from the system in the externality
scenarios, the reduction effect is considerable. The emis-
sions of NOx increase in the Baseline until 2030 and then
are stabilised at the annual rate around 60Mt NOx per
year. In the externality scenarios, there is no substantial
increase in the NOx emissions observed until 2040. Then in
2050, the level of NOx grows by 20% in the Local
externality scenario and by 5% in the Global externality
scenario relative to 2040, because of increased penetration
of new fossil-based technologies.

5.2.2. Global CO2 emissions

Total global carbon emissions in the Baseline scenario
rise during the whole time horizon with an annual rate of
1.8% and reach a level of 16.5Gt of carbon in 2050. In
the Local externality scenario, total emission level is
lowered by 15% in 2050, and the annual growth rate is
reduced to 1.5%. In the Global externality scenario, the
CO2 emissions annual growth is 1.3% and culminates
around the year 2040. As shown in Fig. 10, the carbon
emissions growth reduction appears by 2050 and the level
of 12.4Gt of carbon is projected at the end of the time
horizon.5

The decarbonisation effect of the policy comprising
internalisation of external cost can be demonstrated by a
break-down of the different CO2 reduction components, as
is shown in Fig. 11. Five carbon reducing components were
considered: carbon capture and sequestration, inter-fossil
switching (i.e., from coal to natural gas), reduction of fossil
fuel fraction resulting from increases in nuclear energy use,
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6The shadow price of electricity resulting from the model run is equal to

the marginal value of the electricity for the regional energy system as a

whole. There are six electricity prices, one for each time-slice defined in

GMM (i.e., summer day; summer night; winter day; winter night;
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reduction of fossil fuel fraction in favour of renewables,
and finally the reduction of end-use demand due to
implementation of externality policies (Kypreos, 1990). In
both externality scenarios, the inter-fossil fuel switching
plays a dominant role in carbon mitigation and contributes
45–53% of CO2 reduction in 2050. The important role of a
larger use of nuclear energy is reflected in the CO2-
emissions reducing effect, as in the time period 2020–2050
the nuclear energy contributes to 10–22% of the total
reduction. Carbon removal from fossil fuel combustion
plays a significant role in the Global externality scenario.
Its share in overall CO2-mitigation process in 2050
corresponds to 20%.

5.3. Cost impacts

5.3.1. Electricity generation cost analysis

To evaluate the competitiveness of different power
generation technologies, a simplified calculation of elec-
tricity generation cost has been performed. The calculation
assesses the impacts of internalisation of different extern-
ality modes on total production cost, as well as the effect of
‘learning-by-doing’ on the cost development over time. The
methodology used for calculation of electricity generation
cost is elaborated in Appendix I.

Fig. 12 summarizes results of the total generation cost
calculation for the Baseline and externality scenarios for
the present situation and cost projection for the year 2050.
The ASIA region is taken as an example for the analysis.
The Baseline scenario results in 2000 indicate, that without
external cost, NGCC, conventional pulverised coal and
coal power plants with DeSOx/DeNOx are the cheapest
alternatives at 3.1, 3.4 and 3.9 b/kWh, respectively. The
projected generation costs in the Baseline scenario in 2050
reflect the change in fuel cost, the impact of ETL towards
reduction of investment cost with accumulation of installed
capacity by ‘learning’ technologies in 2050, and expected
improvement in the conversion efficiency and a higher
average load factor. The least cost systems are wind
turbines, IGCC and advanced coal power plants with
projected generating cost at the level of 2.4, 2.5 and 2.8b/
kWh, respectively. Clearly, the significant cost reduction
for technologies undergoing strong ‘‘learning’’ effect in the
Baseline scenario is not autonomous, but is related to the
specific assumptions about energy-technology dynamics.
Cost reduction inherent to LBD-concept will not occur
without policy-actions in favour of advanced generation
systems.
Applying policies that internalise external cost from the

local pollution in the generation cost, the competitiveness
of technology portfolio changes towards the end of the
time horizon. The least cost options in this case in 2050 are
the wind turbines, IGCC and advanced coal plants with
total generation cost of 2.6, 3.5 and 4.0b/kWh, respec-
tively. High external cost makes the coal power plant
without emission control the most expensive electric-power
source among fossil-fuelled systems, which explains the
massive elimination of this technology from the generation
mix. In the case of internalised global externalities, the
most competitive systems are those with low- or zero-
emission rates: the wind turbines (2.6b/kWh), followed by
advanced nuclear power plants (4.8b/kWh) and IGCC
with CO2-capture (5.1b/kWh). Although the generation
costs in both externality scenarios increase as compared to
the Baseline scenario, the higher competitiveness of
advanced fossil systems, advanced nuclear and renewable
energy technologies implies a decreased dependency of the
electricity sector on the fossil-fuel supplies.
The regional impacts of the policy instrument that

internalise external cost into the power generation cost, as
implemented in this analysis, is portrayed by comparing
changes in the shadow price of electricity in regions
represented in GMM6. Table 5 shows that the range of
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Table 5

Increase in average shadow price of electricity in externality scenarios relative to the Baseline

Region Scenario 2010 (b/kWh) 2020 (b/kWh) 2030 (b/kWh) 2040 (b/kWh) 2050 (b/kWh)

NAME Local externality 1.7 (41%) 1.8 (25%) 1.1 (22%) 1.3 (23%) 1.0 (19%)

Global externality 2.3 (58%) 2.7 (51%) 1.8 (45%) 1.7 (39%) 1.7 (42%)

OECD Local externality 1.9 (38%) 1.5 (30%) 1.3 (24%) 1.5 (26%) 1.5 (32%)

Global externality 2.7 (54%) 2.1 (60%) 2.0 (52%) 1.0 (23%) 2.5 (77%)

EEFSU Local externality 1.6 (36%) 1.5 (24%) 3.2 (37%) 2.2 (33%) 0.8 (16%)

Global externality 1.7 (40%) 2.5 (52%) 4.0 (72%) 2.4 (51%) 1.7 (40%)

ASIA Local externality 2.6 (52%) 6.4 (54%) 4.2 (44%) 3.8 (42%) 1.7 (28%)

Global externality 5.2 (103%) 6.7 (123%) 4.1 (77%) 3.8 (71%) 2.2 (50%)

LAFM Local externality 0.4 (10%) 0.7 (14%) 1.2 (27%) 1.1 (24%) 1.2 (21%)

Global externality 0.6 (14%) 0.8 (19%) 1.8 (57%) 1.7 (47%) 1.3 (29%)

WORLD Local externality 1.6 (36%) 2.4 (51%) 2.2 (50%) 2.0 (45%) 1.2 (30%)

Global externality 2.5 (55%) 3.0 (64%) 2.7 (62%) 2.1 (48%) 1.9 (46%)
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increases in the average shadow price values is rather large
(from 0.4 to 6.7b/kWh), depending on the time period and
the region. More interesting than the numerical results is
the observation, that the price increase is significantly
higher in both externality scenarios for regions largely
relying on the coal-based electricity production, e.g., the
ASIA region. An increment in the shadow price decreases
over the time horizon in most of the regions. Large increase
in the price in periods 2010–2020 suggests, that the timing
(footnote continued)

intermediate day; intermediate night). This provides a composite

electricity price which is the average of the 6 electricity shadow prices,

and which represents the price of a kWh produced throughout the 6 time-

slices (EIA, 2003b).
of implementation of the policy is particularly important,
and a smoother or a gradual introduction of externalities is
appropriate for developing regions where fossil fuels
burning constitute the main source of energy.
It has to be stressed, that the results presented in this

section are indicative and bear all the uncertainties related
to the fuel prices development and assumed learning
parameters of systems with ETL option (progress ratio,
annual growth and declination rates, floor cost; see
Table 1). Another policy relevant comment pertinent
to the presented values is that the extent of externality
charges associated with emission of pollutants influences
significantly the level of cumulative installed capacity of
power plants. In other words, the technologies with high
external cost are introduced into the system at a lower rate
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and their investment cost reduction because of ETL is
impaired. On the contrary, a reverse effect can occur for
technologies with low externality charges: their learning
performance is accelerated and results in a higher market
penetration.

5.3.2. Total system cost

As the energy system tries to avoid paying the external
costs, new (investment intensive) technologies are being
installed and structural changes take place. This leads to
significant increase in total system cost over the whole time
horizon. The highest contribution of the externality
charges to the increase in total system cost, however,
occurs in the first period after their introduction (2010).
This result confirms again the importance of proper timing
of the policy implementation. Fraction of undiscounted
externality charges in the total cost is shrinking both in
relative and absolute terms towards the end of horizon,
reflecting the capability of the energy system to minimize
the extra charges through the structural changes and fuel
switching.

Model runs indicate a high relative change in the
cumulative total discounted system costs, i.e., the objective
function used in GMM, due to inclusion of the additional
charges on the power generation. This increase over the
Baseline totals in externality scenarios to 9.6% and 13%.
As is indicated in Fig. 13, the contribution of the external
cost itself counts for 85% of the total increase in both
externality scenarios. The reminder is attributed to the
structural changes and fuel switch occurring within the
energy system.

Fig. 13 also shows a ‘‘hypothetical’’, non-internalised
external cost associated with the Baseline scenario. The
non-internalised external cost approximates the cumulative
discounted damage cost produced by the electricity sector.
This cost is not taken into account in the price of
electricity, but is imposed on the society in a form of
environmental and health damages. This analysis indicates
that the non-internalised externalities might represent
around 25% of the total discounted system cost of the
Baseline scenario. On the other hand, the level of energy
system cost increase in externality scenarios demonstrates
the ability of the energy system to adjust the overall cost
well below the environmental damages that occur in the
Baseline.

6. Conclusions

Internalisation of external cost in the price of electricity
is an important policy instrument towards the sustainable
development in the energy use. Modelling the impacts of
such policies carries certain limitations and uncertainties,
among which the most important are issues of valuing
socio-political priorities of future energy sector develop-
ments, socio-political acceptance of technological options,
income distribution effects, discounting of the future
damages to the present value, regional differences in
valuing externalities, or the rate of technological change.
While these issues were beyond the scope of our analysis,
number of conclusions and insights can be derived from the
inclusion of externalities into the power generation system,
as performed using the Global Multi-regional MARKAL
model.
Internalisation of externalities with and without climate

change impacts fosters a rapid introduction of emissions
control systems and low-emitting power plants. Scenarios
analysis reveals substantial changes in the electricity
production system, i.e., diffusion of advanced technologies
and fuel switching. In the case of the local externalities, the
technologies such as coal power plants with emission
control, advanced coal power plants and IGCC replace the
conventional coal systems. Natural gas combined cycle,
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nuclear power and renewables increase their share in the
power generation mix. The scenario with global external-
ities further accelerates the structural changes in the power
production sector. Contribution of the coal-based genera-
tion is strongly reduced, and production from the systems
with carbon removal accounts for 36% of total electricity
generation from coal power plants. Natural gas combined
cycle systems play a dominant role, and a significant
increase in the nuclear energy production is reported.
Renewable systems, as well as fuel cells, increase their
competitiveness. GMM model runs indicate some effi-
ciency loss due to the use of scrubbers (DeNOx, DeSOx,
and C-capturing), however, the dependency of the elec-
tricity sector on the fossil fuels is considerably lower as
compared to the Baseline.

Externality charges on power generation increase the
price of electricity for the end-users. Therefore, the
reduction in final demand for electricity in industrial and
residential & commercial sectors takes place; electricity
consumption is partly substituted by other fuels, e.g., heat,
biomass.

The inclusion of external costs in the price of electricity
has positive global and local environmental impacts due to
significant emissions reduction. Emissions of SO2 and NOx

decrease by 70–85% in 2030 relative to the Baseline
scenario, then their elimination slows down with rising
installation of new fossil-based systems, such as advanced
coal, IGCC, NGCC. The modelling results show a
strong decarbonisation effect of policies internalising
externalities in the electricity sector. Breakdown of carbon
emissions reduction components suggests the major con-
tributions of the inter-fossil switch and increase in nuclear
and renewable fraction in the primary energy use. Since the
carbon sequestration technologies become competitive in
the Global externality scenario, they appear to be an
attractive technological option in carbon abatement
process.

Significant reduction in CO2-emissions associated with
the Local externality scenario suggests, that synergies and
ancillary benefits can be invoked by policies that directly
address other sustainability issues than CO2-mitigation.

Increase in the total energy system cost in the externality
scenarios associated with structural changes and fuel
substitutions induced by internalisation of externalities
represent 1.6% and 1.9% relative to the Baseline. On the
other hand, ‘learning-by-doing’ aids in moderating the level
of external cost penalty. While analysis performed with
GMM indicates that advanced systems with emission
control and carbon capture will undergo significant cost
reduction and will become competitive in the long run,
policies supporting these technologies is a prerequisite to
establish them in the electricity markets, especially in the
initial period of their market penetration. This refers to
policy measures for the stimulation of technological
progress via learning investments and RD&D expenditures
that help advanced and carbon-free technologies to follow
their learning curves.
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Appendix I. Calculation of the electricity generation cost

Total electricity generation cost (also referred to as
levelized cost of energy or busbar cost) is calculated
according this formula adopted from Drennen et al. (2003):

TGC ¼
I � CRF

Q
þ

FIXO&M

Q
þ

VARO&M

Q
þ

F

Q
þ

E

Q
,

where: I is the capital investment cost, CRF the capital
recovery factor, Q the annual plant output (kWh),
FIXO&M, the fixed O&M cost, VARO&M the variable
O&M cost (including CO2-storage cost), F the fuel cost and
E the external cost

CRF ¼ dr �
ð1þ drÞn

ð1þ drÞn � 1
,

where dr is the (real) discount rate, and n the plant life time.
Calculation of specific investment cost for the learning

technologies in 2050 follows the approach described by
Barreto (2001):

I2050 ¼ I0 �
CC2050

CC0

� ��b

,

where I2050 is the specific investment cost in 2050, I0 the
specific investment cost at the starting point when
technology is introduced into the system, CC2050 the
cumulative capacity of the technology in 2050, CC0 the
cumulative capacity of the technology at the starting point,
b the learning index

�b ¼
ln pr

ln 2
) pr ¼ 2�b,

where, pr is the progress ratio, or the rate at which the cost
declines each time the cumulative production doubles (e.g.,
a progress ratio of 80% implies that the costs are reduced
by 20% relative to the original value when the cumulative
capacity is doubled).
Appendix II. Region-specific external cost in b/kWh

See Table 6.
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1. Introduction and motivation

Over the last fifteen years there has been a significant
research effort in measuring the external costs caused by
electricity production (European Commission, 1998; Friedrich
and Bickel, 2001; Krewitt, 2002; European Commission, 2003;
Markandya, 2003; NewExt, 2004; ExternE-Pol, 2005, European
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Commission, 2005). It is well established that air pollution,
acid deposition, and accidents caused by the production of
electricity have negative effects both on human health and on
the environment. For example, human health is affected in
terms of reduced life expectancy and increased respiratory
hospital admissions, while the environment is affected
through yield change of crops and global warming (European
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Commission, 2003). Using a non demand1 based bottom-up
impact pathway approach,2 the team of researchers of
ExternE has quantified in monetary terms most of the
damages to human health and the environment caused by
the different fuels and technologies that generate electricity.
The external costs estimates are substantial; for example,
ExternE-Pol (2005) has estimated that they are in the range of
1.6–5.8 c€/kWh for current fossil fuel based systems, with
figures at the lower end for gas based generation technologies
and the upper end for traditional coal technologies. The
results of the ExternE research also indicate the importance of
the effects in terms of human health and global warming: at
the end of the 1990s ExternE identified that health impacts
comprised 98% of the external costs from SO2 emissions and
almost 100% of those from particulates (European Commis-
sion, 1999), with mortality impacts accounting for around 80%
of those health impacts. The costs associated specifically with
global warming range widely and differ for fuel. The current
phase of ExternE uses the avoidance cost methodology for
valuing the external costs of global warming because,
according to ExternE, the monetary valuations to date of
global warming externalities have not yet been satisfactory.
ExternE suggests to use the value of 19 €/tCO2 because that is
the avoidance cost for achieving the Kyoto targets in the EU
(European Commission, 2005).

One reason to support the promotion of renewable energy
comes from the internalization of external costs. Economists
have shown that when externalities are present, markets are
not efficient unless these external costs are internalized and
economic agents take into account these costs when making
decisions. Market based instruments, such as subsidies have
been widely used to address externalities. The recent “Com-
munity guidelines on state aid for environmental protection”
of the European Commission support the use of subsidies to
promote the production of renewable energy: the guidelines
allow Member States to “grant operating aid [limited to a
maximum of 5 c€/kWh] to new plants producing renewable
energy that will be calculated on the basis of external costs
avoided” (European Commission, 2001). A second major
reason to stimulate the production of renewable energy
comes from the increasing demand for electricity, and, more-
1 Turner et al. (1994, p.114) divide the methods for valuing the
environment into two groups, demand curve approaches, such as
contingent valuation, choice experiments, travel cost method;
and non-demand curve approaches, such as dose-response
method, avoidance cost method. The latter approach even if it
fails to provide ‘true’ valuation information, has been favoured by
ExternE as it provides useful information to policymakers. On the
contrary, the approach we use in our study, choice experiments,
is a demand curve approach.
2 “The impact pathway assessment is a bottom-up-approach in

which environmental benefits and costs are estimated by
following the pathway from source emissions via quality changes
of air, soil and water to physical impacts, before being expressed
in monetary benefits and costs. The use of such a detailed
bottom-up methodology – in contrast to earlier top-down
approaches – is necessary, as external costs are highly site-
dependent (cf. local effects of pollutants) and as marginal (and
not average) costs have to be calculated” (European Commission,
2003, page 8).
over, a demand for secure electricity (European Commission,
1995, 1997, 2000).

The UK energy policy aims to comply with the commit-
ment of the Kyoto Protocol, which requires a reduction of the
UK greenhouse gases emissions to 12.5% below the 1990 levels
during the period 2008–2012. By increasing the share of
consumption of renewable energy from 3% of 2002 levels to
10% of UK electricity in 2010, “renewable energy will also play
an important part in reducing carbon emissions, while also
strengthening energy security” (DTI, 2003, page 11). The
electricity supply industry was liberalised in Great Britain in
1999 (Batley et al., 2001); today consumers have the opportu-
nity to decide their supplier and the mix of energy, whether
traditional or “green” electricity. This means that the demand
for renewable electricity might directly contribute to an
increase in its production. As Ek (2005) points out, if people
are willing to pay to support the production of renewable
energy, we can expect that an increase in the production of
renewable energy would be welcome. In particular, it is
essential to understand what people think about these
changes since they are the ones primarily affected. This
change in the supply of electricity can have major effects on
the structure of society, including employment in the energy
sector.

The focus of this paper is to investigate the perception and
the willingness to pay of UK energy users for different
characteristics of energy programs that stimulate the produc-
tion of renewable energy by using choice experiments
(Louviere et al., 2000; Alberini et al., 2007). The methodology
is applied to a sample of respondents in the city of Bath,
England, to elicit their preferences for different hypothetical
policies for the promotion of renewable energy that (i)
contribute to the internalization of the external costs caused
by fossil fuel technologies; (ii) affect the security of short-term
energy supply; (iii) have an impact on the employment in the
energy sector; (iv) and lead to an increase in the electricity bill.
The paper is structured as follows. Section 2 reviews the
literature onwillingness to pay to avoid energy black-outs and
to support renewable energy. Section 3 presents the survey
instrument and its administration. Section 4 describes the
economic and econometric models aimed at answering our
research questions. Sections 5 presents the results of the
econometric models and Section 6 presents some concluding
remarks.
2. Literature review

Past research has investigated consumers' willingness to pay
(WTP) for renewables focusing on environmental effects
(Champ and Bishop, 2001; Roe et al., 2001; Alvarez-Farizo and
Hanley, 2002; NewExt, 2004; Ek, 2005; Bergmann et al., 2006), on
health effects (Johnson andDesvousges, 1997; Bergmann et al.,
2006), and on social aspects (Johnson and Desvousges, 1997;
Bergmann et al., 2006). Other studies have focused on renew-
able energy without directly investigating the impacts on
environment, health or social aspects (Farhar and Houston,
1996; Farhar, 1999; Farhar and Coburn, 1999; Zarnikau, 2003;
Wiser, 2003; Menges et al., 2005; Aravena et al., 2006). A group
of studies has focused on the value of security of energy



3 People may attach different values to energy shortages
depending in part on whether shortages are announced or not
(Beenstock et al, 1998; Carlsson and Martinsson, 2004a,b; Baarsma
et al, 2005.) Our questionnaire focuses on unannounced short-
term energy shortages, as in the UK the public has generally not
been informed of forthcoming electricity black-outs.

Table 1 – Studies on WTP (2005 US$) for renewable energy and energy shortages

A. WTP for improving renewable energy

Study Goett et al. (2000) Champ and
Bishop (2001)

Roe et al. (2001) Wiser (2003) Batley et al.
(2001)

Bergmann et al.
(2006)

Data year 1999 1997 1997 2001 1997 2003
Stated
preference
methoda

CE CV, SBDC CE CV, SBDC CV, OE CE

Questionnaire
type

Phone–mail–phone Mail Intercept Mail–phone Mail Mail

Completed
questionnaires

1205 193 835 1574 742 219

Surveyed area US Madison,
Wisconsin
(US)

8 US cities US Leicester,
England

8 Council Districts
in Scotland

Hypothetical
scenario

Increase in renewable
share (25% of energy
supplied by hydro)

WTP for
wind energy

Increase in renewable
energy of 1% and a decrease
of emissions of 1%

Increase
renewable
energy from 2%
to 8%

Increase in
renewable
sources

Renewable energy
projects that have
no increase in air
pollution

Households
WTP/year

98.44b 71.79 16.32c 39.72d 95.20 25.26

B. WTP for avoiding short-term energy shortages (black-outs)

Study Hartman et al.
(1991)

Beenstock et al.
(1998)

Layton and Moeltner
(2005)

Baarsma et al.
(2005)

Carlsson and Martinsson
(2004a)

Data year 1988 1990–1991 1998 2003–2004 2004
Stated preference
methoda

CV, OE CR CE CR CV, OE

Questionnaire
type

Mail In person Mail Mail Mail

Completed
questionnaires

1501 2950 1421 12,409 1678

Surveyed area California, US Israel US The Netherlands Sweden
Hypothetical
scenario

1 h shortage 1 kWh unsupplied electricity 1 h shortage 1 h shortage 1 h shortage

Households WTP/
year

65.77 10.46 16.12 78.16 1.29e

a CV = contingent valuation, SBDC = single bounded dichotomous choice, OE = open ended; CE = choice experiments; CR = contingent ranking.
b Goett et al. (2000) report a WTP of 1.46 cUS$/kWh. Wemultiplied this value for the average consumption of energy per household, adjusted at
year 2005 (see http://www.carbonfund.org/assumptions.php, http://minneapolisfed.org/research/data/us/calc/, http://www.xe.com/).
c WTP for the median respondent living in the Northeast of the US, with high school degree and no environmental organization membership.
d Median WTP.
e Carlsson and Martinsson (2004a) investigate the WTP for both planned and unplanned black-outs starting at 6 pm on an evening in January.
Only unplanned black-outs are considered here.
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supply (Hartman et al., 1991; Doane et al., 1988a,b; Woo et al.,
1991; Beenstock et al., 1998; Goett et al., 2000; de Nooij et al.,
2005; Baarsma et al., 2005; Layton and Moeltner, 2005). Most of
these studies have used the contingent valuation method
(Mitchell and Carson, 1989) and more recently have relied on
choice experiments (Goett et al., 2000; Roe et al., 2001; Ek, 2005;
Baarsma et al., 2005; Bergmann et al., 2006; Aravena et al.,
2006). All these studies, despite their differences in study
designs, find that consumers generally have a positive WTP
for renewable energy policies.

Stated preference studies on WTP for security of energy
supply have generally focused on short-term security of
supply (black-outs), rather than on price volatility or long-
term security of supply (e.g. dependence on Russia). See for
example Doane et al. (1988a,b), Woo et al. (1991), Hartman
et al. (1991), Beenstock et al. (1998), Goett et al. (2000), Carlsson
and Martinsson (2004a,b), Layton and Moeltner (2005),
Baarsma et al. (2005). Our study conforms to this literature.3

In the UK, the few studies that have been conducted show
that people are becoming more supportive of renewable
energy: Fouquet (1998) and Batley et al. (2001) find that 20%
and 34% of respondents respectively are willing to pay more
for electricity generated from renewable sources. In Scotland,
Hanley and Nevin (1999) find that local populations support
wind energy. Support for renewable energy in Scotland is
confirmed by Bergmann et al. (2006) who find that their

http://www.carbonfund.org/assumptions.php
http://minneapolisfed.org/research/data/us/calc/
http://www.xe.com/
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respondents support renewable energy projects causing no
increase in air pollution, but are not willing to pay anything for
creating new long-term jobs in the energy industry.

Table 1 summarizes the characteristics and the results of
the studies on WTP for renewable energy and on WTP for
short-term energy security.

To our knowledge, our study is the first to investigate
consumers' WTP for renewable energy that have an impact on
the internalization of the external costs of energy production
from three sources: reduced greenhouse gases emissions,
better security of energy supply, and higher employment level
in the energy sector.
6 Even though 3%might be a well too optimistic scenario, we fel
it was necessary to have such a variation among the levels of this
attribute so that respondents could better appreciate the differen

5 Local air pollution reduction associated with reductions in
GHG is called an ancillary benefit. Studies for the UK and other
countries show that such benefits are very policy and location
specific, and vary between £2 and £334 per ton of carbon reduced,
(DEFRA, 2002), and according to the OECD they could be as much
as twice the climate change benefits (OECD, 2000).
3. Structure of the questionnaire and
survey administration

3.1. Selection of the attributes and conjoint choice
questions

In a choice experiments-based survey, respondents are asked
to choose between hypothetical public programs or commod-
ities described by a set of attributes (see Hanley et al., 2001);
hypothetical programs or commodities differ by the level that
two or more attributes take. Respondents trade-off the levels
of the attributes of the programs or goods, one of which is
usually its cost to the respondent, allowing researchers to
infer the willingness to pay for public goods or programs and
the implicit value of each attribute (see Hanley et al., 1998). In
our choice experiments, the hypothetical policies for the
promotion of renewable energy are described by four
attributes:4 (i) annual percentage reduction in greenhouse
gases (GHG), (ii) length of shortages of energy supply, (iii)
variation in the number of employed in the energy sector, and
(iv) increase in the electricity bill. We focused on these four
attributes because we were interested in understanding the
trade-off between (i) the internalization of the external costs
causing damages to human health and the environment, (ii)
the need of electricity for day to day activities, (iii) a social
element always important in political decisions, such as jobs
creation/loss (iv) and finally the cost of the policy to under-
stand the willingness to pay for renewable energy.

In a choice experiments-based survey it is essential to
present a realistic and clear description of the hypothetical
program or good that the respondents are asked to value. This
means that the attributes chosen to describe the policy for the
promotion of renewable energy presented in the choice sets
and their levels have to be realistic and consistent with the
government policies, as well as relevant and understandable
to respondents.

In choosing the first attribute, the percentage reduction in
GHG emissions, we were interested in selecting an attribute
that would consider the long-term climate change impacts as
well as internalize some of the associated external costs of
local pollutants that cause damages to human health and the
4 Bateman et al. (2002) suggest that not more than 4–5
attributes, including price, should be presented in a choice
experiments-based questionnaire.
environment.5 At first we wanted to use three separate
attributes, one for human health effects of local air pollutants,
one for damages to the environment, and one for climate
change impacts. However, after focus groups and one-on-one
interviews, we decided to use only one attribute because
participants felt that the three effects, on environment, on
human health, and on climate change were too closely
correlated. Unfortunately this makes it difficult to separate
the local pollutionvaluationof individuals from that of broader
climate change benefits, except on the basis of the share of
damages associated with each when GHG emissions are
reduced by a given amount. The decision to use the annual
percentage change in GHG emissions matches with the recent
UK EnergyWhite Paper (DTI, 2003) description of the potential
benefits that renewable sourcesmight bring to the internaliza-
tion of the external costs: the UK has set the target to decrease
GHGemissionsby 60%below the1990 levels by 2050. In order to
reach this target, it needs to reduce the emissions of CO2 by at
least 15 or 25 MtC before 2020 (DTI, 2003). An increase in the
share of renewable sources in the production of energy could
bring a reduction of CO2 emissions of 3–5 MtC (DTI, 2003). This
means that renewable energy can contribute to cut GHG
emissions by 1% per year compared to 1990 levels. Therefore,
the levels chosen for this attribute in the questionnaire are: 1%,
2% or 3% reduction in GHG emissions per year in the UK.6,7

The second attribute presented is short-term energy
security. Insecurity of energy supply, in the form of sudden
physical shortages, can disrupt the economic performance
and social welfare of the country in the event of supply
interruptions and/or large, unexpected short-term price
increases (JESS, 2003). According to the UK Energy White
Paper (DTI, 2003), the UK production of oil and gaswill strongly
decline in the next years and the UK will become a net
importer of these resources. As a consequence, the UK will be
more vulnerable to price fluctuations and interruptions of
supply. DTI (2005b) reports that over the year April 2004 to
March 2005 the total number of customer interruptions in the
UK was around 22 million. In 2001/02, UK customers suffered
on average 86 min of power cuts during the year (JESS, 2003).
These figures, combined with previous works on energy
security (Hartman et al., 1991; Beenstock et al., 1998; Goett
et al., 2000) and focus groups indications, suggested that we
set the levels for energy security as follows: 30, 60, 120 min
black-out per year, with the business as usual scenario being
set at 90 min per year.
contribution of different hypothetical policies to GHG reductions
7 In preparing the questionnaire we were worried whether

respondents would understand the differences between GHG
reductions of 1, 2, and 3%, but in our focus groups we found tha
people did understand these differences and deemed them
feasible.
t

t
.

t



Table 2 – Attributes and their levels for the choice
experiments

Attribute Level
1

Level
2

Level
3

Level
4

Status quo

Annual reduction
in GHG emissions
due to renewable
energy increase
(3 levels)

1% 2% 3% – No additional
greenhouse
gases
emissions
reduction

Annual length of
electricity
shortages
in minutes
(3 levels)

30 60 120 – Current level
of black-outs

Change in number
of employees in
the electricity
sector (3 levels)

+1000 −1000 0 – No employment
change in the
energy sector

Increase in
electricity bill in
£ (4 levels)

6.5 16 25 38 No price
increase in the
electricity bill
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The third attribute presented in the questionnaire is the one
related to employment. As Bergmann et al. (2006) claim,
employment is an essential aspect about changes in the
structure of society due to new energy policies. In our study,
we assume that the increasing demand for renewable energy
might increase the number of jobs in renewable energy sectors,
but might decrease the number of jobs in the fossil fuel energy
sectors. Focus groups discussions and previous studies (Berg-
mann et al., 2006) suggested to set the following levels for the
attribute “employment”: +1000 new jobs, −1000 jobs, and no
new jobs in the energy sector in the UK. The values, which are
comparable toactual shifts in jobs in theenergysector in theUK,
were calculatedassumingahypothetical variationof about 0.5%
in the total number of employees in the energy sector.8,9

In a choice experiment exercise, when the focus is on the
marginal price of attributes and the willingness to pay for a
hypothetical program or good, it is necessary to include a
payment vehicle among the attributes. Following the litera-
ture (Farhar, 1999; Goett et al., 2000; Bergmann et al., 2006), we
used an increase in the electricity bill as a payment mechan-
ism for the policy to promote renewables. The levels of the
electricity bill chosen are an increase by £6.5, £16, £25 and £38
on the quarterly electricity bill paid by the respondents. These
correspond to an increase by 10%, 25%, 40%, and 60% from the
average electricity bill in the UK.10

In our choice experimentswe included the ‘status quo’ option
in each choice set to compare the stated preferences of our
respondents with the current situation. Such a comparison is
necessarywhen researcherswant to compute the value (WTP) of
each alternative policy (Hanley et al., 2001). Table 2 summarizes
the attributes and their levels for the present study.

In our conjoint choice questions, respondents are asked to
indicatewhich they prefer between policy A and B and the status
quo. To create the pairs of alternative hypothetical policies, we
first created the full factorial design, i.e., all of the possible
combinations of attribute levels. This gave a total of 108 possible
combinations of hypothetical policies. To reduce the number of
possible combinations, we opted for a fractional factorial design
(Louviere et al., 2000). We then randomly selected two of these
alternatives, but discarded pairs containing dominated or iden-
tical alternatives.11 At the end we prepared six different versions
of the questionnaire with six choice experiments each. An
example of choice experiment question is shown on Fig. 1.
8 In July 2005 British Gas announced a cut of 2000 jobs as a
consequence of a modernization plan of the company (see http://
news.bbc.co.uk/2/hi/uk_news/england/4730487.stm accessed Oc-
tober 31st 2007). When we presented the attributes, respondents
were made aware that the hypothetical policies might have
similar effects.
9 According to the Office for National Statistics (2005), the total

number of employees in the Energy and Water Industry Sector in
the UK during the second quarter of 2005 was 177,000.
10 The average annual electricity bill in the UK according to the
National Statistics is equal to £251 (DTI, 2005a; Table 2.2.2). The
electricity consumption in 2003 was equal to 337.443 billion kWh
(IEA, 2003).
11 A dominated alternative is one that should obviously be less
preferred to the other. For instance, if two projects are identical in
every respect except for the price, the project with the higher cost
is dominated by the other.
3.2. Structure of the questionnaire and survey
administration

The questionnaire starts by presenting the topic of the survey:
people's opinions on hypothetical renewable energy policies.
Respondents face a few warm-up questions aimed at investi-
gating the level of knowledge of respondents on the level of
externalities caused by different energy fuels. The second part
prepares the respondents with the hypothetical policies: one
page describes the four attributes that define the possible
impacts of a policy for the promotion of renewables. Respon-
dents are asked to focus only on the four attributeswe consider
and not to think of other elements that might characterize the
impacts of a policy for renewable energy. The next section is
the central part of the questionnaire with the six choice
experiments questions. The fourth section presents some
debriefing questions to verify whether the respondents
considered all the attributes in their choices, or only one. The
fifth part of the questionnaire collects the usual socio-
demographic characteristics. At the end, the interviewers
took note whether respondents seemed annoyed by the inter-
view or seemed to not understand the choice exercises.12

Following Roe et al. (2001), the survey was administered in
person to 300 respondents intercepted in shopping areas, public
parks and other central areas of Bath, England, in July and
August 2005. The surveys were carried out by professional
interviewers who were instructed to interview an even number
of men and women and to ensure given proportions of
respondents in various age groups. To mitigate possible biases
in the sample, interviewers were instructed to follow the
common practice of stopping every 7th person passing by.13

We chose to interview people through in-person interviews to
12 A copy of the questionnaire is available by the authors upon
request.
13 Intercept surveys can be collected in convenient locations,
such as shopping malls or street (Champ, 2003, p. 70), or at
visitation sites. The sampling strategy we implemented follows
the intercept survey described by Davis (2004).



Fig. 1 –Example of choice experiments question.
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guarantee a high quality in the answers. The budget constraint
of this study limited our analysis to sample residents of Bath
and North East Somerset. The results presented in this study
should therefore be interpreted with caution: they are not
representative of the UK population, but of the residents of a
quite wealthy medium sized town of the South of the UK.
14 Researchers of the ExternE team have only recently moved
their attention also to energy shortages (see the European
Commission FP6 funded projects NEEDS and CASES).
4. Economic model and econometric model

4.1. Thewillingness to pay for a policy for renewable energy

Our statistical analysis of the responses to the choice questions
isbasedonthe randomutilitymodel (RUM),whichassumes that
a respondent's indirect utility is broken down into two
components. The first component is deterministic, and is a
function of the attributes of the alternatives, the characteristics
of the individuals, and a set of unknown parameters, while the
second component is an error term (McFadden, 1974). Formally,

Vik ¼
P
V xik;bð Þ þ eik ð1Þ

where the subscript i denotes the respondent, the subscript k
denotes the alternative, x is a 1×4 vector comprised of the four
attributes: the annual GHG emissions reductions (GHGREDUC-
TION), the yearly minutes of energy shortages (BLACKOUT), the
permanent impact on the energy job market (JOBS), and the
increase in the quarterly electricity bill (PRICE), β is a vector of
unknown coefficients and ε is an error term that captures
individual- andalternative-specific factors that influenceutility,
but arenot observable to the researcher.We furtherassume that
the indirect utility function is linear in parameters:

Vik ¼ b0k þ xikβþ eik ð2Þ

We further posit that in each of the choice questions the
respondent selects the alternative with the highest indirect
utility:

pik ¼ Pr Vik NVi1;Vik NVi2; N ;Vik NViKð Þ ¼ Pr Vik NVij
� �

8j p k ð3Þ

where πik signifies the probability that option k is chosen by
individual i. If the error terms ɛ are independent and identically
distributed and follow the type I extreme value distribution, the
probability that the hypothetical policy k is selected out of K
policies is:

Pik ¼ Pr resp: i chooses kð Þ ¼ exp AVikð Þ=
XK

j ¼ 1

exp AVij
� �

ð4Þ
where μ is the scale parameter which is inversely proportional to
the standard deviation of the error terms. Eq. (4) is the
contribution to the likelihood in a conditional logit model. In
our questionnaire, K=3. The log likelihood function of the
conditional logit model is:

ln L ¼
Xn

i¼1

XK

k¼1

yik � ln pik ð5Þ

where yik takes on a value of 1 if the respondent chooses k, 0
otherwise. The coefficients are estimated using a Maximum
Likelihood EstimationMethod. Themodel described by (4) and (5)
allows us to estimate the trade-off between any two attributes
and the willingness to pay for different policies. The marginal
price of attribute k is given by:

MPk ¼ �
b̂k

b̂c
ð6Þ

where β̂k is the utility from an extra unit of k.Divided by the price
coefficient, β̂c, it gives us themonetary value of the utility coming
from an extra unit of k. Finally we can derive the willingness to
pay for a certain policy, formally:

WTPik ¼ �
xikb̂
b̂c

ð7Þ

Where x is the vector of the levels of attributes of policy k
given to individual i.

We use model (2) to test the findings by Bergmann et al.
(2006) that, in choosing a policy for the promotion of renew-
able energy, the impact on the job market does not matter
(Hypothesis I). An insignificant sign of the coefficient of (JOBS)
would fail to reject Hypothesis I.

The second hypothesis (Hypothesis II) of our model is that
respondents value the externalities on human health and the
environment more than those arising from energy disrup-
tions. This hypothesis would mirror the actual interest that
the ExternE team has had in valuing the externalities caused
by energy.14 To test this hypothesis we compare how much
our respondents are willing to pay to avoid energy shortages,
considering the average length of energy shortages of 90 min
per year, with how much they are willing to pay to decrease



Table 3 – Hypotheses tested with our model

Hypothesis Description

I In a policy for the promotion of renewable energy,
the number of jobs created or lost does not matter.

II It is more important to internalize external costs
affecting human health and the environment than
guaranteeing energy security.

III Test the internal validity of the responses: WTP
increases with income.

IV WTP is higher for respondents with children.
V Members of environmental organizations and

having a college degree positively affect the WTP for
a policy for renewable energy

146 E C O L O G I C A L E C O N O M I C S 6 7 ( 2 0 0 8 ) 1 4 0 – 1 5 2
GHG emissions from promoting renewables to comply with
the DTI (2003) targets of reducing emissions by 60% below the
levels of 1990 by 2050, which is roughly given by a GHG
reduction of 1% a year.

4.2. Heterogeneity among respondents and specific
hypothesis

The conditional logit model described by Eqs. (4)–(5) is easily
amended to allow for heterogeneity among the respondents.
Specifically, one can form interaction terms between indivi-
dual characteristics, such as age, gender, education, etc., and
all or some of the attributes, and enter these interactions in
the indirect utility function to test other specific hypotheses.15

Our Hypothesis III aims to investigate the internal validity
of our responses. Therefore we add interaction terms between
respondents' income (INCOME) and GHGREDUCTION and
between INCOME and BLACKOUT.

In the literature on non-market valuation, researchers
usually try to disentangle the components of the good being
estimated into its use and non-use value components (see
Freeman, 2003). For our good it is quite difficult to identify the
use value component of a policy for the promotion of
renewable energy. Such values arise from the direct benefits
that respondents receive from the policy, such as the
improvement in their own health status, the conservation of
the natural environment that they visit, and especially the
reduction in energy shortages in their own dwellings. Non-use
components are made up of benefits that will emerge in the
long run. For example, future generationswill bemore likely to
experience the benefits in terms of health and global warming
of the cuts in GHG emissions. If the share of ancillary benefits
from GHG reduction is of the order of 10% (OECD, 2000) then
we can say, roughly, that 10% of the willingness to pay for
renewables is for personal benefits (although even here others
also gain from the reduction) and 90% is for the longer term
benefits of future generations. Our Hypothesis IV is therefore
that respondents who have children aremorewilling to accept
the policy for the promotion of renewables and are willing to
paymore than those without children. To test this hypothesis,
we add an interaction term between GHGREDUCTION and a
dummy variable (CHILD) that takes on a value of 1 if a
respondent has children, and 0 otherwise. To further test
whether respondents that care for future generations have a
higher willingness to pay for renewables, we add an interac-
tion term between BLACKOUT and CHILD.

Finally, wewish to seewhether the level of schooling or the
membership in an environmental organization influences the
WTP for renewables. While being member of an environ-
mental organization should suggest a positive WTP for
environmental programs, previous research on the effects of
education on WTP has found mixed results. For example,
Blomquist and Whitehead (1998), Witzke and Urfei (2001), Li
et al. (2004) have found that the level of education has a
positive influence on environmental willingness to pay;
15 Since respondents' characteristics do not vary across alter-
native hypothetical policies, socio-demographic characteristics
must be introduced as interaction terms with the attributes or the
alternative specific constants.
Danielson et al. (1995), Krupnick et al. (2002), Bergmann et al.
(2006) have found a negative effect on WTP; finally Berrens
et al. (2004), Veisten et al. (2004), Popp (2001) have found that
the level of education has no significant effect on WTP.
Therefore we want to investigate how both characteristics,
being a member of an environmental organization
(ENV_MEMBER) and having a college degree (COLLEGE), affect
WTP. Our Hypothesis V is that the coefficients of the
interaction terms of ENV_MEMBER⁎GHGREDUCTION and COL-
LEGE⁎GHGREDUCTION to be positive and significant. Table 3
summarizes the hypotheses.

To further allow for variations in taste among individuals
and to relax the IIA16 hypothesis implicit in the conditional logit
model, we also estimate a more complex variant of model (4),
whichallows for the coefficientsβ tobe randomvariables and to
vary over the population with density f(β). In the random-
parameter logitmodel (Train, 2003), the utility function of Eq. (2)
isaugmentedbyavectorofparametersθ that takes intoaccount
of individual's preference deviations with respect to the mean
preference values expressed by the vector β:

Vik ¼ b0 þ xikβþ xikqþ eik ð8Þ

where θ is a vector of deviations from the mean β parameters
estimated. Clearly, estimation of the likelihood function based
on (8) requires that assumptions be made about which
coefficients are random, and about the joint distribution of
these coefficients.
5. Results

5.1. Description of the data

Table 4 reports descriptive statistics for our sample and
compares them with those for the population of Bath and
North East Somerset, showing that the socio-demographics of
our sample are for the most part very similar to those of the
population of Bath andNorth East Somerset. Our sample tends
to be slightly richer and younger than the population of Bath
and North East Somerset.
16 The independence of irrelevant alternatives (IIA) states that
the relative probability of choosing between any two alternatives
is independent of all other alternatives (Haab and McConnell,
2002).



Table 4 – Descriptive statistics

Variable Observations Sample
average or
percent

(Standard
deviation)

Bath and
North
East

Somerset

Individual characteristics
Age (in years) 300 35.75 (12.52) 38.4a

Annual income
(in £)

299 37,687.29
(26,528.63)

31,000b

Male 300 51.3% 48%a

Has a college degree 299 22.6% 25.90%a

Has children 300 25.6%
Member of
environmental
organizations

296 22.3%

Electricity bill
(in 2005 £)

197 70.86 (38.78)

Electric heating 300 30.3%

Choice experiments
Ranking of the
attributes
GHG reduction

ranked as 1st
300 68.3%

Number of jobs
created/lost ranked
as 1st

300 16.7%

Energy shortages
ranked as 1st

300 6.3%

Electricity bill
increase ranked as 1st

300 8.7%

Found the choice
experiments difficult
(1 = very difficult;
5 = very easy)

300 4.16 (0.88)

Considered all
attributes in the choice
questions

300 69.7%

Attribute mostly
considered…
GHG reductions 300 21.7%
Number of jobs

created/lost
300 4.7%

Energy shortages 300 1.7%
Electricity bill

increase
300 2.3%

Interviewer debriefing questions
Understood the choice
questions

300 95.7%

Annoyed by the
questionnaire
(1 = very annoyed;
5 = not annoyed at all)

300 4.47 (0.68)

a Source: National Neighbourhood Statistics— http://neighbourhood.
statistics.gov.uk/dissemination/home.do?$ph=60.
b Gross annul household income in the UK. Source: HMRC CACI
Paycheck Model 2005.

Table 5 – Are the following electricity sources
environmentally friendly?

Our survey European Commission
(2003)

Yes No Don't
know

Biomass 38.00% 36.33% 24.67% “There are dozens of different
biomass technologies, and
depending on the care given on
gas cleaning technologies, the
biomass options can range
from low to high external
costs.”

Nuclear 20.33% 70.33% 9.33% “Nuclear power in general
generates low external costs,
although the very low
probability of accidents with
very high consequences and
the fuel cycle impacts are
included. It is also a technology
with very low greenhouse gas
emissions.”

Gas 31.00% 52.00% 17.00% “Gas-fired technologies are
quite clean, with respect to
classical pollutants, but their
impact on climate change
depends strongly on the
efficiency of the technology.”

Hydro 93.67% 3.00% 3.33% Hydropower exhibits low
external costs of all systems,
but they may increase on sites
were higher direct emission of
GHG from the surface of
reservoir occurs (ExternE-Pol,
2005).

Oil 3.33% 90.33% 6.33% Oil has high external costs due
to air pollution with impacts
on global warming and human
health. Introduction of
advanced technology
(Combined Cycle) substantially
reduces the external costs of
fossil systems (ExternE-Pol,
2005).

Solar 99.00% 0.67% 0.33% “Photovoltaics is a very clean
technology at the use stage,
but has considerable life cycle
impacts.”

Wind 96.33% 3.33% 0.33% “Wind technologies are very
environmentally friendly with
respect to emissions of
“classical” pollutants (SO2,
NOX, dust particles) and with
respect to greenhouse gas
emissions.”

Coal 3.67% 92.67% 3.67% “Coal technologies carry the
burden of their very high CO2

emissions, even for new, more
efficient technologies, and in
addition cause quite high
impacts due to the primary-
secondary aerosols.”
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Our average respondent is 35 years old, has an annual gross
household income of about £37,000, and pays £70 per quarter
on electricity bill. The sample is well balanced in terms of
gender, with about one quarter of our respondents having one
or more children. About 22% of our respondents are members
of an environmental organization, and almost 31% have
electric heating.

The first task when analysing the data was to look at the
initial set of questions (warm-up questions) where respondents

http://neighbourhood.statistics.gov.uk/dissemination/home.do?
http://neighbourhood.statistics.gov.uk/dissemination/home.do?


Table 7 – Implicit prices in British pounds (standard error
in parenthesis calculated with the delta method)

Model 2 a

GHGREDUCTION 29.65⁎⁎⁎ (5.50)
BLACKOUT −0.36⁎⁎⁎ (0.08)
JOBS 0.02⁎⁎⁎ (0.00)

⁎⁎⁎Significant at the 1% level.
a Calculated at the mean values of the socio-demographic
characteristics of the respondents.
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were asked to state whether the different electricity fuels pre-
sented were environmentally friendly or not. The results are
reported in Table 5. Eight different sources were presented. The
results can be viewed in the light of the broad qualitative con-
clusions of ExternE (European Commission, 2003). The two
sources with more uncertain answers are biomass and gas,
probably due to a lack of knowledge of the sources itself, es-
pecially for biomass. Despite the quite positive consideration of
nuclear power by ExternE, our respondents consider this source
of energy highly hazardous for human health and the environ-
ment. The explanation we received the most was related to the
risk of accidents and the problems with the nuclear waste.

The perceptions regarding the other sources, namely oil,
natural gas and wind power are confirmed by the external
costs estimated by ExternE (European Commission, 2003).
Hydro, solar and wind are generally considered environmen-
tally friendly by our respondents, while oil and coal are
deemed dangerous to human health and the environment by
more than 90% of the respondents.

Before running our econometric models, the quality of the
responses was checked. In a debriefing question, most
respondents considered the choice experiments as easy: on
a 1 to 5 Likert scale, where 1 means very difficult and 5 very
easy, the average value given by respondents is 4.16. To
further check the quality of the responses, at the end of the
questionnaire interviewers noted whether they thought that
respondents understood the choice exercise or were annoyed
during the interview. Only a few respondents seemed
annoyed by the questionnaire, and only 13 respondents did
not understand the choice experiments. We also check the
percentages of respondents who always choose the alter-
native displayed on the left-hand side of the card (alternative
A hereafter), or the alternative displayed on the right-hand
side of the card (alternative B hereafter), whichmay signal the
presence of abnormal response patterns (Viscusi et al., 1991).
Only 1 respondent selected alternative A for all of the six
Table 6 – Conditional logit model estimates

Model 1 Model 2

Coeff. t-stat Coeff. t-stat

A_Alt.1 2.0498 12.90 2.1290 13.12
A_Alt.2 1.9786 12.77 2.0488 12.95
GHGREDUCTION 0.6804 7.29 0.4437 3.78
BLACKOUT −0.0088 −7.45 −0.0055 −3.09
JOBS 0.0006 6.69 0.0007 4.98
PRICE −0.0224 −3.34 −0.0244 −3.58
AGE⁎JOBS −0.0046a −1.33
INCOME⁎BLACKOUT −0.0006b −1.70
INCOME⁎GHGREDUCTION 0.0453b 2.84
ENV_MEMBER⁎
GHGREDUCTION

0.4872 4.83

COLLEGE⁎GHGREDUCTION −0.3755 −4.02
CHILD⁎GHGREDUCTION 0.3380 3.30
CHILD⁎BLACKOUT −0.0050 −2.38
Loglikelihood −1358.72 −1297.47
Observations 1722 1692

a The coefficient of (AGE⁎JOBS) has been multiplied by 1000.
b The coefficients of (INCOME⁎BLACKOUT) and
(INCOME⁎GHGREDUCTION) have been multiplied by 10,000.
choice questions included in the questionnaire, and no one
selected always either alternative B or the status quo for all of
the six choice questions. These preliminary observations
suggest that the choice tasks were not prohibitive and were
accepted by our respondents.

5.2. Results from the discrete choice models

In this section,we report the results of the econometricmodels
estimated by dropping the observations of the 13 respondents
who did not understand the choice exercises. We began with
random-coefficient models, but found no evidence that
coefficients are random, and subsequently ran only condi-
tional logit estimators;17 here we present the results from the
latter. The first specification of the model uses only the four
attributes as independent variables and the alternative
specific constants to take into account of the status quo effect
(see Holmes and Adamowicz, 2003). Model 1 of Table 6 shows
that all coefficients are significant at the 1% level and have the
correct sign. The positive sign in GHGREDUCTION and JOBS
implies that our respondents are more likely to favour a policy
that reduces the emissions of GHGand supports the creation of
new jobs. Model 1 allows us to reject Hypothesis I: contrary to
the findings by Bergmann et al. (2006), our respondents are not
indifferent to a policy for the promotion of renewables that
affects the number of jobs in the energy market. The negative
sign of the BLACKOUT coefficient means that our respondents
shy away from policies that have longer electricity shortages.
Also the negative sign on PRICE suggests that our respondents
do not like a policy that entails higher energy prices, with all
other characteristics of the policy remaining constant. The
positive sign of the alternative specific constants suggests that
our respondents do prefer a new policy for the promotion of
renewable energy in comparison with the status quo. A Wald
test of equality of coefficients for the two alternative specific
constants does not reject the null hypothesis of equality of
coefficients (Chi-squared=1.79) and confirms that our respon-
dents did not systematically prefer alternative A over alter-
native B, or vice versa.

Model 2 of Table 6 controls for socio-demographic char-
acteristics of the respondents by adding interaction terms for
17 We experimented with log-normal distributions for all the
coefficients. Since the coefficients on price and on blackout
should be negative, we specified a lognormal distribution for the
negative of this coefficient (Train, 2003). In all cases the standard
deviation of the coefficient was very small relative to the mean of
the coefficient, was insignificant, and the model reduced to a
conditional logit.



Table 8 –Willingness to pay for selected hypothetical policies in British Pounds

Policy A Policy B Policy C Policy D Policy E

GHGREDUCTION 0.5% No improvement 0.5% No improvement 1%
BLACKOUTa 45 min 60 min 30 min 0 min 90 min
JOBS const +1000 −1000 const const
WTP 32.19⁎⁎⁎ 34.78⁎⁎⁎ 13.21⁎⁎⁎ 33.16⁎⁎⁎ 29.65⁎⁎⁎
(Standard error) (6.29) (6.47) (4.00) (7.15) (5.50)

a The business as usual scenario is 90 min of black-out. Policies A, B, C and D which provide black-outs shorter than 90 min offer improvements
compared to the status quo.

Table 9 – Implied society'sWTP for reducing emissions by
1 ton of CO2 per year in 2005 (all the prices are in 2005 US$)

Study Total
WTP/

year a (in
2005 US$
million)

Mtons of
CO2

emissions
per year b

MTons of
CO2

reduction/
year c

Implied
WTP per
ton CO2

per year
per

country

Roe et al.
(2001)

$870 4778 47.78 $39

Wiser
(2003)

$4552 5075 50.75 $89

Goett et al.
(2000)

$1,283 4972 49.72 $227

Batley et al.
(2001)

$2475 549 5.49 $451

This study $5368 555 5.55 $967

a Total WTP was calculated as (Households' WTP per year) /
(number of persons in a household) ⁎ (population of the country).
For this study we used the results for a reduction of 1% of GHG
reported in Model 2. For the other studies the scenarios considered
are those reported in Table 1.
b Mtons of CO2 emissions including net CO2 from land use, land use
change and forestry in year of the survey. Source: United Nations
Framework Convention on Climate Change, GHG emission profiles
forAnnex IParties, available athttp://unfccc.int/ghg_emissions_data/
items/3954.php.
c We assume that each programme provides a reduction of 1% of
greenhouse gases emissions.
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age, income, level of education, membership in environmen-
tal organizations, and whether the respondent has children or
not. A Likelihood ratio test shows that Model 2 outperforms
Model 1 at the conventional levels (LR test=76.244). When
considering the level of income, we find that respondents with
higher income arewilling to paymore for the reduction in GHG
emissions, as well as for decreasing the shortages of energy.
These considerations provide us with reasons to not reject
Hypothesis III: our model is internally valid, with WTP
increasing with income. AGE is negatively associated with
the number of jobs created in the energy market, but is not
significant. Model 2 also provides evidence in support of
Hypothesis IV: respondents with children have a higher WTP
for a policy that stimulates the promotion of renewable
energy. The interaction term between CHILD and GHGREDUC-
TION shows that respondents with children are more respon-
sive to a policy that internalizes a higher percentage of GHG
emissions; and the interaction between CHILD and BLACKOUT
suggests that this group of respondents is willing to pay more
than respondentswithout children for a policy thatminimizes
the minutes of energy shortages. These results suggest that
our respondents do recognize the importance of a policy for
the promotion for renewable energy and are willing to pay for
the benefits that such a policy will entail also to future
generations.

Model 2 provides little support in favour of Hypothesis V:
similar to previous results by Danielson et al. (1995), we find
that having a college degree negatively affects the probability
of choosing a policy that internalizes a higher percentage of
GHG, while members of environmental organizations are
more likely to select a policy that internalizes a higher
percentage of GHG.

Finally, to evaluate Hypothesis II, we need to look at the
marginal prices of the attributes, as we do in the next section.

5.3. Marginal prices and willingness to pay

Table 7 reports the implicit prices of the attributes used in the
choice experiments estimated from Model 2 and calculated at
the mean values of the socio-demographic characteristics of
the respondents. This table shows that respondents are on
average willing to pay in addition to their electricity bill: (i)
£29.65 (s.e. 5.50) to decrease the GHG emissions by 1% a year;
(ii) £0.36 (s.e. 0.08) to decrease the shortages of energy by 1min
a year; (iii) £0.02 (s.e. 0.00) to increase the permanent number
of jobs in the energy sector by 1.

Model 2 can also be used to assess the marginal prices for
different groups of respondents, according to their socio-
demographic characteristics. For example, respondents with a
college degree, with children and a membership in an
environmental organization are willing to pay £45.54 (s.e.
10.49) in addition to their electricity bill for a policy that
decreases the GHG emissions by 1%, while respondents with a
college degree, no children and no membership in any
environmental organization are willing to pay £9.77 (s.e. 3.96)
for the same policy. Model 2 can also be used to study the
impact of having children in valuing energy shortages: a
respondent with children is willing to pay £0.52 (s.e. 0.13) in
addition to his electricity bill for a policy that decreases energy
shortages by 1 min per year, while a respondent without
children is willing to pay only £0.31 (s.e. 0.07) for the same
policy.

Results from Model 2 can also be used to estimate the WTP
for the effects of specific policies for the promotion of
renewable energy. Table 8 reports the WTP for five different
policies characterized by different effects on the reduction of
GHG emissions, black-outs and employment in the energy
sector. For example, our respondents are on average willing to
pay about £32 for a hypothetical policy (A) that reduces GHG

http://unfccc.int/ghg_emissions_data/items/3954.php
http://unfccc.int/ghg_emissions_data/items/3954.php
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emissions by 0.5% a year, limits energy shortages to 45min per
year and maintains the current level of employment in the
energy sector.

A comparison of Policy D and Policy E investigates how our
respondents consider the internalization of the external costs
affecting human health and the environment compared to
guaranteeing energy security (Hypothesis II). Policy D offers a
scenario with no black-outs, while keeping the current level of
GHG emissions. Policy E provides a reduction of GHG emis-
sions equal to 1% a year, and keeps the current level of energy
security. Both policies maintain the number of jobs in the
energy sector constant. The results show that our respondents
are willing to pay about £33 for the policy that guarantees
energy security, and about £29 for a policy that decreases GHG
emissions by 1% per year, a target consistent with the DTI
(2003) goals of reducing emissions by 60% below the levels of
1990 by 2050. This result suggests that our respondents
consider energy security as an important externality and it
supports the recent interest of the European Commission and
of national governments to improve energy security. Respon-
dents are willing to pay about £3.5 more for Policy D than for
Policy E, suggesting that they are slightly more interested in
the current benefits of improving energy security than the
long-term benefits of limiting climate change.
6. Discussion and conclusions

It is of considerable interest to policy makers to know how
muchmore individuals arewilling to pay for renewable energy
than for fossil fuel energy. A number of studies in the UK and
US have tried to elicit the additional value of renewable energy
and have come up with figures ranging from $16 a year to as
much as $98 (2005US$) (see Table 1). Translating this into
reductions in CO2 is an approximate exercise and comes up
with estimates of $39 to $451 (2005US$) per year per country
per ton. Details are given in Table 9. In our study we find a
willingness to pay equal to $967 for a ton of CO2. This value
represents how much society in the UK as a whole is willing to
pay every year for reducing carbon emissions by one ton of
CO2. These payments have to be seen as a payment for a public
good if individuals make the ‘Cournot Nash’ assumption that
only they are making the payment. In that case the additional
benefits at the personal level are insignificant and theWTP is a
gesture of social goodwill. This assumption may, however, be
suspect. Perhaps individuals are assuming that the programs
of shifting to renewable energy apply to society as a whole, in
which case there could be important local pollution reduction
benefits.

In our studywe explicitly assumed that the reduction being
paid for was at the national level. Hence there is a public good
benefit as well as some personal health benefit. If emissions of
GHGs are reduced by 1%, so will associated particles and other
health related pollutants and the individual will benefit. Of
course, even here, as in the case of the previous studies, there
is the potential for free riding— to state a zero or very lowWTP
because a large part of the benefits go to others. Notwith-
standing this possibility, the figures of WTP in both sets of
studies appear to be significant. Hence the extent of free riding
behaviour appears to be limited.
How can the results of Table 9 be reconciled? There are a
number of possible explanations. First, our study took place
about more than four years after the latest of the earlier
studies. In that time awareness of the climate problem has
grown and WTP may have risen considerably. Second, our
estimates come from a sample of residents of Bath, a quite
wealthy area in the UK and may overstate the WTP of the UK
population. Third, the higher willingness to pay for abating
emissions in the UK compared to the results from the US
studies might further be explained by the different prefer-
ences of the two societies for renewable energy programs and
for the reduction of GHG emissions, a result that mirrors the
positions of the two national governments in climate change
negotiations.

Finally, it is interesting to see that our estimates for the
value of one ton of CO2 abatement are considerably higher
than the values found in studies that employ the damage cost
method. Most of the results in the damage cost literature are
in the range of 5 to 125 US$/tCO2 (Pearce et al., 1996), but these
figures are subject to high uncertainty (Tol, 2005). For the UK,
in 2002, the Government Economic Service recommended an
illustrative estimate for the social costs of carbon of £70/tCO2,
within a range of £35 to £140/tCO2, for use in policy appraisal
across Government. A recent review by DEFRA (2004) suggests
to update the estimates range to £12–£260/tCO2 for emissions
abated in 2010, but also states that the current modelling
reveals that estimates of the social cost of CO2 span at least
three orders of magnitude, from 0 to over 1000 £/tCO2,
reflecting uncertainties in climate and impacts, coverage of
sectors and extremes, and choices of decision variables. Our
results, and the results presented on Table 9, indicate that
studies that employ the WTP methodology and use a demand
curve approach, find estimates for the values of CO2 emissions
much higher than those based on the damage cost method,
suggesting that the benefits to society are substantial.

Other major results of interest from our study are the
following: (i) despite previous results (Bergmann et al., 2006),
people are ready to pay little extra in order to increase
renewable energy through policies that increase employment;
(ii) the WTP to avoid black-outs is in the range of £22 per hour
(£0.37 per minute), is comparable to previous studies (see
Table 1), and shows that current governments support for
improving energy security is justified by people's preferences.
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Abstract

This paper examines the impacts of including external costs such as environmental and health damages from power production on

power generation expansion planning in Vietnam. Using the MARKAL model and covering a 20-year period to 2025, the study shows

that there are substantial changes in the generation structure in favor of renewable energy technologies and other low emitting

technologies. These changes lead to a reduction in fossil fuel requirements, and consequently, a reduction of CO2, NOx, SO2, and PM

emissions which could be expected to also reduce the associated environmental and human health impacts. The avoided external costs

would be equivalent to 4.4US cent/kWh. However, these gains are not free as the additional electricity production cost would be around

2.6US cent/kWh higher if the switch to more expensive, but lower emitting technologies were made. The net benefit of internalizing these

externalities is thus around 1.8US cent/kWh.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Power consumption in Vietnam grew at an annual rate
of over 15.1% during 1995–2005, far exceeding the annual
growth in GDP of 7.2% in the same period. The highest
annual growth rate occurred in the residential sector
(16.4%), followed by the industrial sector (14.4%).
Electricity demand in the coming period (2005–2025) is
expected to continue to grow at a significant rate, driven by
increasing urbanization and strong population growth, as
well as economic growth and industrialization.

The Institute of Energy [1] forecasted that electricity
demand in Vietnam would increase from 45,603GWh in
2005 to 381,163GWh in 2025, at an average annual growth
rate of 11%. Such rapid development raises a number of
questions concerning the choice of power generation
technologies, particularly given concerns about the impact
of particulate and greenhouse gas emissions on human
health and climate change. So far, in Vietnam, the choice of
e front matter r 2008 Elsevier Ltd. All rights reserved.
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technologies, as in many other countries, does not
generally consider external costs imposed on society and
environment due to unpriced pollutants emitted from
electricity generation. The major pollutants are sulfur
oxides (SOx), nitrogen oxides (NOx), particulate matters
(PM), and carbon dioxide (CO2).
This study looks at the impacts of internalizing these

external costs on the choice of electricity technology to
meet increasing demand. It proceeds as follows: Section 2
provides an overview of the power sector of Vietnam.
Section 3 presents the modeling framework used to
examine the impacts of including externalities on Vietnam’s
future power generation structure. Section 4 discusses the
results and Section 5 concludes.

2. The Vietnam power sector

The power sector in Vietnam is governed by The
Electricity of Vietnam (EVN), a utility wholly owned by
the Government of Vietnam.
At the end of 2005 the total installed generation capa-

city connected to the network was 10,770MW, which
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comprised of 61% thermal power plants and 39% hydro
power plants. Of the total thermal generation, gas-based
power plants had the biggest share (62%), followed by
coal- and oil-based power plants with shares of 23% and
14%, respectively. The distribution of power plants in
Vietnam is heavily influenced by its natural geography and
energy reserves. In the north, hydro and coal power plants
dominate while in the south gas turbines represent the
major power source. To enable power exchange between
the two regions, a 500 kV north–south transmission line
was constructed in 1994. The second line was completed in
late 2005 [1].

Power generation and network expansion projects in
Vietnam follow power development plans, which are
approved by the Government. The master plan is renewed
every five years and so far six master plans have been made.
The latest one looking to 2025 was finished early this year
and is being submitted to the Prime Minister for approval.

The electricity tariff is also tightly regulated by the
Government. Vietnam maintains uniform national electri-
city tariffs, across the country. The weighted average retail
tariff including 10% value added tax (VAT) in 2005 was
5.5US cent/kWh [1].

3. Modeling framework

To examine the impacts of internalizing externalities on
Vietnam’s future electricity generation mix, the Vietnam
power sector is modeled using the MARKAL model. The
analysis is carried out over a time frame of 20 years with
5-year time steps. The base year is 2005. MARKAL was
developed by a consortium of members of the International
Energy Agency (IEA) in the early 1980s based on the
general algebraic modeling system (GAMS) [2]. Since then
the model has evolved and has been applied to a wide range
of energy and environmental issues in many countries other
than IEA member countries. The issues that MARKAL
has been successfully used to examine include [3]:
�
 Energy security.

�
 New technology R&D portfolio prioritization.

�
 Impacts and benefits of environmental regulations.

�
 Greenhouse gas (GHG) projections and

�
 GHG project evaluation and estimates of the value of

carbon rights.

MARKAL is a dynamic, multi-period, linear programming
bottom-up model of a generalized energy system, in which
both the energy supply and demand side are depicted,
including energy sources, conversion technologies, energy
carriers and demand technologies and sectors. The model
can be represented by four basic relationships [4]:
(i)
 the objective function (usually the total discounted
cost of the energy system including external costs);
(ii)
 mass–conservation relationships that balance the flow
of fuel masses across processes;
(iii)
 energy conservation relationship that connects the
flow of fuel masses to energy generation; and
(iv)
 a set of constraints that establish bounds on both
energy and mass flows. For example, levels and rates at
which specific generation technologies can be de-
ployed, and emission rates.
3.1. Case definition

To facilitate assessment of the impacts, two cases are
analysed: the base case (BC) and the externality case (EC).
The BC investigates the power system assuming that the
current trend in the energy supply system is maintained
into the future. That is, there is no consideration of
externalities. In the EC, a policy scenario is developed
which considers the externalities produced from power
generation. In the EC, advanced lower emission technol-
ogies, conventional technologies with emission scrubbers
and renewable energy technologies are introduced in
addition to those available in the base scenario (Table 1).

3.2. External costs

In this paper, external costs are calculated using external
cost factors, which are based on international sources due
to the absence of specific estimates for Vietnam. The
external cost factors, which are commonly expressed in US
cent/kWh, vary between and within fossil fuel-based
technologies due to variations in efficiency and the use of
emission control systems [5]. To represent the varying
external cost per unit of electricity produced, external cost
factors of fossil fuel based technologies are adopted with
per ton pollutants (unit damage cost of pollutant) while
other electricity generations are per unit of electricity
produced.
Unit damage costs of pollutants are derived from the

outcomes of the European Commission ExternE project of
Germany [6]. The major types of damages considered by
the project were: human health (SO2, NOx, and PM),
effects on crops and materials (NOx, SO2), and damages
caused by global warming driven by greenhouse gases
(CO2). In this project the impact pathway approach is used.
That is, the pathway of polluting substances is followed
from the release source to the point of damage occurrence.
The associated negative impacts (damages) are quantified
using damage functions. Economic valuation of the
damages are estimated by the ‘‘willingness to pay’’ of the
affected individual to avoid a negative impact resulting
from energy production from an actual power plant.
Emissions of SO2, NOx, PM10, and CO2 from fossil
fuel consumption in electricity generation technologies
are evaluated using emission factors of these airborne
pollutants [7].
In order to apply these external costs to Vietnam, two

primary adjustments are made: (i) to reflect differences in
income and hence, willingness-to-pay (i.e., regarding the
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Table 1

Overview of key characteristics of candidate generation technologies in the Vietnam MARKAL model

Technology Start year Lifetime Efficiency

(%)

Investment

cost $US/kW

Fixed O&M

cost $US/

kWyr

Variable

O&M cost

$US/MWh

Conventional coal power plant 2005 30 39.5 1100 33.6 0.15

Conventional coal with DeSul/DeNox 2005 30 38 1200 38.5 0.25

Conventional coal with DeSul/DeNox and CO2 scrubber 2005 30 30 2000 39.0 0.32

PFBC-based coal power plant 2015 30 42 1580 37.6 0.15

PFBC-based coal power plant with CO2 scrubber 2015 30 36 1900 50.13 0.23

Coal IGCC 2015 20 42 1580 37.6 0.15

Coal IGCC with CO2 scrubber 2015 20 36 1900 50.13 0.23

Natural gas combined cycle 2005 20 48 640 23.8 0.99

Natural gas combined cycle with CO2 scrubber 2015 20 42 1000 32.51 1.38

Diesel (DO) fired gas turbine 2005 20 36 400 15.8 3.95

Natural gas fired gas turbine 2005 20 36 400 15.8 3.95

Fuel oil (FO) power plant 2005 20 38 800 19.5 1.48

Large hydro power plant 2005 40 100 1300 9.1 –

Small hydro power plant 2005 20 100 1200 18.0 –

Biomass steam turbine 2010 20 27.7 2000 73.0 8.5

Solar photovoltaic 2010 20 100 6000 15.4 –

Geothermal power plant 2010 20 100 2000 78.5 –

Wind turbines 2010 20 100 1000 23.7 –

Source: author based on various sources [1,9,11,14].

Notes: wind energy is actually represented in the Vietnam MARKAL model by three grades of technologies to account for different resource scales [11].

Similarly, solar photovoltaic is represented by two grades of technologies to represent different solar conditions in the north and the south of Vietnam [13].

PFBC, pressurized fluidized bed combustion; IGCC, integrated coal gasification combined cycle.

Table 2

Estimates of per unit damage costs for Vietnam

Pollutant Germany

(US$ per

ton)

Real GDP

scaling

factora (%)

Damage

scaling

factorb (%)

Scaled unit

damage cost

(US$ per ton)

SO2 12,350 7.3 112.4 1201

NOx 7250 7.3 112.4 705

PM 23,670 7.3 112.4 2302

CO2 50

aBased on the following 1995 PPP (purchasing power parity) GDP

for Germany and Vietnam in 2004: US$ 22,361 and US$ 1633,

respectively [10].
bBased on the following population density for Germany and Vietnam:

223 and 251 person/km2, respectively [10].

Table 3

External costs of non-fossil fuel electricity generation in Vietnam

Region Biomass Hydro Geothermal Solar PV Wind

Vietnam

(US cent/kWh)

0.0046 0.0082 0.0464 0.0556 0.0046
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valuation of the damages), Vietnam’s GDP per capita is
used, and (ii) to reflect differences in the magnitude of the
physical damage per ton of pollutant, Vietnam’s popula-
tion density is used [8]. The scaling factor is derived by
dividing the magnitude of the parameter for Vietnam by
the corresponding value for Germany. As for CO2, a global
external cost of climate change of 50USD/ton of CO2 is
assumed [9]. Table 2 shows the result of these adjustments.

As for non-fossil fuel generation technologies, similar
adjustments are performed to the external cost values of
Germany so that they are applicable to Vietnam. Table 3
summarizes the external cost factors used for Vietnam after
the adjustments to the external costs of Germany.

The external costs are internalized into the model
differently depending on technology categories: Fossil
fuel-based technologies or renewable energy technologies
due to the reason given above. For fossil fuel-based
technologies, the external costs are incorporated as an
externality tax. This externality tax would be charged
directly per unit of pollutant emitted by relevant generation
technologies in the system. For renewable energy technol-
ogies, the external costs are added directly to the variable
cost of corresponding technologies. In this way, it is
assured that the external costs are charged to every unit of
output. MARKAL has three response options to react to
the extra charges on power generation: (i) to pay an
external charge on power production from a technology,
(ii) to install a costly emissions reduction system with
DeNox, DeSuf, and CO2 capture ability, or (iii) to change
towards technologies with lower external costs (e.g. renewable
energy technologies).
3.3. Other assumptions

The following main constraints and assumptions are
implemented in the MARKAL modeling framework:
�
 Peak reserve: The peak reserve capacity is set to decrease
gradually, from 35% in 2005 down to 25% in 2025.
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�
 Fuels: The maximum annual supplies along with costs of
domestic coal and natural gas to the power sector
are according to development plans of respective
industries [1]. For imported fuels—coal and oil products
(DO, FO)—no restriction is set on the import level.

�
 Technology and capacity constraints: For hydro and

geothermal power the maximum capacity is assumed to
be 17,000 and 400MW, respectively, in accordance with
their respective potentials [11]. Wind energy is repre-
sented by three grades of wind turbines to represent a
variety of wind resource conditions. The maximum
capacity for all these three representative wind turbines
is 13,500MW [11]. As for solar photovoltaic and
biomass-fired power plant, a modest level of 1000MW
for each is set. In addition, investment costs are assumed
to decline by 1.5% for solar photovoltaic and 0.7% for
wind turbine each successive year to account for
technology learning effects [12].

�
 Power demand: The study assumes that there is no link

between the average power price and total power
demand. That means that a change in the generation
price due to externality considerations does not reduce
total power demand. However, the use of individual
electricity generation technologies is influenced by
relative prices.

�

1GDP is projected to grow at an annual average rate of 8.5% from 2005

to 2020 and 8% thereafter [1].
Discount rate: A discount rate of 10% is applied for the
present study. This rate is recommended by the World
Bank for analysis of the technological choices in
Vietnam [1].

4. Results and discussion

4.1. The BC

This case assumes the continuation of the current trend
of power development in Vietnam. That is, there is no
consideration of externalities and no policy for emission
abatement. Accordingly, generation capacity is expected to
grow from 10.77GW in 2005 to 74.04GW in 2025, i.e., at
an average annual growth rate of 10.1% (Table 4). At the
same time, generation structure is assumed to change
significantly. The share of hydro power plants reduces from
39% in 2005 to 24% (18GW) in 2025, whereas coal power
plants undergo considerable growth, from a 14% share in
2005 to a 69% share (51.3GW) in 2025. The switch from
hydro- to coal-based power plants drives 12.6%/year
growth in fossil fuel consumption, from 303.60 PJ in 2005
to 3277.69 PJ in 2025. In order to meet this rapidly growing
demand, Vietnam would need to import energy, such as
coal, after 2010. The proportion of imported coal in total
fuel consumption is expected to increase strongly from
14.1% (92.6 PJ) in 2010 to 78% (2585.5 PJ) by 2025. CO2

emissions in this period are projected to grow at 14.3% per
year, from 21.33 million ton in 2005 to 307.26 million ton
by 2025 (Table 6). Per capita, the increase would be from
0.26 million ton in 2005 to 3.04 million ton in 2025,
equivalent to a growth rate of 13.2% per year. Emissions of
SO2 are much lower, however, but they are expected to
increase at a significant rate, 17.4% per year. Emissions of
NOx are also small in size; however, they are also expected
to increase at a considerable rate of 15.2% per year, from
55.76 thousand ton in 2005 to 946.6 thousand ton in 2025.
These emissions could impose huge costs on the society and
the environment. The total damage from pollutants in 2005
is assessed at about 1225 million USD, equivalent to 2.4%
of the real GDP. Damages are projected to grow to 19,656
million USD by 2025. This is equivalent to 7.5% of the
projected GDP,1 i.e., a bigger percentage of a larger GDP.
Representing these in terms of US cent per electricity
consumed, the increase would be from 2.8US cent/kWh in
2005 to 5.2US cent/kWh by 2025, primarily driven by the
increasing share of coal.

4.2. The EC

Including external costs in the total production cost of
electricity changes the generation mix (Table 5). Even
though coal continues to dominate, its share is reduced by
2025 by 21.6% compared with the BC. Specifically, by
2025, 11.08GW of coal power plants in the BC is replaced
by 3.29GW of gas turbine and 14.63GW of renewable
energy technologies of geothermal, wind, and biomass.
Moreover, selected coal-based technologies are those with
low emission and/or emission control such as conventional
coal power plant with DeSuf/DeNox and CO2 scrubber
and coal IGCC with CO2 scrubber. This change in
generation mix indicates that investments in additional
low emitting technologies such as coal-based technologies
with emission control and renewable energy technologies
(wind, geothermal, and biomass) are more economic than
paying taxes. Relative to the BC, this change in generation
mix delays the need for coal importation by five years and
also reduces CO2, NOx, SO2, and PM emissions. Specifi-
cally, emissions are reduced by 253.7 million ton of CO2,
2.79 million ton of SO2, 836 thousand ton of NOx, and 69
thousand ton of PM by 2025, relative to the BC (Table 6).
However, this does not bring about a significant reduction
in fossil fuel consumption given that coal-powered plants
remain economic if emission controls are used. Also, coal
IGCC with CO2 scrubbers generally have a lower efficiency
than that of the conventional coal power plants which are
selected in the BC (36% versus 39.5%) resulting in higher
fossil fuel consumption. These resulting increases in fossil
fuel consumption are almost equal to the decreases in fossil
fuel consumption brought about by renewable energy
technologies.
The reduction in emissions reduces the external costs

imposed on society and the environment. By 2025, the
external costs in the EC are 2868 million USD or 1.1% of
the projected GDP for the same year compared to 19,656
million USD or 7.5% of projected GDP in the BC.
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Table 5

Future capacity development and fossil fuel requirement in the externality case

2005 2010 2015 2020 2025

Total capacity (GW) 10.77 22.79 37.79 55.94 79.88

Conventional coal power plant 1.50 1.29 0.85 0.85 0.85

Conventional coal with DeSul/DeNox 0 0 0 0 0

Conventional coal with DeSul/DeNox and CO2 scrubber 0 2.05 2.05 2.05 2.05

PFBC-based coal power plant 0 0 0 0 0

PFBC-based coal power plant with CO2 scrubber 0 0 0 0 0

Coal IGCC 0 0 0 0 0

Coal IGCC with CO2 scrubber 0 0 7.85 19.17 37.34

Natural gas combined cycle 4.09 7.38 7.38 7.38 7.38

Natural gas combined cycle with CO2 scrubber 0 0 0 0 0

Large hydro power plant 4.15 9.61 15.00 17.00 17.00

Small hydro power plant 0.07 0.20 0.50 1.00 1.00

Geothermal 0 0.10 0.40 0.40 0.40

Solar photovoltaic 0 0 0 0 0

Wind 0 1.40 3.00 7.46 13.23

Others 0.96 0.76 0.76 0.63 0.63

Fossil fuel requirement (PJ) 303.60 606.20 1075.10 1868.80 3142.10

Coal 94.30 242.70 711.60 1505.30 2778.60

Domestic 94.30 242.70 453.40 504.60 490.70

Imported 0.00 0.00 258.20 1000.70 2287.90

Natural gas 182.30 363.50 363.50 363.50 363.50

FO 27.00 0 0 0 0

Others: sum of DO, FO power plants.

Table 4

Future capacity development and fossil fuel requirement in the base case

2005 2010 2015 2020 2025

Total capacity (GW) 10.77 22.02 35.98 52.63 74.04

Conventional coal power plant 1.50 7.49 15.86 29.91 51.32

Conventional coal with DeSul/DeNox 0 0 0 0 0

Conventional coal with DeSul/DeNox and CO2 scrubber 0 0 0 0 0

PFBC-based coal power plant 0 0 0 0 0

PFBC-based coal power plant with CO2 scrubber 0 0 0 0 0

Coal IGCC 0 0 0 0 0

Coal IGCC with CO2 scrubber 0 0 0 0 0

Natural gas combined cycle 4.09 4.09 4.09 4.09 4.09

Natural gas combined cycle with CO2 scrubber 0 0 0 0 0

Large hydro power plant 4.15 9.61 15.00 17.00 17.00

Small hydro power plant 0.07 0.07 0.27 1.00 1.00

Geothermal 0 0 0 0 0

Solar photovoltaic 0 0 0 0 0

Wind 0 0 0 0 0

Others 0.96 0.76 0.76 0.63 0.63

Fossil fuel requirement (PJ) 303.60 650.01 1153.85 1995.29 3277.69

Coal 94.30 453.00 953.20 1796.80 3076.20

Domestic 94.30 360.40 453.40 504.60 490.70

Imported 0 92.60 499.80 1292.20 2585.50

Natural gas 182.30 201.50 201.50 201.50 201.50

FO 27.00 0 0 0 0

Others: sum of DO, FO power plants.

K.Q. Nguyen / Energy 33 (2008) 740–746744
Representing in US cent/kWh, the avoided external
costs would be equivalent to 4.4US cent/kWh. These
gains are, however, not free as the average generation
cost of electricity would be around 7.3US cent/kWh or
about 2.6US cent/kWh higher under this case than the BC
(Table 6).
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Table 6

Major emissions and the average generation cost of electricity of both cases

Case study 2010 2015 2020 2025

The base case

CO2 (thousand ton per year) 54,838 102,971 184,146 307,260

SO2 (thousand ton per year) 424 892 1682 2880

NOx (thousand ton per year) 159 309 563 947

PM (thousand ton per year) 11 22 42 73

External cost per kWh ($ cent/kWh) 3.49 3.93 4.56 5.16

The average generation cost of electricity ($ cent/kWh) 4.57 4.62 4.68 4.79

The externality case

CO2 (thousand ton per year) 30,460 29,111 38,462 53,468

SO2 (thousand ton per year) 114 49 65 91

NOx (thousand ton per year) 91 75 89 110

PM (thousand ton per year) 5 3 3 4

External cost per kWh ($ cent/kWh) 1.79 0.95 0.81 0.75

The average generation cost of electricity ($ cent/kWh) 9.03 7.26 7.30 7.43

K.Q. Nguyen / Energy 33 (2008) 740–746 745
5. Conclusions

While electricity plays a vital role in the socio-economic
development of a country, by-products of its production
have an undesirable effect on the environment, which
imposes external costs to society and to individuals. This
study examines the impact of internalizing external costs
on the least cost choice of generation mix. Although
modeling the impacts of such policies carries certain
limitations and uncertainties such as the external cost
values, advanced technology options, and the rate of
technology change, a number of conclusions can be
derived:
�
 The total damage from pollutants from power genera-
tion in 2005 is assessed at about 1225 million USD in
Vietnam, equivalent to 2.4% of the nominal GDP. In
the absence of price reform and control policies, it is
estimated that the total damages will grow to 19,656
million USD by 2025. This is equivalent to 7.5% of the
projected GDP, i.e., a larger percentage of a larger
GDP.

�
 The inclusion of external costs in production costs

drives not only a change in generation mix from coal-
based power plants to renewable energy technologies
(in particular, wind energy and geothermal) but also an
increase in the capacity of natural gas combined cycle
and advanced coal-based technologies. In that sense,
including external costs into full energy production cost
could be considered as an effective instrument for
promoting the fast introduction of low-emitting tech-
nologies such as renewable energy technologies.

�
 In general, domestic energy supplies to the power sector

in Vietnam might not keep pace with the strongly
growing fuel requirement. Thus, the country would need
to import energy after 2010. The internalization of
external costs in the power generation sector increases
the share of renewable energy technologies in the
generation mix. It thus could help lower the dependency
on fossil fuels, improve the security of energy supply for
the economy and contribute to the reduction of CO2,
NOx, and SO2 emissions.

�
 The reduction of emissions reduces the external costs

imposed on the society and the environment. The
avoided external costs would be equivalent to 4.4US
cent/kWh. This is higher than the increase in the
generation cost of electricity, 2.6US cent/kWh, which
thus indicates that internalization of external costs into
capacity expansion planning is an appropriate policy
towards emission mitigation.
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Abstract

During the last decade, a series of valuation studies have made attempts at estimating the external environmental

costs of various power generation sources. The purposes of this paper are: (a) to explore some of the ethical limits of the

economic valuation of environmental impacts; and (b) to analyze what the implications are of these limits for the social

choice between different electric power sources. Environmental valuation based on welfare economic theory builds on

restrictive behavioral foundations and can only partly model moral values, although such values are an essential part of

people’s preference towards the environment. In addition, public preferences are seldom exogenously given as is

commonly assumed in economic theory, but are instead formed in public discourse. For this reason, the range of

electricity externalities where economic valuation (and thus cost�/benefit analysis) should be applied is likely to be

narrower than often assumed. After analyzing the scope, methodology and the results of the so-called ExternE project,

the paper concludes that many power generation externalities are either inherently ‘new’ or inherently ‘complex’. In

these cases, the initial challenge lies not in ‘discovering’ private preferences, but in specifying the conditions for public

discourse over common ways of understanding what the pertinent issues are about. This implies that research on the

environmental externalities of power generation must, in addition to refining the theory and the applications of existing

non-market valuation techniques, also address the instruments and content of political and moral debate.

# 2003 Elsevier B.V. All rights reserved.

Keywords: Power generation; Ethics; Neoclassical welfare economic theory; Environmental valuation; Externalities

1. Introduction

One of the key elements of energy and environ-

mental policies in the western world is to ‘get

prices right’ and to ensure that environmental

externalities are accounted for in market mechan-

isms. Policy makers and economists have particu-

larly targeted the environmental damages arising

from power generation. The reasons for focusing

especially on the power-generating sector are two-

fold. First, power generation generally provides

much more flexibility in terms of fuel choices than

is the case for other energy sectors (e.g. transport)

and the various technologies have significantly

different environmental impacts. Second, power
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plants are concentrated in relatively few and thus
easily identifiable facilities.

A series of valuation studies have made attempts

at estimating the environmental costs of various

power-generating technologies. Most of these

studies were commissioned by governmental

authorities, such as the European Commission,

the US Department of Energy and the UK

Department of Trade and Industry (Ottinger et
al., 1990; Pearce et al., 1992; Rowe et al., 1995;

European Commission, 1995a, 1999). Stirling

(1998) (p. 268) concludes in his review and

methodological critique of some of the most

important external cost studies that:

[. . .], there is little doubt that neoclassical

environmental valuation techniques are the

approach to environmental appraisal cur-

rently preferred by the official bodies respon-

sible for the formulation, implementation,

and international coordination of environ-
mental regulation in the electricity supply

sector.

In other words, the theoretical support for

externality valuation exercises is drawn from the

neoclassical welfare economics literature. Within

this strand of research, there are a number of
valuation methods in use (e.g. abatement cost,

contingent valuation, hedonic pricing, etc.), but

ultimately they all aim at discovering people’s

preferences expressed as willingness to pay

(WTP) for environmental goods and services (see

Sections 2 and 3). The valuation and internaliza-

tion of externalities is generally deemed necessary

for assisting market processes and for making
efficient social choices.1 The implications for

energy policy of these external cost assessments

are thus essential. For example, in order to

improve efficiency in the selection of new power

generation sources damage estimates can be used

to determine ‘adders’ to the private production

costs (Eyre, 1997). In addition, external cost

estimates can be used to evaluate existing pollution

taxes and/or tradable permit systems, or help in

designing new ones. Taxes and subsidies that

reflect the external costs or benefits will then

ensure that profit-maximizing firms select the

mix of goods and production technologies that

best satisfy environmental and economic goals.
However, a number of researchers in the social

science field have questioned the use of non-

market valuation techniques as the basis for

integrating public input into the environmental

policy process (e.g. Sagoff, 1988; Spash, 1997). It is

argued that these methods rely on overly restric-

tive assumptions and ethical principles, implying

that they often produce poor descriptions of the

environmental values people hold and therefore

serve as inadequate inputs to policy decisions. So

far, though, the validity of these concerns in the

empirical context of power generation externalities

is only poorly understood (Stirling, 1997).

The purposes of this paper are thus to: (a)

explore some of the ethical limits of environmental

valuation methods within the welfare economics

paradigm; and (b) discuss what the implications of

these limits are for the social choice between

power-generation technologies. The main thesis

of the paper is that the scope of electricity

externalities where environmental valuation can

be applied from an ethical point of view is

probably narrower than commonly assumed. Spe-

cifically, many environmental impacts in the

power generation sector involve moral concerns

for which private preferences are not always read-

ily available, but rather must be formed in public

discourse. For this reason, economic valuation

provides an insufficient (but not necessarily un-

necessary or illegitimate) basis for social choice.

Also, since various power sources give rise to

different types of externalities*/some likely to be

less amenable to social cost pricing than others*/

the choice between different technologies becomes

1 According to the Coase (1960) theorem, bargaining

between the polluter and the affected agent(s) can, under

certain circumstances (such as low transaction costs),

internalize externalities and achieve an efficient market

outcome. However, in most cases, due to the large number of

parties involved, such bargaining will be too complex and

expensive and government intervention is therefore called for.
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more complex than is implied by the welfare

economics literature.

Before proceeding it is important to note that

one of the most important ethical principles in

welfare economics is that ‘only’ human (subjective)

preferences should count; all values in this case are

thus anthropocentric in the sense that they lack

existence apart from the human valuer. This is the

approach taken in this paper. Thus, the possible

existence of ‘strong’ intrinsic values (e.g. Rolston,

1982), implying that the environment has an

‘objective’ value that is independent of human

existence, is brought up neither in economic theory

nor in this paper.2 Our main argument, however, is

that in contrast to welfare economics, which

assumes a single preference ordering for each

individual, there are strong reasons to believe

that people possess two or more preference order-

ings, using different ones in different instances.

This implies that the usefulness of economics in

making rational choices over limited resources

ought to be complemented by other forms of

social agreements about what should be the

important criteria in energy and environmental

policy.

The paper proceeds as follows. In Section 2, we

briefly review the methods used to assess the

external costs of electricity generation and present

some of the results obtained in previous studies.

Section 3 discusses the ethical foundations and the

limits of environmental valuation techniques as

well as alternative philosophical approaches to

human preferences and social choice. Section 4

analyzes these ethical limitations in the empirical
context of the power generation externalities

examined in the European Commission’s so-called

ExternE project. Finally, Section 5 provides some

concluding comments and remarks.

2. The valuation of power generation externalities:

methods and results

An externality is an unpriced benefit or cost

directly bestowed or imposed upon one agent by

the actions of another agent. Externalities cause

market failures in the sense that there will exist a

difference between the private and the social

(private plus external) costs and benefits of an

action and the free market’s allocation of re-

sources will, as a result, be non-optimal from
society’s point of view (Varian, 1992). Most

electricity externality studies assess the negative

externalities (external costs), most importantly the

environmental damages, for selected power gen-

eration sources. In these cases, the private costs of

power production is thus deemed to be lower than

the social costs and electricity markets will tend to

clear at a price level below the marginal social cost.
The social choice between different power genera-

tion technologies will be inefficient and biased

towards energy sources with low private produc-

tion costs, but not necessarily low social costs.

Even though externalities are not reflected in

market transactions, they do have a direct impact

on people’s welfare and thus on economic value.

The economic valuation of externalities and thus
of many environmental impacts, builds on the

assumption that people seek to satisfy their pre-

ferences, i.e. maximize utility or welfare. The

change in the level of individual welfare resulting

from a given environmental change is typically

measured as the amount of income necessary to

maintain a constant level of utility before, and

after, the change. In this way, one can elicit welfare
changes in monetary terms through willingness-to-

pay (or willingness-to-accept) measures (see also

Section 3). Externality valuation is thus ultimately

concerned with applying different empirical meth-

ods to identify these measures. There are two

broad methodological approaches employed in

2 However, we still consider what may be referred to as

‘weak’ intrinsic values, in the sense that they are non-

instrumental (rather than objective) and refer to a situation in

which humans consider that something has a value in itself

irrespective of whether it has value in attaining something else

of value (i.e. they are non-instrumental values). See Stenmark

(2002) for a discussion of the distinction between ‘weak’ and

‘strong’ intrinsic values.
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practice to assess the value of electricity external-

ities: (a) the abatement cost approach and (b) the

damage cost approach.3

The abatement cost approach uses the costs of

controlling or mitigating damage or the costs of

meeting legislated regulations as an implicit value

of the damage avoided. The rationale behind this

approach is that legislatures are assumed to having

considered the willingness of the public to pay for

alleviation of the damage and the relevant abate-

ment costs in setting the standard,4 thus providing

a revealed preference damage estimate not neces-

sarily less reliable than the more explicit valuation

methods (see below). An example of a study that

utilizes the abatement cost methodology is Bernow

and Marron (1990).

The damage cost approach, on the other hand,

aims at providing an explicit (rather than an

implicit) measure of the economic damages arising

from a negative externality. Damage costing can

be either top-down or bottom-up . Top-down ap-

proaches make use of highly aggregated data to

estimate the external costs of, say, particular

pollutants. Researchers adopting the top-down

approach normally start at the national or the

regional level, using estimates of total quantities of

a specific pollutant. These physical damages are

attributed to power plants and converted to

damage costs using available monetary estimates

(e.g. US$ per SO2 emitted) on the damages arising

from the pollutants under study (e.g. Hohmeyer,

1988). In the bottom-up approach, damages from

a single source are typically traced, quantified and

monetized through damage functions/impact path-

ways (e.g. European Commission, 1995a). This

approach makes use of technology-specific data,

combined with dispersion models, information on

receptors and dose�/response functions to physi-

cally quantify the impacts of specific externalities.

These physical impacts then need to be converted

to damage costs either by using available informa-

tion or through original valuation studies.
There exist several ways of monetizing these

externalities. The first two approaches discussed

above*/abatement cost and top-down damage

cost*/directly provide a monetary estimate of

the damages associated with the externalities.

However, in the third approach*/bottom-up da-

mage cost*/one needs to translate the identified

and physically quantified impacts into monetary

terms. Generally, whenever market prices can be

used as a basis for valuation, they are used.

However, since externalities by definition are

external to markets, impacts from externalities

are not reflected in market prices. Consequently,

any attempt to monetize an externality when

making use of the bottom-up damage cost ap-

proach need to rely on non-market valuation

methods. These methods can in turn be sub-

divided into (a) direct methods and (b) indirect

methods.5

The direct methods attempt to create a hypothe-

tical market for the environmental good. These

methods are direct in the sense that they are based

on direct questions to households about willing-

ness to pay. The direct methods possess the

advantage that they can assess total economic

values, i.e. the use as well as the non-use values

(i.e. existence values) associated with the good.

Well-known techniques sorting under this ap-

proach include contingent valuation and choice

experiments. The indirect methods take their basis

in the actual (rather than the hypothetical) beha-

vior of individuals. Either the welfare effects in

terms of willingness to pay show up as changes in

costs or revenues in observable markets or in

markets closely related to the resource that are

affected by the externality. The damage is thus

indirectly valued using an existing relation between

the externality and some good that is traded in a

market. Examples of indirect methods are hedonic

pricing and travel costs.
3 See Sundqvist and Söderholm (2002) for a critical survey of

a large number of economic studies focusing on the valuation of

environmental externalities in the power generation sector.
4 Specifically, the public decision makers are assumed to

choose the level of abatement at which the marginal damage

curve and the marginal abatement cost curve intersects.

5 There exists an extensive literature on different

environmental valuation methods and to review this in detail

here would be beyond the scope of this paper. For an excellent

overview, however, see Garrod and Willis (1999).
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In recent years, policy makers and researchers
have given increasing attention to the assessment

of external costs in the electricity sector. Several

major studies have addressed the issue and exam-

ples included in the ExternE-project in Europe

(European Commission, 1995a) and in the US, the

New York State Environmental Externality Cost

Study (Rowe et al., 1995). As noted above, welfare

economic theory directs us on how to value
externalities and previous electricity externality

studies have relied heavily on the methods outlined

above. According to the welfare economic theory,

the choice of method should not affect results of

the externality assessments significantly, i.e. it

should not matter for the outcome whether

people’s willingness to pay has been ‘filtered’

through the political process or if it has been
elicited directly in, for instance, contingent valua-

tion surveys. Still, this presumption builds on the

rather strong assumption that politicians make

optimal decisions, i.e. they know the true (mar-

ginal) abatement and (marginal) damage costs and

they aim at maximizing social welfare. In addition,

as noted by Joskow (1992), abatement costs will

only be representative of damage cost if they are
derived from the pollution control strategy that

gives the least cost of control.

For the studies that have been completed, the

externality estimates produced for each electricity

source range from very high effects to more or less

insignificant effects. Fig. 1 displays the external

cost estimates from 63 different studies carried out

during the 1980s and 1990s. For example, looking
at coal, the range of external cost estimates is from

0.03 to B/1000 US cents per kWh. Similar

ambiguities exist for the other electricity sources.

The reported discrepancies in results for similar

fuels raise some concerns about the validity and

reliability of the conducted valuation studies. Still,

it must be made clear that there is no reason to

question the general notion that to some extent the
numbers should differ due to, for instance: (a) the

use of different technologies (e.g. implying sepa-

rate emission factors); (b) the characteristics of the

specific site under consideration (e.g. population

density, income, transport distances etc.); and (c)

differences in scope (e.g. only a fraction of all

externalities may be included, the entire fuel cycle

rather than only the generation stage has been

evaluated etc.). Still, by employing statistical

analysis and 132 observations of external cost

estimates for a set of different fuels, Sundqvist

(2002) shows that one additional and more trou-

bling reason for this disparity is also the choice of

externality assessment approach. Most notably,

the probability of obtaining a low externality cost

value is, ceteris paribus , lower when the abatement

cost or top-down damage cost approaches are used

while the opposite is true for the bottom-up

damage cost approach. One reason for the differ-

ence in results between the abatement cost ap-

proach and bottom-up damage costs is that many

analysts tend to base their calculations on existing

regulations (rather than the least-cost regulation)

when estimating the abatement cost (e.g. Joskow,

1992).6 However, the analysis in this paper also

adds a new perspective to the observed differences

in reported externality estimates between the

abatement cost approach and the damage cost

approach, i.e. between implicit and explicit valua-

tion. Policy makers are in their formulation of

regulations likely to base their decisions also on

additional ethical foundations and the implicit

values reported in abatement cost studies may

thus reflect a different reasoning process than that

outlined in the welfare economics literature.

Fig. 1 also displays that the ranges intertwine

across fuels making the ranking of various fuels

with respect to externality impacts a difficult task.

Still, some tentative conclusions can be drawn. For

instance, the results suggest that fossil fuel fired

power, in particular coal and oil, gives rise to the

highest external costs, while some of the renewable

energy sources, solar, wind and also hydropower,

tend to have the lowest.

6 The reason why the top-down approach also tends to

produce relatively high external damage is that there may arise

practical problems in attributing the ‘exact’ damage to each

individual source, which may force researchers to rationalize

and use standardized rules for the attribution-process. These

rules may fail to ascribe the aggregate damage to each and every

individual source, especially smaller sources, thus producing

estimates for larger power plants that are positively biased since

these latter plants, normally, are easily identifiable as well as

significant sources of pollution.
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According to Stirling (1997) (p. 531), ‘‘[t]his

ambiguity in the comparison of different options is

a serious defect in technique which aspires to

present a robust and systematic representation of

environmental performance.’’ He argues that one

of the most important defects of these studies is

that they fail to address the multi-dimensional

nature of power generation externalities. The

different dimensions relate to, for example, the

distribution of effects in terms of space, time and

people, the particular forms they take (e.g. in

terms of severity, reversibility etc.) and the degree

of autonomy of those affected (Ibid.). Thus,

according to Stirling, most of the existing valua-

tion studies are still ‘immature’ and very prelimin-

ary; more realism in the treatment of the multi-

dimensional nature of the external effects is there-

fore needed.

While previous critics, such as Stirling, address

many of the practical and the methodological

problems associated with assessing the external-

ities arising from power generation, the analysis in

this paper is of a more fundamental nature. We

argue that the behavioral and ethical foundations

of environmental valuation, as applied to the

valuation of external effects, are likely to be too

restrictive for serving as the sole basis for social

choice.

3. Ethical limits of welfare economics and the

implications for social choice

Since the basic thesis of this paper is that the

economic valuation of environmental externalities

relies on specific behavioral assumptions and

ethical foundations, it is useful to briefly review

these before discussing alternative ethical bases for

social choice and their consequences.

Fig. 1. Range of external cost estimates in power generation. Sources: Sundqvist (2002) and Sundqvist and Söderholm (2002).
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In the welfare economics discipline, human
beings are treated as autonomous individuals

who seek to satisfy their private preferences, which

are complete, ethically unchallengeable (i.e. sub-

jective) and exogenously determined. This implies

that individuals have given preferences (‘indiffer-

ence maps’) for public goods and are willing to

consider tradeoffs in relation to the quantity or

quality of these goods (Pearman et al., 1999). The
objective of the analysis is to elicit from each

individual his/her personal valuation of given

environmental ‘goods’, measured in willingness

to pay (WTP) terms. For example, within this

theoretical framework each individual i ’s welfare

is often expressed as:

Ui�(X ; Z); (1)

where U is the utility of individual i , X is a vector

of the quantity private goods and Z represents the

quantity of the public environmental good (e.g. air
quality). The maximum WTP of individual i for

increased provision of the public good is given by

the solution to:

Ui(X
0; Z0)�Ui(X

0�WTP; Z1); (2)

which is equivalent to the compensating variation
associated with the move from Z0 to Z1 at the

initial level of private-good consumption level, X0.

Thus, if individuals are utility maximizers, welfare

may be interpreted as units of measure of the

maximum WTP for a given outcome (or reversing

the property rights aspect, as a measure of the

compensation an individual would require giving

up some existing good, i.e. the minimum will-
ingness to accept, WTA).7

Generally the welfare economics literature sug-

gests that these welfare measures should be

aggregated into the overall preference (utility) of
society. The policy that maximizes total preference

satisfaction needs to be chosen. The fundamental

philosophical positions guiding social choice are

thus that the net utility (benefits over costs) from

the consequences of an action determines whether

that action is right or wrong and a sense of society

as the sum of the preferences (utilities) of its

individual members. It should be noted, however,
that this choice of ethical principle for social

choices does not follow logically from the fact

that utility maximization is assumed to constitute

the behavioral foundation for individual choices.

However, in practice they are likely to be closely

related. The use of WTP as a welfare measure

builds entirely on the assumption of utility max-

imizing behavior and there would probably be few
reasons to estimate WTP as such if these estimates

are not intended to form part of, say, social cost�/

benefit analyses that in turn are important (but not

necessarily the only) input into the political

decision process. Thus, as many philosophers

point out, the development of societal ethical

guidelines is largely an empirical question about

individual’s behavior and values.
While the standard environmental valuation

techniques build on the assumption of utility

maximizing behavior, the environmental stance

of individuals is in many cases likely based on a

deontological or rights-based approach to deci-

sion-making (e.g. Brennan, 1995). In this context,

decisions are made based on whether the act itself

is right or wrong regardless of its consequences,
i.e. this approach recognizes the priority of the

right over the good. For example, people may

believe that aspects of the environment, such as

wildlife threatened by a hydropower development

project, have an absolute right to protection. They

are thus willing to defend the existence or the well

being of the environment apart from any instru-

mental value it provides. This is in line with the
Sen (1977) distinction between sympathy , where

concern for others forms one part of the utility

function and commitment , where acts of altruism

are chosen, even though they may result in lower

utility for the individual. In other words, deontol-

ogy denies the rationality attributed to making

tradeoffs, whatever the commodity and therefore

7 In Eq. (2) the unit of WTP is the quantity of private goods.

However, by employing so-called indirect utility functions one

can express WTP as a money metric measure. See, for instance,

Freeman (1993). The choice between WTP and WTA as a

welfare measure depends on the assumed property rights

situation. For instance, in the case where the individual can

be assumed to be the property right owner it can (theoretically)

be valid to ask for the WTA in the case of a deterioration of the

resource. Otherwise the individual may find the question

(scenario) illegitimate and may choose to refuse to respond or

can provide a protest bid.

P. Söderholm, T. Sundqvist / Ecological Economics 46 (2003) 333�/350 339



suggests the existence of so-called lexicographic

preferences. In this case, the axiom of continuity is

violated, and the utility function in Eq. (1) is

indefinable for an individual.8 Thus, the indiffer-

ence curves collapse to single points, denying the

principle of substitution.

Spash and Hanley (1995) present empirical

support for the existence of a deontological ethics,

and conclude that standard valuation methods

that elicit bids for biodiversity preservation fail as

measures of welfare changes due to the existence of

lexicographic preferences. Stevens et al. (1991)

performed a contingent valuation study of species

preservation in New England. A majority of the

respondents (79%) agreed with the statement that:

‘‘all species of wildlife have a right to live

independent of any benefit or harm to people.’’

Still, when confronted with the WTP question,

most of the respondents refused to pay. In other

words, they were reluctant to choose between

something of instrumental value (private goods)

and a true moral position and in this way they

applied a decision-making process inconsistent

with the welfare economics paradigm.9

The motivation for the existence of a rights-

based ethics, however, need not rely solely on

empirical evidence. It is equally important to

recognize that utilitarianism (and consequential-

ism) will not in itself be a sufficient moral theory

for social choice. Since we cannot evaluate the net

utility of an infinite number of alternatives, pure

utilitarianism becomes a tautology. Some options

simply have to be ruled out and this selection

cannot be justified in utilitarian terms; instead we

need to choose among options that we regard as

morally or politically worth considering.

This does not imply that we should abandon the

utilitarian approach to social choice. It merely

points to the simple fact that people may approach

the same issue in different ways, i.e. with different

ethical standpoints. Environmental values often

have a broad ethical content and since ethics are a

matter for discussion[w1], environmental valua-

tion ought to be endogenous to the political
process and ultimately rely on social agreements.

In other words, ‘‘the collective choice problem is,

first of all, about advancing common ways of

understanding what the pertinent issues are about.

Only then can we develop a basis for collective

choice predicated upon the elicitation of individual

choice,’’ (Vatn and Bromley, 1994, p. 142). Rea-

soned political argument among citizens does not
exclude utilitarian (or indeed any other) belief

systems but contextualizes them and helps us

reflect upon our own arguments. We may not

agree on the importance of different fundamental

moral values but may still be able to come to a

consensus on how to deal with moral aspects of

practical issues. This consensus on the principles

for social choice may (or is even likely to) involve a
reliance on social-cost benefit analyses in some*/

but as indicated above not in all*/instances.

This line of reasoning mirrors the work of

Sagoff (1988, 1998). He suggests that individuals

have two distinct roles; they act both as consumers

with private preferences and as citizens with public

preferences. Private preferences reflect what the

individual thinks is good from a pure utility
maximizing perspective, e.g. he or she prefers

Coke to Pepsi. Public preferences, in contrast,

state what a person believes is best or right for the

community as a whole, e.g. ‘society should not

legalize drugs’. For instance, some people may

regard environmental pollution as something in-

herently wrong, and what Sagoff rejects is the view

of such moral objections as constituting just
another kind of external cost that can and should

enter a cost�/benefit analysis.

Although the distinction between private and

public preferences often is hard to operationalize,

the consequences of not understanding the differ-

ence can lead to results that we would normally

like to avoid. For example, economists usually

argue that for the purpose of cost�/benefit analyses
it does not matter why people value environmental

goods. As such, economists assume that all pre-

ferences are private and they grant equal cred-

ibility to every motive that underlies these

preferences. To base social choice on this ap-

proach, Sagoff argues, is the equivalent of trying

to decide whether a person on trial is guilty by

8 The seminal work in this area is Georgescu-Roegen (1936).
9 See also Common et al. (1997), who survey the empirical

evidence on this issue and Russell et al. (2001).
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discovering, before any evidence has been heard,

what the preferences of the jury are in this regard

and then calculating the net benefits of the two

possible verdicts. It thus involves ‘‘an underlying

confusion between preferences that may be priced

and values that are to be heard, considered,

criticized, and understood’’ (Sagoff, 1988, p. 95).10

This suggests therefore that, apart from simply

‘speaking out’ their given private preferences,

individuals engage in a social process in which

they form a collective understanding as citizens

about what is appropriate, right or good, and in

this way construct a basis for social choice. In

other words, public preferences are endogenous

rather than exogenous. For this reason, public

values are also context relative, i.e. they are

determined by social processes that play important

roles in internalizing norms and beliefs about what

is right and wrong.11 Preferences are also likely to

change over time due to the influence of education

and cultural variations (Norton et al., 1998).

Private preferences towards private goods may

of course also be endogenous and thus change over

time, but normally this does not call for broader

public deliberations about fundamental values.

The social learning process however does become

particularly important when individuals are con-

fronted with public goods that: (a) they have little

past experience of (i.e. preferences normally do not

exist until we find a need to build them); (b)

involve ethical dilemmas; or (c) have very complex

characteristics. This is often the case when envir-

onmental goods are involved. The myriad of

different classes of environmental effects, the

many cross-cutting dimensions of these effects

and the different risk characteristics involved
cannot be casually separated in many cases. In

addition, the conventional way of learning about

the attributes of a good*/learning by doing*/

becomes difficult and indeed often risky. It is one

thing to choose between Pepsi and Coke, but

another to choose between the preservation of an

entire ecosystem and the development of a hydro-

power plant.
In summary, in this section we suggest that

environmental goods and services embody char-

acteristics that present serious ethical complica-

tions when social choices are to be made on the

basis of recommendations derived from standard

environmental valuation techniques. Preferences

toward public goods are often endogenous to the

political process and there is thus an important
distinction between private and public preferences.

The latter includes not only utility maximizing

motives, but also other ethical positions, such as a

deontological approach to decision making. In

many cases, therefore, the initial challenge lies not

in ‘discovering’ private preferences, but in specify-

ing the conditions for public discourse over what is

worth valuing and for what reason.12 This be-
comes particularly important for many environ-

mental goods, which are often both ‘new’ (e.g.

global warming) and ‘complex’ (e.g. ecosystems).

4. The ExternE study as a basis for social choice in

the power generation sector

In this section we discuss the relevance of the

above theoretical discussion for social choice in the
empirical context of power generation externalities

10 Still, one important limitation of Sagoff’s analysis is that

even though he stresses the importance of public participation

and public discourse for environmental issues, he does not

attempt at characterizing this public sphere in a theoretically

compelling way. See, however, Fiske (1991, 1992) for an

interesting and systematic account of social interaction in which

market pricing is only one of four relational models.
11 This so-called deliberative approach to environmental

valuation also lends support from the normative political

theory of deliberative democracy, which recognizes that it is no

less rational to focus on the procedure of the political decision-

making process than on its outcome. See, for instance, Jacobs

(1997) and Sagoff (1998) for reviews of this literature.

12 See also the seminal work by Kapp (1978) who concludes:

‘‘Indeed the really important problems of economics are

questions of collective decision-making which cannot be dealt

with in terms of calculus deductively derived from a formal

concept of individual rationality under hypothetically assumed

and transparent conditions’’ (p. 288). Thus, for Kapp

environmental policy was a question of political economy

rather than a technical issue to be decided by cost�/benefit

analysis. Of course, in practice valuation based on cost�/benefit

analysis may not necessarily differ much from that provided by

public deliberations. See Page (1992) for some empirical

evidence on this latter point.
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as addressed in the so-called ExternE project

(European Commission, 1995a, 1999). This project

aimed at evaluating the external costs of the

different power generation fuel cycles in the EU.

The results and methods of the studies have been

utilized as inputs in important modeling work and

have served as vehicles in developing additional

methodological work in the environment and

energy field .13 As the ExternE project represents

one of the most ambitious and internationally

recognized attempts at coming up with ‘true’

external cost estimates for the different power

technologies (Krewitt, 2002), it serves well as a

case study of the ethical limits of environmental

valuation in the power sector. Tables 1 and 2

present the different power generation externalities

quantified and priced within the ExternE core

project (European Commission, 1995a).14

All studies that form part of the project

primarily use the bottom-up damage cost ap-

proach. The analyses begin by identifying the

range of the burdens and impacts that result

from the different fuel chains. Only impacts

deemed to have ‘significant’ effects are included

in the final assessment. These are quantified and

monetized based on WTP measures, using meth-

odologies appropriate for each specific externality.

This implies that the ExternE project is not at all

entirely comprehensive in its assessment of envir-

onmental externalities (e.g. it omits ozone impacts

from gas-fired power generation).15

When inspecting Tables 1 and 2 we first note

that most of the fuel cycles involve significant

impacts on the health and deaths of humans

(‘public and occupational health’). In the ExternE

project considerable attention was put on evaluat-

ing these impacts and much was learnt, especially

about the importance of fine particles emissions

for public health (Krewitt, 2002). In the core

project, the value of a statistical life was used to

calculate the external costs of mortality16 and

chronic and acute morbidity effects from air

emissions were monetized using previous estimates

of WTP to avoid different symptoms. However,

according to a deontological ethics, human beings

are moral ends in themselves and an infinite

amount would be required to compensate for the

death of a human being. This comes into direct

conflict with the ethical basis of the ExternE

project, which (implicitly) aims at maximizing

society’s total utility.
This does not imply that we should spend the

entire public budget on saving lives and preventing

morbidity impacts; it simply points to the fact that

such impacts involve a moral dilemma. To what

extent should we treat humans as means to an end

(utility) or as ends in themselves? This question

cannot be resolved with the help of cost�/benefit

analyses, but rather within the realms of public

discourse.17 It is not enough in this instance to

make the remark that we do already reveal our

preferences against health and death risks by our

daily risk-taking behavior. ‘‘Precisely because we

fail, [. . .], to give life-saving the value in everyday

personal decisions [. . .], we may wish our social

decisions to provide us the occasion to display the

reverence for life that we espouse but do not

always show,’’ (Kelman, 1981, p. 38). This sug-

gests also that, in contrast to the postulations of

welfare economic theory, in social choices invol-

ving less than perfect information about risks it

may be sensible to make a distinction between13 See, for instance, Bigano et al. (2000) and Vennemo and

Halseth (2001).
14 In 1999, the ExternE core project was followed up by the

so-called national implementation projects (European

Commission, 1999), whose aim has been to develop an EU-

wide set of external cost data for the different fuel cycles and

countries, utilizing the methodology developed within the core

project.
15 In addition, the focus is on environmental externalities,

and externalities attributable to, for instance, fuel supply

security are beyond the scope of the analysis. See, however,

Bohi and Toman (1996) for an overview of the existence of

energy security externalities.

16 In the national implementation part of the ExternE

project the decision was made to introduce an alternative

measure on which to base the valuation of mortality impacts

due to air pollution. This is the so-called years of life lost

(YOLL) approach, which essentially assigns a WTP to the risk

of reducing life expectancy rather than to the risk of death.
17 Of course, public deliberations do not guarantee wise or

viable decisions. Still, for the resolving of moral issues they

should provide an appropriate (if not entirely sufficient)

starting point.
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Table 1

Externalities priced within the ExternE core project: coal, oil and gas

Externality Coal Oil Gas

Public health PM, ozone, and accidents: Mortality, mor-

bidity, and transport impacts

PM and ozone: Mortality, mor-

bidity, and transport impacts

PM: Mortality, morbidity,

and transport impacts

Occupational health Diseases from mining and accidents during

mining, transport, construction, and disman-

tling

Accidents: death and injury im-

pacts

Accidents: death and injury

impacts

Agriculture Sulfur, acidification, and ozone: crop and soil

impacts

Sulfur, acidification, and ozone:

crop and soil impacts

Forests Sulfur, acidification, and ozone damages Sulfur, acidification, and ozone

damages

Marine Acidification impacts Accidents with oil tankers Fishery: extraction impacts

Materials Sulfur and acidification damages on surfaces Sulfur and acidification damages

on surfaces

Sulfur and acidification da-

mages on surfaces

Amenity Noise: operational road and rail traffic im-

pacts

Noise: operational impacts

Global warming CO2, CH4 and N2O damages CO2, CH4 and N2O damages CO2, CH4, and N2O da-

mages

Total estimate (US

cents/kWh)

2.8�/4.1* 2.7�/2.9* 1.7*

Source: European Commission (1995a).

* The global warming impacts constitute roughly half of the reported external cost estimates for coal-, oil- and gas-fired power. In

the ExternE core project, the global warming estimates were drawn from Cline (1992).

Table 2

Externalities priced within the ExternE core project: nuclear, hydro and wind

Externality Nuclear Hydro Wind

Public health Radiation and non-radiation: mortality

and transport impacts from operations

and accidents

Accidents: travel to and from work

Occupational health Radiation and non-radiation: mortality

and transport impacts from operations

and accidents

Accidents during construc-

tion and operation

Accidents during manufacturing,

construction, and operation of tur-

bine

Agriculture Loss of grazing land Acidification: damage on crops

Forests Forest production loss due

to flooding and land use

Acidification damages

Marine Water supply and ferry

traffic

Acidification damages

Materials Acidification damages

Amenity Visual amenity loss Noise and visual amenity loss: op-

erational impacts

Global warming CO2, CH4, and N2O damages

Recreation Fishing and hunting

Cultural objects Objects of cultural and ar-

cheological interest

Biodiversity Terrestrial and aquatic eco-

systems

Total estimate (US

cents/kWh)

0.0003�/0.01 0.3 0.1�/0.3

Source: European Commission (1995a).
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preferences, in terms of individual choices made,
and welfare, which is a broader measure of well-

being (Johansson-Stenman, 2002).

Since different power-generation sources differ

in terms of their relative impact on mortality and

morbidity, the above concerns may have a direct

impact on the actual choice between fuels. For

example, the risks presented by nuclear power are

generally more dominated by disease impacts than
those of, say, gas and hydropower. In addition, the

aggregation of effects of different severity (e.g.

morbidity versus mortality) into a single monetary

value also raises the ethical question of how

society should weigh the importance of each of

these impacts.

From an ethical point of view mortality and

morbidity impacts are likely to differ from those
externalities affecting materials , such as corrosion

caused by acidic deposition. In the latter case, the

implicit trade-off is between higher electricity

production and less material damages. Parts of

the natural environment (including humans) are

(for all practical reasons) never at stake here and

for this reason, private preferences may well serve

as an appropriate basis for social choice.
Another ambiguity in how to deal with novel

social choice problems when one considers the

fundamental differences in the nature of risk

between the different electricity alternatives. With

nuclear power, an option with very low probabil-

ities of very large negative impacts were intro-

duced in the electric power arena. This is in

contrast to fossil-fueled power generation, which
gives rise to continuous but also comparably

modest impacts. The Krewitt (2002) (p. 844)

review of the ExternE project concludes that:

The instruments for the assessment of con-

sequences from beyond design accidents in

nuclear power plant are well established, and

the message from the use of such models is

rather clear and non-ambiguous: the impacts
from a single event can be very large,

resulting in up to several ten thousand cases

of fatal cancers, and in monetary terms they

could amount to billions of Euro. Normal-

ized to the probability of the event, and to

the electricity generation over the power

plant’s lifetime, the expected value of risk
(i.e., the probability times consequences) is

low, a fact which is even robust against

uncertainties in the accident probability.

Many experts claim that laypeople in general

tend to overestimate the very low probabilities of

nuclear accidents, but people are often unim-

pressed by arguments stating that the expected

damages of nuclear are lower than those of other

alternatives. An extended research tradition (e.g.

Slovic, 1987) attempts to explain such behavior. In

particular, it is noted that the public finds it

especially hard to accept risks that are hard to

identify because they arise from novel circum-

stances or technologies or have a catastrophic

potential and may constitute a threat to future
generations. Laypersons also rank as serious, risks

that are involuntary, uncontrollable or having an

uncertain and inequitable distribution of conse-

quences, and for many power generation possesses

a large number of these risk profiles (Ibid).

There is thus a large degree of ‘catastrophe

aversion’ among the public. This is far from an

indication of ‘irrational’ behavior; instead, it
expresses that the willingness to accept a certain

risk is related to the capacity to deal with the

consequences should they arise.18 For example,

nuclear waste management risks are essentially

irreversible after the plant has been commissioned,

while the visual amenity and noise impacts from

wind power are more or less reversible since the

plant can be removed. Such differences are likely
to affect the public preferences toward power-

generating technologies. In sum, most people are

not willing to engage in a trade-off discussion

18 Of course, a neoclassical counter-argument would be that

catastrophe aversion simply reflects the fact that the insurance

market is insufficient and unable to correctly pool risks in the

case of a catastrophic incident (e.g. Radetzki and Radetzki,

2000). For this reason, the government has to cover these

additional risks and provide a de facto subsidy to the nuclear

industry. Nevertheless, we argue that even in the presence of

perfectly functioning insurance markets the moral dilemma

would still be there, and it is unlikely that compensation for

future accidents would make the perceived catastrophe aversion

problem disappear.
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regarding events that may lead to disastrous effects

(for present or future generations) even though the

probability of that disaster is extremely low. Thus,

in such cases there simply exists no well-defined

private utility function on which to base external

cost estimates.
Furthermore, in trying to evaluate and assess

the problems of nuclear waste management and

radiation, individuals need to rely heavily on the

statements of scientists. These can provide impor-

tant information about the main physical relation-

ships and may be able to present different

scenarios and discuss the outcome of each. Still,

the perceptions of what constitutes a significant

risk are essentially socially constructed. The ques-

tion of how risk should be evaluated therefore

requires a broader public discussion in which, of

course, scientists ought to take an active part.19

This would enable the public to revise their

perceptions of different risk profiles by considering

the arguments of researchers as well as of other

laypeople. In this way, any ‘overestimations’ of the

risks involved could be removed, not by informing

people about the ‘true’, ‘objective’ risks, but by

encouraging them to reflect and engage in delib-

erations with others.

In the 1980s, many countries (e.g. Austria,

Germany, Italy, Switzerland, etc.) put a morator-

ium on further nuclear expansion. These political

outcomes do not only reflect the fact that nuclear

energy was found economically inefficient. They

also express ethical commitments towards future

generations and unwillingness to accept the asso-

ciated risks. Thus, nuclear energy is essentially a

new ‘good’ with complex and far-reaching risk

characteristics, for which most societies have not

yet found an overall ethical position on which to

base public and private decisions.20

This latter argument applies to the impacts of

global warming (primarily caused by carbon

dioxide emissions) as well. If it were not for

reports from scientists, people in general would

know nothing of their existence. The effects of

global warming are inherently global, irreversible,

long-term and asymmetrically distributed over

time. This is in heavy contrast with other emissions

from the power sector (e.g. sulfur dioxide), whose

impacts are more tangible and directly connected

to present human (dis)utility.

Again, society (and in this case countries) need

to establish the conditions on which to base social

choices in this matter. For example, an ethical

position about the claims of future generations

needs to be chosen. In this process, the need for

actual compensation when there are damages to

future generations,21 as well as any inviolable

rights of coming generations would have to be

considered (Spash, 1993). Related to this, one has

also to decide what is the relevant degree of risk

acceptance, and within which limits of risk should

pure cost�/benefit be applied. A first attempt to

agree upon a global climate policy was made by

the rich market economies at the Kyoto conference

in 1997. After making some necessary simplifying

assumptions, Radetzki (2000) concludes that the

implicit marginal price set on carbon dioxide

emissions by the political process in Kyoto is

somewhere in the range five to 25 times higher

than the more explicit marginal damage cost

estimates employed in the ExternE project (see

Table 1).22

What do we make of this discrepancy? Accord-

ing to welfare economic theory, it suggests that the

outcome of the Kyoto process was highly ineffi-

19 The problem is complicated further by the fact that most

scientists tend to transform genuine uncertainty into risk , where

risk reflects a situation where the probabilities of different

outcomes are known. In other words, they make an implicit

assumption that their understanding of causal effects and

overall system behavior (e.g. the nuclear power process) is more

or less correct (Shackley and Wynne, 1996).
20 In addition, the opposition towards nuclear has not only

been directed towards environmental and risk-related issues. It

has also been a struggle between the local and the national level

of the political life, where local communities often see no

benefits in nuclear development and resist to accept decisions

exclusively taken at the national level.

21 This differs from the ethical approach in welfare

economics, which normally builds on a potential

compensation criterion.
22 This implicit price equals the carbon price, which would

have to prevail in order to fulfill the emissions reductions

agreed to at Kyoto. Krewitt (2002) also reports the existence of

substantial differences between this implicit price and marginal

damage costs for Europe.
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cient, this since the constraints on carbon emis-
sions agreed to are not motivated by generally

accepted external cost calculations. However, if

one accepts the ethical approach discussed in the

present paper one should note that the ‘Kyoto

price’ and the ‘ExternE price’ reflect different

reasoning processes and are therefore not directly

comparable. Within the ExternE project, hypothe-

tical prices are established in advance as one of the
raw materials for calculating the ‘total’ cost of

energy. Thus, these prices together determine

whether a specific energy source is better than

another. The ‘Kyoto price’, on the other hand, did

not play a causal role in the decision made at

Kyoto but at most merely reflects the economic

results of the political process. In this latter case, it

is therefore the process that defines the legitimacy
of choice, not the result. Accordingly, any inade-

quacies of the outcome arrived at under this

process are essentially inadequacies of the process

that produced them and cannot be attributed to

the fact that the ‘in effect’ price put on carbon

emissions is much higher than the ‘true’, or ‘total’

price presented in the ExternE project. As was

suggested above (Section 2), this implies that there
is a fundamental ethical difference between the

abatement cost (regulatory revealed preference)

approach and the damage cost approach.

In order to evaluate the legitimacy of the Kyoto

process we need to know how ordinary citizens

frame their discussions on global warming and

develop preferences about climate policy. A major

research project has investigated what dimensions
of climate change are important to the European

public (Kasemir et al., 2000). Focus groups,

covering :/600 people in seven densely populated

areas in Western Europe were convened. The

researchers conclude that the participants usually

favored a two-stage policy process. First govern-

ments need to set limits*/‘tolerable windows’*/on

the behavior of firms and individuals, especially in
terms of overall energy use. These limits reflected

primarily ethical (and not economic) considera-

tions expressed as safe minimum standards. In a

second stage, however, cost considerations become

highly important. Climate policy should find cost-

efficient ways to stay within these ‘windows’.

Thus, the deliberations of the groups indicated

clearly that value for money rather than monetary

valuation*/i.e. cost efficiency rather than cost�/

benefit analysis*/appears to be the relevant issue

for laypeople in Europe in attempting to reach a

judgment on climate policy.

Finally, the ExternE project includes a contin-

gent valuation (CVM) study of some of the

impacts of hydropower development in Norway

(European Commission, 1995b). These impacts

comprise three basic damage components: losses

of recreation, cultural objects and ecosystems/

nature. The respondents were asked how much

they were willing to pay to avoid the above

impacts.23 This sub-study, we argue, implicitly

raises many of the ethical dilemmas posed in this

paper.

First, the complexity of the three ‘goods’ differs

much. Recreation is essentially a private good, and

a hypothetical bid for, say, hunting or fishing

permits may be as trustworthy as any market

price. However, as soon as the valuation range is

broadened to include entire ecosystems, the pro-

blem of what is actually valued*/and for what

reason*/becomes apparent. In a CVM study,

ecosystems are described in a manner that renders

them commodity-like (with a use value and an

existence value) and there may be little room for

what we would normally claim is the most

important aspect of an ecosystem*/its functional

aspects (e.g. its life-supporting mechanisms and

the role of ecological diversity) (Vatn and Brom-

ley, 1994). In addition, the site dependent impacts

on local ecosystems may be hard to quantify.

Second, the complexity of ecosystems is also

related to the moral philosophies held by indivi-

duals. If we believe that a particular ecosystem is

essential for life to be worthwhile, there is an

indirect moral commitment to the system itself.

According to this view, there would be no

substitute means for achieving human satisfaction,

23 It is worth noting that the hypothetical price derived from

this CVM study basically equals the total external hydropower

cost of 0.3 U.S. cents per kWh reported in Table 2. The

remaining external costs are, in other words, comparably small

and range between 0.0004 and 0.001 U.S. cents per kWh

(European Commission, 1995b).
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and this invalidates a contingent pricing analysis.24

A similar argument can be made for some cultural

objects. People wish to see some pattern to their

lives and they want their lives to be set in some

larger context. In many instances, cultural phe-

nomena provide exactly that desired context. This

is in contrast to a pure recreation good; it can

normally be replaced by something else with an

equivalent value. For the above reasons, it is
probably fair to conclude that the values derived

from this study, although competently conducted,

are likely to serve as an insufficient guide toward

an informed choice between preservation and

hydropower development.

5. Concluding remarks

The pricing of power-generation externalities, it

is argued, is necessary for making consistent and

meaningful comparisons between technologies.

Tradeoffs (however unfair they may seem) must

always be made, and it is best to make them

explicit in a cost�/benefit analysis. Our main
argument in this paper, however, is that this

argument is based on restrictive behavioral as-

sumptions and ethical principles outlined in the

welfare economics literature. We do not claim that

one has to choose this philosophy or reject it; we

simply point to the fact that choosing this parti-

cular perspective gives us only partial insight into

many environmental issues. All policies that at-
tempt to reflect human preferences have to be

sensitive to the actual behavior of humans; they

cannot simply assume that all humans possess a

single well-defined utility function, which is ‘em-

ployed’ in all situations. Since environmental

issues often have a broad ethical content and

people tend to possess different preference struc-

tures, there are no simple answers to the question
of how decision-makers should collect public

preferences and integrate them into the environ-

mental policy process. What is clear, however, is
that any meaningful policy process should aim at

incorporating these different modes of articulating

preferences towards the environment.

In practice, most societies adopt a two-step

approach to achieving environmental goals,

and*/as we have tried to show in this paper*/

probably for good reasons. Take the example of

the US sulfur allowance system. First, the govern-
ment sets limits on the behavior of firms and

individuals. For example, the Environmental Pro-

tection Agency (EPA) sets a cap on overall sulfur

dioxide emissions. Ideally, these limits (or mini-

mum standards) reflect not only the social costs

and benefits of the policy, but also society’s

attitude toward risk and its ethical commitments

towards the rights of natural amenities and
ecosystems. This first step therefore requires a

broad political dialogue among citizens and ex-

perts in order to illuminate and address the

dilemmas and the underlying value conflicts. In a

second step, the EPA encourages electric utilities

to buy and sell emission allowances. The utilities

will do so only when benefits exceed costs. Thus,

within the overall emission limit, pure cost�/benefit
principles are allowed to dominate choices. There

is, in other words, a fundamental ethical difference

between a tradable permit system (which to some

extent represents the solution to a cost-effective-

ness analysis), and a pure cost�/benefit analysis

(that forms the sole basis of the policy decision).

It may well be that the American government, in

some sense, allows too much or too little sulfur
emissions. Put differently, one may argue that the

implicit price on sulfur emissions is too low or too

high. However, it is hard to see in what way a

cost�/benefit analysis of the ‘full’ cost of electricity

would help us resolve this. Environmental valua-

tion based on the welfare economics theory is

primarily a tool for aggregation of private prefer-

ences and not for public discussion. In a demo-
cratic society, however, the discussion itself is

important, since ethical positions and public pre-

ferences tend to be endogenous to the political

process. Our analysis of the ExternE study’s

evaluation of a number of electricity externalities

shows that the understanding of people’s prefer-

ences towards many environmental impacts in this

24 This dilemma is probably best illustrated by the building

of China’s Three Gorges dam. It leads to the flooding of large

tropical forests and to the displacement of millions of people

(e.g. The Economist, 1999).
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sector requires a stronger focus on the instruments

and the content of political and moral debate. The

ExternE project may very well have provided a

nice starting point for such a discussion, but it will

not be able to substitute for it. Any talk of the

‘full’ cost of electricity has thus to be understood

as at best metaphorical.

We do not suggest in this paper that standard

non-market valuation exercises are fundamentally

flawed. Under some circumstances (e.g. private

goods, few ethical conflicts, a lot of prior experi-

ence on the part of the valuer etc.), they provide

very relevant and reliable information for policy

makers. What we suggest, however, is that in other

cases, e.g. for ‘new’, ‘complex’ goods, researchers

need to take two issues more seriously than has

been the case in the past: (a) the process of

preference formation; and (b) the distinction

between public and private preferences. Research-

ers must increasingly help people build preferences

(rather than assume them as given).25 In general,

there is a need for combining analyzes based on

intensive value structuring, involving small num-

bers of people in focus groups, with more extensive

value information gathered via surveys from large

numbers of people. Such studies may also involve

monetary valuation (e.g. WTP elicitation), but

should also include a strong focus on the ethical

values held by the respondent.

Both public and private preferences are impor-

tant for informed social choices. However, a

common problem is that people often express

public preferences in surveys designed to elicit

private preferences. Put differently, people’s view

of the issues presented in the scenarios presented

to them in CVM surveys is often not compatible

with the theoretical framework used to interpret

the responses. To some extent this is of course a

practical problem, and one may, for instance, alter

the scenario preceding the WTP question so as to

only trigger private preferences (e.g. Russell et al.,

2001). However, in order to trigger also the public

preferences one would need to adopt a broader

theoretical framework when analyzing people’s

responses/arguments in focus groups as well as in
surveys. The usefulness of economics in making

rational choices over limited resources is vital, but

in the environment and energy field it must be

complemented by other forms of social intelligence

about what should be the important criteria in

social choice.
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Abstract

The value of energy trades can change over time with market conditions and underlying price variables. The rise of competition

and deregulation in energy markets has led to relatively free energy markets that are characterized by high price shifts. Within oil

markets the volatile oil price environment after OPEC agreements in the 1970s requires a risk quantification.’’ Value-at-risk’’ has

become an essential tool for this end when quantifying market risk. There are various methods for calculating value-at-risk. The

methods we introduced in this paper are Historical Simulation ARMA Forecasting and Variance–Covariance based on GARCH

modeling approaches. The results show that among various approaches the HSAF methodology presents more efficient results, so

that if the level of confidence is 99%, the value-at-risk calculated through HSAF methodology is greater than actual price changes in

almost 97.6 percent of the forecasting period.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Energy price risk; Price risk management; Value-at-risk; HSAF methodology; Garch model
1. Introduction

Risk Management embodies the process and the tools
used for evaluating, measuring and managing the
various risks within a Company’s portfolio of financial,
commodity and other assets. The value of energy trades
can change over time as market conditions and under-
lying price variables change. A price forecast is the
foundation for determining a firm’s risk in managing
their energy supply and their forward contracts for
energy trades.

In energy markets, proper risk management depends
not only upon proper portfolio analysis tools but also
on a solid foundation of forward price.

Calls for competition in the power and gas industry
have made deregulation an attractive option around the
world. The rise of competition and deregulation in turn
has led to relatively free energy markets that are
e front matter r 2005 Elsevier Ltd. All rights reserved.
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characterized by high price shifts. Within oil markets
the volatile oil price environment after OPEC agree-
ments in the 1970s requires risk quantification. Value-at-
Risk has become an essential tool for this end, when
quantifying market risk. Within oil markets, value-at-
risk (VaR) can be used to quantify the maximum oil
price changes associated with a likelihood level. This
quantification constitutes a fundamental point when
designing risk management strategies. This paper aims
at addressing the importance of oil price risk in
managing price risk in energy markets and introducing
the application of VaR in quantifying oil price risk.

The rest of this paper is set as follows: in Section 2 we
put forward the fundamental of managing price risk in
energy markets and the importance of price volatility in
managing energy risk. Section 3 introduces the VaR
modelling procedure and analyzes the main methodol-
ogies and models that can be used to determine VaR.
Section 4 is devoted to addressing the proposed
methodology. The final two sections present the
empirical analysis and the main conclusions of this
paper, respectively.

www.elsevier.com/locate/enpol
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2. Price volatility and price risk management in energy

markets

Risk management embodies measuring and managing
the various risks within a company’s portfolio of
financial, commodity and other assets. Wengler (2001)
argues that in the energy market, producers and
providers enter into trading contracts that help match
supply with demand. Energy firms buy or sell contracts
on the open market to
�
 meet contracted deliveries when demand exceeds
production capacity,

�
 sell excess capacity when demand is less than supply,

and

�
 speculate to increase earnings through futures con-

tracts

The value of energy trades can change over time as
market conditions and underlying price variables
change. A firm’s portfolio risk is measured by evaluating
the risk exposure from changes in any of the variables
that affect existing contracts or the firm’s projections
from demand, supply and prices (Kaushik and Pirrong,
1999). A price forecast is the foundation for determining
a firm’s risk in managing their energy supply and their
forward contracts for energy trades. Accurate price
forecasting can therefore help reduce portfolio risk
(Kaushik and Pirrong, 1999).

Analysis of expected return on assets based on ‘‘Value
at-Risk’’ measures allows the firm to optimize the use of
both physical and financial assets. Analysts can then
determine the best use of physical and financial capital
in order to maximize earnings (Wengler, 2001). As
Parsons (1998) suggests, comprehensive risk manage-
ment strategy that addresses both portfolio and opera-
tional risk, allows firms to
�
 avoid big losses due to price fluctuations or changing
energy consumption patterns,

�
 reduce volatility in earnings while maximizing return

on investment, and
si
ty
�
P
ro

b
ab

il
it

y
 D

en

Return on investment

Expected Return
95% Confidence Level

Value-at-Risk

Fig. 1. VaR quantification using the probability density function of

returns.
meet regulatory requirements that limit exposure to
risk.

2.1. Price volatility and managing energy risk

Price volatility is at the heart of risk; yet it is an elusive
concept that is hard to master and model. Volatility is
usually defined as a measure for the magnitude of
percentage changes in prices over time (Lintner, 1965).

According to the EIA report (2002) calls for
competition in the power and gas industry, from the
wholesale level to the retail level, have made deregula-
tion an attractive option around the world. New market
structures have been studied to search for a good one
that can ultimately satisfy regulatory bodies, customers
and suppliers.

The rise of competition and deregulation in power
and gas markets has had a significant effect on prices so
that the new market is relatively free and characterized
by high price shifts. An unpredictable, volatile and risky
environment has arisen and protection against market
risk has become an essential issue.

In resource-based economies, such as those dependent
on oil, exports and government revenues are uncertain
and highly volatile. Uncertainty means that a variable,
say, the oil price for the coming years, is simply
unpredictable. In these economies oil price fluctuations
not only affect the government budget considerably but
also have strong effects on macroeconomic variables
and even the stock market (Sadorsky, 1999). Given the
effects of oil price volatility and the uncertainty, which is
accompanied by these price movements, there is a great
need for oil price risk quantification in these countries.
3. Value-at-Risk (VaR)

3.1. Definition

The term VaR did not enter the financial lexicon until
the early 1990s, but the origins of VaR measures go
further back. These can be traced to capital requirement
for US security firms of the early 20th century. Starting
with an informal capital test, the New York Stock
Exchange (NYSE) first applied to member firms around
1922 (Hilton, 2003).

As Hendricks (1996) implies VaR is the maximum
amount of money that may be lost on a portfolio over a
given period of time, with a given level of confidence
(Fig. 1). VaR describes the loss that can occur over a
given period at a given confidence level, due to exposure
to market risk (Hilton, 2003). The wide usage of the
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VaR-based Risk Management (VaR-RM) by financial
as well as nonfinancial firms stems from the fact that
VaR is an easily interpretable summary measure of risk
and also has an appealing rationale as it allows its users
to focus attention on ‘‘normal market conditions’’ in
their routine operations (Basek and Shapiro, 2001).

Cabedo and Moya (2003) suggest that within oil
markets, Value-at-Risk can be used to quantify the
maximum oil price changes associated with a likelihood
level. This quantification is fundamental when designing
risk management strategies.

3.2. VaR quantification methods

There are several methods for calculating VaR.
among them some methods are based on historical
information that can be classified into three groups:
�
 Historical simulation Approach.

�
 Monte Carlo Simulation Method.

�
 Variance–Covariance methods (Hull and White, 1998).

In the Historical Simulation approach, an empirical
distribution must be derived for the price changes over a
period prior to the time of calculation. In the same way,
for the Monte Carlo simulation method, an empirical
distribution must be derived for the price changes. In this
method some series of pseudo-random variables must be
generated assuming that they follow a determined
statistical distribution. Finally, within the Variance–Cov-
ariance methods it is assumed that potential loss is
proportional to return standard deviation. Within the
Variance–Covariance method VaR is estimated through:

VaRt ¼ l
ffiffiffi
y
p

SDVtp, (1)

where l is the likelihood parameter, SDVtp is the return
standard deviation for time t; and y is a parameter used
when we calculate VaR for a time period with a length
different from that used to estimate the standard
deviation. Within the Variance–Covariance methods
several methodologies can be used to calculate the VaR;
among them Autoregressive Conditional Heteroskedas-
ticity (ARCH) models are now very popular.

The original ARCH models were introduced by Engle
(1982) and generalized by Bollerslev (1986) only few
years later. Bollerslev’s model characterizes the error
term (�t) distribution in a general regression model
conditional on the realized values of the set of
exogenous variables (ft�1) as follows:

�t ft�1

�� �Nðo; htÞ, (3)

where normal distribution variance (ht) can be expressed
through

ht ¼ a0 þ a1�2t�1 þ � � � þ aq�
2
t�q þ b1ht�1 þ � � � þ bpht�p.

(4)
This model is known as a generalized ARCH model
or GARCH (p,q) model, where p denotes the number of
considered lagged variance values and q determines this
number for the squared deviations.
4. The historical simulation approach

The Historical Simulation approach for VaR quanti-
fication contains two methods. One is the Historical
Simulation Standard approach and the other the
Historical Simulation ARMA Forecasting approach.
What makes HSAF methodology different from the
historical simulation standard approach is that the first
does not directly use the distribution of past returns but
rather the distribution of forecasting errors, derived
from an estimated ARMA model.(Cabedo and Moya,
2001)

HSAF methodology, introduced and developed in
this paper, requires a four-stage procedure (Fig. 2).

In the first stage the past returns are calculated and
their stationary behavior analyzed. There are various
methods for testing the stationary of series. Dicky Fuller
and Augmented Dicky Fuller tests are now the most
relevant tests for this end. If the results confirm the
stationary behavior of the series, then the procedure
should be continued by testing the autocorrelation
behavior of the original series. If the stationary
hypothesis is rejected, then the consecutive differences
over the original series are required.

Whether the original series is stationary or not, the
next stage is to test the autocorrelation behavior of the
series. The Ljung–Box test calculation is then advisable
at this point. If autocorrelation is not statistically
significant, then the HSAF methodology is equivalent
to the historical simulation standard approach. On the
other hand, only when the analysis of the series
determines a statistically significant autocorrelation
level can the second stage of the procedure be
implemented.

In the second stage, by applying Box–Jenkin’s
methodology and using past returns, a model for past
returns behavior can be estimated. Ljung–Box auto-
correlation tests are used again in this stage in order to
determine the necessary number of lags to consider in
order to remove the autocorrelation.

During the third stage, using the coefficients estimated
in the second stage, forecasts are made for price returns.
Using these forecasts the forecasting errors can be
obtained. The statistical distribution of these errors is
analyzed and the percentile associated with the desired
likelihood level is calculated.

The final stage involves forecasting future returns
using the model estimated in the second stage of the
procedure. These forecasts are corrected by the percen-
tile obtained in the previous stage. These corrected
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forecasts provide the value-at-Risk associated with a
statistical likelihood level equivalent to the percentile
used in the third stage.
Table 1

ADF test statistics and critical values for the original series

1% Critical value 5% Critical value 10% Critical value

�3.4536 �2.8712 �2.5719

ADF test statistic: �1.353785
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Fig. 3. Opec weekly oil prices January 1997–December 2003.

Table 2

ADF test statistics for the first- differenced series

1% Critical value 5% Critical value 10% Critical value

�3.4537 �2.8712 �2.5719

ADF Test Statistic: �7.577756
5. Empirical results

5.1. Data

We used weekly OPEC prices from January 1997 to
December 2003 and divided them into two periods: one
from 1997 to 2002 which was used to estimate the model
coefficients, and the other the year 2003, which was used
for forecasting purposes (Fig. 3).

5.2. Historical simulation ARMA forecasting (HSAF)

approach

As illustrated in Fig. 1, to apply the HSAF
methodology we should follow a five-stage procedure.
In the first stage we test the stationary of oil price series
by applying ADF tests. Table 1 shows the result
obtained. As results show the series is not stationary
at conventional significant levels. To cope with this
problem we used the first difference of series. Again we
applied ADF tests. Table 2 shows the test results. As can
be seen in this table, the first difference of the series is
stationary at 99% level of confidence.

In the second stage we analyzed the autocorrelation
functions of price returns by applying the Ljung–Box
test. As can be seen in Table 3, the series show a
statistically significant autocorrelation.
Stage 3 is devoted to the ARMA Model estimation.
The method we used to estimate an ARMA model is
Box–Jenkins. In this stage we estimated an AR(1)
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model. This estimation is according to the results
obtained from analyzing Autocorrelation and Partial
Autocorrelation functions. The estimation results are
summarized in Exhibit 1.

Exhibit 1 Estimation results for AR(1) model
Table 3

Ljung–Box Q-sta

Number of lags

12

24

36

* Significant unde

Table 4

Ljung–Box Q-sta
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Fig. 4. Est
Variable
 Coefficient
 Std. error
 t-Statistic
C
 0.29553
 0.140021
 2.110612

AR(1)
 0.222403
 0.056164
 3.959878
We also analyzed residuals ACF and PACF. The
result indicated that there is no statistically significant
autocorrelation in residuals (Table 4).

In stage 4, forecasts are made using the coefficients
estimated in the third stage. We made these forecasts
using the data provided by the ‘‘in the sample period’’
(1997–2002). Using these forecasts, we estimated the
forecasting errors without any assumption about the
skewness of the statistical distribution of the forecasting
errors. We analyzed positive and negative forecasting
Q-stat

35.442*

44.485*

48.181*

Probability

0.233

0.393

0.623

Apr May Jun

positive

imated VaR throug
errors separately and obtained the 99th percentile from
their cumulative density function.

In the final stage, we used the model coefficients
obtained in the third stage to forecast the future value of
oil price changes. Actually this is an ex ante forecast.

Using the 99th percentile obtained in the previous
stage, we corrected the future price changes. These
corrected forecasts are the VaR estimations. The result
of this VaR quantification together with actual price
changes is shown in Fig. 4. As can be seen, the estimated
VaR is greater than actual price changes for 97.6 percent
of the forecast period. This is a similar percentage to the
99th likelihood level, which was expected before
estimating VaR.

5.3. The variance– covariance approach for VaR

estimation

Among the various Variance–Covariance-based mod-
els for VaR quantification, Autoregressive Conditional
Heteroskedasticity (ARCH) models are relatively the
most advanced models. Using these models, we can
forecast future variance values by combining past
deviations and past values.

In applying HSAF methodology in Section 5.2 we
analyzed the stationary and the autocorrelation beha-
vior of the oil price series. We concluded there that
although the original series is not stationary, its first
difference is stationary. Also we found that price
changes show an autocorrelation behavior, so we
estimated an AR(1) model.

To estimate VaR through an ARCH scheme it is
necessary to determine whether the price changes are
suitable for this scheme. Fig. 5 illustrates oil price
changes during 1992–2003. As can be seen in this graph,
large oil price changes are followed by large changes and
small changes are followed by small changes.

Although this suggests an ARCH scheme, we cannot
rely only upon this criterion. So the suggested behavior
was tested with the use of statistical tools. As
Jul Aug Sep Oct Nov Dec

 VaR negative VaRr

h HSAF methodology.
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Table 6

AIC and SBC model selection criteria for various ARCH/GARCH

models

Model AIC SBC

GARCH(1,1) 2.498 2.546

ARCH(1) 2.584 2.621

ARCH(2) 2.58 2.628

ARCH(3) 2.581 2.64

ARCH(4) 2.579 2.65
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recommended by Enders (2004), using Ljung–Box
statistic, we analyzed the autocorrelation behavior of
the squared residuals of AR(1) model. Table 5
summarized the Q-Statistic values and their significant
level. Results show that autocorrelation is statistically
significant. So an ARCH scheme can be used to model
the series behavior.

Several ARCH(p) and/or GARCH(p,q) models can be
estimated for the analyzed behavior. To determine the
best model, we used AIC and SBC model selection
criteria. Table 6 reports the calculated values of AIC
and SBC criteria for various models. Among them
GARCH(1,1) presents the minimum values for both
criteria. As Enders (2004) suggests, this model can be
selected as the best model among others.

Using the estimated parameters of the GARCH (1,1)
model, we forecasted variance values for the ‘‘out of
sample’’ period. Also, the forecast obtained from the
AR(1) model was used as the price changes of the year
2003.

Assuming that the values of standard deviation have a
normal distribution, the corresponding value of the
normal standard function for the assumed level of
confidence was determined. Then we multiplied this
value (2.33) by the forecasted standard deviations for
the out of sample period. Finally, VaR was calculated
by adding (for the positive returns) and subtracting (for
the negative returns) the multiplication results to the
return forecasts.

Fig. 6 shows the results of VaR estimation calculated
through GARCH and HSAF methodologies. As shown
the VaR calculated through HSAF methodology is more
efficient. In other words, although the VaR estimated
–5

– 4
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–2

–1
0
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1998 1999 2000 2001 2002 2003

Fig. 5. OPEC weekly oil price changes 1997–2003.

Table 5

Ljung–Box Q-Statistics for the squared residuals of AR(1) model

Number of Lags Q-stat

12 36.544*

24 60.472*

36 72.175*

* Significant at 95% level of confidence
through Variance–Covariance methodology is more
than actual price changes in 100% of the forecast
period, due to its high variation from actual changes is
less reliable than what is estimated through HSAF
methodology.
6. Conclusions

Risk Management embodies the process and the tools
used for evaluating, measuring and managing the
various risks within a company’s portfolio of financial,
commodity and other assets. In energy markets, proper
risk management depends not only upon proper
portfolio analysis tools but also upon a solid foundation
of forward price, volatility and option analysis.

Calls for competition in the power and gas industry,
have made deregulation an attractive option around the
world. The rise of competition and deregulation in turn
has led to relatively free energy markets that are
characterized by high price shifts. Within oil markets
the volatile oil price environment after OPEC agree-
ments in the seventies requires risk quantification.

Within oil markets, Value-at-Risk can be used to
quantify the maximum oil price changes associated with
a likelihood level. This quantification constitutes a
fundamental point when designing risk management
strategies. For this end, the paper proposes to quantify
OPEC oil price VaR through various methodologies and
to compare the result of VaR calculation through each.
We used OPEC weekly oil prices from January 1997 to
December 2003 for VaR calculation.OPEC oil price
Value-at-Risk is calculated in this paper through
Historical Simulation based on ARMA Forecasting
(HSAF) and also Variance-Covariance based on
GARCH modeling approaches. Results show that if
the level of confidence is 99 percent, then the VaR
calculated through HSAF methodology is greater than
actual price changes in almost 97.6 percent of the
forecasting period.We also concluded that although the
estimated VaR through Variance–Covariance approach
is greater than actual price changes in the whole
forecasting period, it is not as efficient as what is
calculated through HSAF methodology. Finally the
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Fig. 6. OPEC oil price value at risk estimation through HSAF and GARCH methodologies.
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conclusion is that Value-at-Risk, calculated by any
method, is a reliable measure of oil price risk for
whoever is concerned with oil price volatility, whether
he (she) is a firm manager or a policy maker in the
government body.
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Abstract

Conventional electricity planning selects from a range of alternative technologies based on the least-cost method without assessing

cost-related risks. The current approach to determining energy generation portfolios creates a preference for fossil fuel. Consequently,

this preference results in increased exposure to recent fluctuations in fossil fuel prices, particularly for countries heavily depend on

imported energy.

This paper applies portfolio theory in conventional electricity planning with Taiwan as a case study. The model objective is to

minimize the ‘‘risk-weighted present value of total generation cost’’. Both the present value of generating cost and risk (variance of the

generating cost) are considered. Risk of generating cost is introduced for volatile fuel prices and uncertainty of technological change and

capital cost reduction. The impact of risk levels on the portfolio of power generation technologies is also examined to provide some

valuable policy suggestions. Study results indicate that replacing fossil fuel with renewable energy helps reduce generating cost risk.

However, due to limited renewable development potential in Taiwan, there is an upper bound of 15% on the maximum share of

renewable energy in the generating portfolio. In the meantime, reevaluating the current nuclear energy policy for reduced exposure to

fossil fuel price fluctuations is worthwhile.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Conventional electricity planning; Portfolio theory; Risk-weighted
1. Introduction

Recent escalating global energy prices have caused
worldwide concern. The benchmark West Texas Inter-
mediate crude oil price skyrocketed to US$77.23 per barrel
in July 2006. This marked a US$46 rise, or a growth of
149.1%, compared to the US$31 per barrel in July 2003.
Historically, a stable energy supply has predominated over
price. However, rising world energy price has shifted the
focus from quantity to fluctuating price risk management.
In terms of energy policy, security of supply is enhanced if
one relies on several sources whose prices are uncorrelated
or negatively correlated. Hence a diverse energy portfolio
contributes to energy security. An efficient electricity
generation mix helps to mitigate the impact of fossil fuel
price shocks and minimize societal risk. Consequently,
since renewable energy derives from indigenous sources
e front matter r 2007 Elsevier Ltd. All rights reserved.

pol.2007.10.004

ing author. Tel.: +886 6 2096174; fax: +886 6 2380421.
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and does not correlate with fossil fuel price movements,
appropriate generation portfolio diversification to include
renewable energy would result in reduced exposure to fossil
fuel price fluctuations.
The conventional approach to electricity planning

applies the least-cost method to select from a range of
alternative technologies without assessing cost-related
risks. The result is inherent in the bias favoring fossil fuel
generating technology. Recent fossil fuel price volatility
underlines the potential advantage of including renewable
energy sources in the generating portfolio. Furthermore,
rapid technological progress has lowered renewable energy
cost.
This paper applies portfolio theory in conventional

electricity planning with Taiwan as a case study. The
overall model objective is to minimize the ‘‘risk-weighted
present value of total generation cost’’. This work both
considers the present value of generating cost and risk
(generating cost variance). Risk of generating cost is
introduced for volatile fuel prices and uncertainty of

www.elsevier.com/locate/enpol
dx.doi.org/10.1016/j.enpol.2007.10.004
mailto:hwaa@mail.ncku.edu.tw
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technological change and capital cost reduction. The
impact of risk levels on the portfolio of power generation
technologies is also examined. Finally, policy suggestions
are proposed based on the simulation results for Taiwan
electricity sector.

The remainder of the paper is organized as follows.
Section 2 provides the literature review; Section 3
introduces Taiwan electricity sector status. Section 4
contains the model description; Section 5 describes data
sources and adjustments. Section 6 presents the simulation
results from applying the model to the Taiwan electricity
sector, and Section 7 is the conclusion.

2. Literature review

Portfolio theory describes how rational investors base
their investment decisions in the financial market on
optimizing portfolio return for a given risk level (Bodie et
al., 2005; Markowitz, 1952). Researchers have recently
applied the theory to risk analysis in the energy market.
This section provides a short literature review on
researches closely related to risk analysis of the energy
market, summarized as follows.

Humphreys and McClain (1998) use financial portfolio
theory to demonstrate how energy mix consumed in the
United States could be chosen given the national goal to
reduce risks to the domestic macro-economy of unantici-
pated energy price shocks. An efficient portfolio frontier is
constructed using time-varying variances and covariances
estimated with generalized autoregressive conditional
heteroskedastic (GARCH)1 models. Results indicate that
while the electric utility industry is operating close to the
minimum variance portfolio, a shift towards coal would
still reduce overall price volatility for US energy consump-
tion.

Awerbuch and Berger (2003) introduce mean–variance
portfolio theory and evaluate its potential application to
the development of efficient European Union (EU-15)
generating portfolios that enhance energy security and
diversification objectives. The portfolio model reflects
relevant generating cost stream risk: fuel, operation and
maintenance (O&M), and construction period costs. The
model illustrates the portfolio effects of different generat-
ing mixes. Findings indicate that existing and projected
EU-generating mixes are sub-optimal from a risk-return
perspective. The analysis suggests that including more
renewables in portfolios creates lower cost and risk.

Lesbirel (2004) uses portfolio theory to conceptualize
energy security as an insurance mechanism against disrup-
tions to energy import markets. The study provides
quantitative measures of systematic and specific risks
associated with Japanese energy imports during the period
1970–99. Results conclude that, despite their limitations,
portfolio measures provide a much more theoretically and
1The GARCH process introduced by Engle (1982) and Bollerslev (1986)

allows the error variance to respond to shocks.
methodologically robust indicator of energy import secur-
ity than traditional measures.
Zon and Fuss (2005) present an optimum portfolio

selection approach integrated in a clay–clay vintage model.
The model focuses on fuel price and technological
uncertainty as the most important cost volatility determi-
nants in the electricity sector. Results indicate that the
cumulative nature of embodied technical change gives rise
to uncertain investment responses between the standard
results of optimum portfolio theory and real option theory.
Krey and Zweifel (2005) use financial portfolio theory to

investigate energy mixes of Switzerland. The efficient
frontier is constructed estimating time-varying variances
and covariances in energy prices using GARCH models.
Additionally, the TGARCH2 variant serves to control for
excess kurtosis. Results suggest that a shift towards nuclear
power and away from natural gas and gasoline would
reduce both expected increase in the Swiss energy bill and
its price volatility.
Research on risk analysis in the energy market is still

rare in Taiwan. Only one such study on electricity market
has been conducted. Chang and Chen (2005) apply
mean–variance portfolio theory to examine electricity
generation options currently available to the Taiwan
electricity sector and related issues. The model only focuses
on fuel price volatility. Model results propose an optimal
generation portfolio with significantly fewer oil and natural
gas power plants than that planned by the stated owned
Taiwan Power Company (Taipower). Oil and natural gas
prices are generally more volatile than other energies.
Reducing the proportion of these two types of energy in the
generation portfolio contributes to energy security.
Summing up this review, the conventional least-cost

approach for determining generation mix tends to under-
mine renewable energy benefits. Portfolio theory was
applied to energy portfolio analysis in the late 1990s.
Research results show that a higher proportion of renew-
able energy or a lower share of oil and gas reduces
portfolio exposure to fuel price fluctuations. Unfortu-
nately, conventional planning models tend to overlook the
risk issue.
Different from the above literature, our model integrates

portfolio theory into a vintage electricity planning frame-
work. In this model, risk of generating cost is introduced
for volatile fuel prices and uncertainty of technological
change and capital cost reduction. In addition to risk
consideration, the model also accommodates components
of conventional electricity planning approach including
unit characteristics, load segments, capacity constraints
and power output constraints. This allows us to analyze the
investment decisions taken for different vintages of power
generation technologies based on different energy sources.
In short, the model explicitly takes many characteristics of
2The assumption of conditionally t-distributed errors in combination

with the GARCH model is called TGARCH model because the t-

distribution has higher kurtosis than the normal distribution.
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power generation technologies and the risks that accrue
from electricity investment into account. The application is
based on data for Taiwan electricity sector.

3. Taiwan electricity sector status

3.1. Installed capacity

Taiwan relies heavily on imported energy. Imported
energy dependence was 97.85% in 2005 while imported oil
was an even higher 99.94%. The Taiwan electricity sector
capacity in 2005 is shown in Table 1. Total installed capacity
by year-end 2005 was 43,142.3MW with 28,643.7MW from
Taipower, 7234.9MW from independent power producers
(IPP), 7013.6MW from self-generating power systems
(including co-generation systems and biomass generation
systems), and 250.1MW from commissioned hydro power
plants. Installed capacity distributable by the Taipower
electricity system is 36,128.7MW (excluding self-generating
sources), accounting for 83.8% of total installed capacity.

Among those, 16,870.1MW, or 39.1%, was from coal-
fired; 11,099.7MW, or 25.7%, was from LNG-fired;
5144MW, or 11.9%, was from nuclear; 4749.1MW, or
11.0%, was oil-fired; 2602MW, or 6.1%, from pumped
storage hydro; 2538.8MW, or 5.9%, from renewable energy
(including conventional hydro power plant), and 138.6MW,
or 0.3% from waste heat recovery and other energy sources.

3.2. Power generation

The total power generation of Taiwan’s electricity sector
in 2005 is shown in Table 2. Total power generation in 2005
was 219,460GWh with 140,480GWh produced by Tai-
power, accounting for 64.0% of total output, followed by
42,460GWh from self-generating power systems (19.4%),
35,850GWh from IPP (16.3%), and 670GWh from
commissioned hydro power plants (0.3%).

Among those, 115,870GWh was from coal-fired, ac-
counting for 52.8% of total electricity generation,
38,400GWh from nuclear (17.5%), 37,450GWh from
LNG-fired (17.1%), 15,760GWh from oil-fired (7.2%),
7560GWh from renewable energy (3.4%), 3830GWh from
pumped storage hydro (1.7%), and 590GWh from waste
heat recovery and other energy sources (0.3%).

Thermal power and nuclear power are the current
dominant sources of electricity supply in Taiwan, account-
ing for 87.7% of total installed capacity. However, further
expansion of capacity in nuclear is restricted by the
‘‘Nuclear-Free Home’’ policy3 and concerns regarding the
disposal of radioactive waste from nuclear power plants in
Taiwan. Economic growth continues to drive power
consumption; therefore, power expansions must meet
3The ‘‘Nuclear-Free Home’’ policy is the ultimate goal in achieving a

non-nuclear homeland in Taiwan. The implementing strategies include

banning the development of nuclear weapons, gradually phasing out

nuclear power and developing renewable energy to meet future needs.
growing demand. The correlation between renewable
energy costs and fossil fuel price is relatively low. Hence
in addition to increase power supply from thermal power
plants, extending the proportion of renewable energy
technologies in the generation portfolio will help diversify
price fluctuation risk of imported fossil fuel.

4. Model description

4.1. Electricity demand and load duration curve

Load demand is total power generation output less
transmission and distribution loss, or the total sum of
electricity consumption. The electricity system load curve
represents changing output or load values as a time
function. Load curve shape is dependent on many factors,
such as economic development, climatic conditions, and
electricity usage habits. The load curve can convert into the
load duration curve by reordering the load data in
descending order of magnitude. The load duration curve
provides a useful yearly summary (or one period) of hourly
fluctuations in electricity demand (Madlener et al., 2005).
A discretized load duration curve shown in Fig. 1 divides
the load demand into base-load, medium-load, and peak-
load demand in the study.

P1, P2, P3, and P4 represent power technologies allocated
to meet certain load sections and average actual power output
during the designated time period, and y1, y2, y3 are the length
of time the power plants are utilized. Base-load power plants
are generally suitable for long time operating and are in use
during the entire period (i.e. y1+y2+y3), contributing P1 of
power. Peak-load power plants can be easily adjusted to
unexpected fluctuations in electricity demand but are more
expensive technologies. They operate during the period y1 (for
low utilization rate), with contribution P4 and locate at the
top of the load duration curve. The load duration curve also
illustrates utilization of varying generation power plants. The
load duration curve represents electricity demand and power
plant utilization in the model.

4.2. Objective function

The ‘‘minimization of the risk-weighted present value of
total generation cost’’ is the objective of this model. Both
the present value of generating cost and risk (variance of
the generating cost) are considered. Generating cost
includes energy cost (fuel cost and variable O&M cost)
and capacity cost (fixed O&M cost and capital investment
cost).4 Technological change in the model is technological
progress embodied in more recent and more efficient
capital investment. In other words, production efficiency is
driven solely by additional capital investment. Capital is
not homogenous and includes investments made in
4Investments are viewed as sunk cost; that is, they cannot be recovered.

Similarly, the investment costs of existing plants are sunk and thus

irrelevant for the present decision.
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Table 1

Total installed capacity in Taiwan in 2005

Item Taipower IPP Self-generating

power systems

Commissioned

power plant

Total

Coal-fired 8650.0 3097.1 5123.0 – 16,870.1

(39.1%)

LNG-fired 6972.4 4120.0 7.3 – 11,099.7

(25.7%)

Nuclear 5144.0 – – – 5144

(11.9%)

Oil-fired 3608.7 – 1140.4 – 4749.1

(11.0%)

Pumped storage hydro 2602.0 – – – 2602

(6.1%)

Renewable energy 1666.6 17.8 604.3 250.1 2538.8

(5.9%)

Waste heat recovery and other energy – – 138.6 – 138.6

(0.3%)

Total 28,643.7 7234.9 7013.6 250.1 43,142.3

(66.4%) (16.8%) (16.2%) (0.6%)

Source: Taiwan Power Company (Taipower) (2006).

Unit: MW.

Table 2

Total electricity generation in Taiwan in 2005

Item Taipower IPP Self-generating

power systems

Commissioned

power plant

Total

Coal-fired 62,090 20,600 33,180 – 115,870

(52.8%)

Nuclear 38,400 – – – 38,400

(17.5%)

LNG-fired 22,310 15,110 30 – 37,450

(17.1%)

Oil-fired 10,430 – 5330 – 15,760

(7.2%)

Pumped storage hydro 3830 – – – 3830

(1.7%)

Renewable energy 3420 140 3330 670 7560

(3.4%)

Waste heat recovery and other energy – – 590 – 590

(0.3%)

Total 140,480 35,850 42,460 670 219,460

(64.0%) (16.3%) (19.4%) (0.3%)

Source: Taiwan Power Company (Taipower) (2006).

Unit: GWh.
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different vintages. Power plants are categorized by periods
to highlight differences in embodied technological change.
Mathematical models for generating cost and risk of
generating cost are developed in the Appendix.

The ‘‘risk-weighted present value of total generation
cost’’ is a result of calculating the present value of total
generating cost and the risk of generating cost

RWðPVTCÞ ¼ PVTCþ lVarðPVTCÞ,

l is the risk-averse parameter. It also stands for the relative
contribution of the variance of total generating cost in the
objective function. If l is zero then the risk of generating cost
is excluded from the technology portfolio selection. The higher
the value, the more risk-averse the investor. The objective
function, based on the above, minimizes ‘‘risk-weighted
present value of total generation cost’’: Min RW(PVTC).

4.3. Constraints

The following constraints, together with objective
function, complete the model formulation.

Constraint 1:

XJ

j¼1

Xt

v¼0

Pj;t;v;sð1� LosstÞXDt;s; s ¼ 1 . . .S; t ¼ 1; . . . ;T ,
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Fig. 1. A discretized load duration curve.
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where Dt,s is the electricity demand for block s at period t.
Losst is the distribution and transmission loss at period t.
The constraint requires that total generation in each block
must be more than or equal to electricity demand during
the planning horizon.

Constraint 2:
If technology j is coal or nuclear and s is peak load block

(for s ¼ 1), then:

Pcoal;t;v;1 ¼ 0; Pnuclear;t;v;1 ¼ 0.

Power output is limited by unit characteristics. Nuclear and
coal power plants take longer time to start up and shut down
and are thus less responsive to sudden power demand
changes. The plants are more effective when used continu-
ously to meet base load demand. Therefore, the power output
of these two types of plants during peak load block is zero.

Constraint 3:

CAPj;t ¼ CAPj;t�1 þ X j;t �Retirej;t,

j ¼ 1; . . . ; J; t ¼ 1; . . . ;T .

Retirej,t is the amount of installed capacity of technology
j retired at period t. This formula calculates cumulative
installed capacity of different technology types during each
period. Cumulative installed capacity is the sum of
cumulative installed capacity of the previous period plus
new installed capacity less retired installed capacity.

Constraint 4:

XJ

j¼1

CAPj;tXDt;1ð1þmÞ; s ¼ 1; t ¼ 1; . . . ;T ,

where Dt,1 is the peak demand (for s ¼ 1) at period t and m
is the reserve margin. The constraint requires that total
capacity must meet peak demand (electricity consumption
plus reserve margin).

Constraint 5:
(a)
,
Pj;t;v;spajX j;v s ¼ 1; . . . ;S; v ¼ 0; . . . ; t; t ¼ 1; . . . ;T

j ¼ 1; . . . ; J
(b)
XS

s¼1

Pj;t;v;sysp8760bjX j;v; v ¼ 0; . . . ; t; t ¼ 1; . . . ;T ,

j ¼ 1; . . . ; J,
where aj is availability of a power plant, which refers to the
percentage of time that the plant can be used, i.e., it is not
out of service due to repairs or maintenance (Kumbaroğlu
et al., in press). bj is the capacity factor, which refers to the
ratio between average electricity generation and installed
capacity of a given power plant during a specific period of
time (e.g. a year). It measures power plant average
utilization rate. The constraint requires that output from
each plant cannot exceed available capacity.

Constraint 6:

Xt

v¼0

XS

s¼1

rgas;vPgas;t;v;syspgasimportt; j 2 gas; t ¼ 1; . . . ;T ,

where gasimportt is the annual supply of liquefied natural
gas (LNG) for electricity generation. The amount of LNG-
fired to generate electricity shall be less than the amount
supplied. Natural gas largely imported in Taiwan implies
that the amount of LNG imported cannot exceed the
receiving capacity of LNG reception terminals.

Constraint 7:

CAPj;TpMax X j ; j 2 renewable energy;

where MaxXj is renewable energy development potential.
Despite an indigenous energy resource, the capacity of
renewable energy technologies is also subject to geogra-
phical conditions (Wu and Huang, 2006). Renewable
energy capacity must be less than its development
potential.

Constraint 8:

Pj;t;v;sX0 s ¼ 1; . . . ;S; v ¼ 0; . . . ;V ; t ¼ 1; . . . ;T ,

j ¼ 1; . . . ; J ðnon�negative constraintÞ.

The full model consists of the objective function (RW
(PVTC)) that needs to be minimized, subject to constraints
1–8. Risk of generating cost is focused on volatile fuel
prices and uncertainty of technological change and capital
cost reduction (s2FP;s

2
r ;s

2
C) as the most important cost

volatility determinants in the electricity sector. There are
no country-specific constraints included in the model
formulation. It means that this model could be universally
applied to other countries or regions, preparing the
necessary data for the model are available. The simulation
analysis is based on data for Taiwan electricity sector. In
the following, we describe the data sources and adjust-
ments of the model for Taiwan electricity sector. The
results associated with these simulations are presented in
Section 6, which show how increasing the level of risk
aversion would influence the technology portfolio and
generating cost.
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6In energy and climate models, the learning curve has been employed

with increasing frequency to account for cost reductions due to technology

related learning and for endogenizing technological change (Barreto, 2001;

Barreto and Kypreos, 2004; Berglund and Söderholm, 2006; IEA, 2000;

McDonald and Schrattenholzer, 2001). However, some weakness asso-

ciated with use of the learning curve should also be acknowledged. The

choice of both model specification and estimation technique can have a

strong influence on the learning rate estimates (Söderholm and Sundqvist,

2007). Despite uncertainties surrounding the estimated learning curve that

stem from model misspecification issues, the learning curve is still a useful
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5. Data sources and adjustments

5.1. Technical data for power plants

5.1.1. Generating cost data

In the model application, we explore electricity planning
in Taiwan power sector for the period 2006–2025,
differentiating between three types of thermal power plants
(i.e. coal-fired, oil-fired, and LNG-fired), nuclear power
plants, and six types of renewable energy technologies (i.e.
conventional hydro, wind, solar PV, Municipal Solid
Waste (MSW), other biomass,5 and geothermal) of
different vintages.

Generating cost, availability, capacity factor, and
thermal efficiency data for ten types of power plants are
shown in Table 3. The other technical parameters of power
plants are summarized in Table 4. Fixed cost includes
capital investment cost and fixed O&M cost. Variable cost
covers variable O&M cost and fuel cost. Fuel purchase
price is not made public as it is power company classified
information. Hence, fuel price is based on data released by
the Bureau of Energy (average purchase prices for
imported energy, 1990–2005). The historical data on fuel
price are deflated to year 2001 currency value over the
designated period and used to estimate growth rate of the
theoretical model function (Table 4). Fuel price estimation
in future planned years is made on the basis of fuel price
growth rate.

5.1.2. Fuel/output ratio (or fuel consumption rate)

Fuel/output ratio is developed from data released
by the Bureau of Energy. The amount of fuel required
per unit of power output is calculated by dividing power
plant fuel consumption by total electricity generation
(Bureau of Energy, Ministry of Economic Affairs, 2006).
Fuel/output ratio of MSW is calculated from data
released by the Environmental Protection Administration
(Environmental Protection Administration (EPA),
Executive Yuan, 2006). The fuel/output ratio rate for
MSW also applies to other biomass energy due to a
lack of data regarding fuel consumption and electricity
generation.

The fuel/output ratio for coal-fired power plants in 2005
was 0.389 tons/MWh, oil-fired power plants 0.241 kl/
MWh, LNG power plants 0.202 thousand cubic meters/
MWh, nuclear power plants 2.502 g/MWh, and biomass
power plants 1.969 tons/MWh. Taking LNG for example,
Fig. 2 illustrates the change of LNG consumption rate
(LNG/power output ratio) between 1990 and 2005. The
historical data on fuel/output ratio have been used to
estimate growth rate of the theoretical model function
(Table 4). Fuel/output ratio estimation in future planned
years is made on the basis of fuel consumption growth rate
(a negative value implies fuel-saving technological pro-
gress).
5Other biomass includes industrial waste and agricultural waste.
5.1.3. Capital cost

The learning curve6 forms the basis of estimated future
capital cost in the model. Cumulative installed capacity
determines reduction rate in capital cost per unit of
installed capital. Only renewable energy technologies are
assumed to exhibit learning effects. However, due to cost
and cumulative installed capacity data solely available for
wind and solar PV technology in Taiwan, estimations are
made on the two technologies (Table 4). Taking wind
power for example, capital cost is calculated using
cumulative installed capacity (x) and unit investment cost
(y) (including wind turbines, electric facilities, construction
facilities, and grid facilities) data from the Taipower for
years 2001–2006. Fig. 3 shows the relationship between
cumulative installed capacity and unit investment cost,
deflated by the GDP deflator over the designated period.
Estimated future target year capital cost is made on the
basis of learning rate.
5.1.4. The variance and covariance

The risk of changes in fuel price, fuel/output ratio and
capital cost is calculated based on data from the Bureau of
Energy and Environmental Protection Administration
from 1990 to 2005 (Table 4). In terms of fuel price
fluctuation risk, oil is the most risky resource followed by
LNG, coal, and nuclear. The fuel price fluctuation risk for
conventional hydro, wind, Solar PV, and geothermal
technology are zero as no fuel is required. The fuel price
fluctuation risk for MSW and other biomass are zero as
only waste is involved.
5.2. Expected long-term load and line loss rate

Power load historical data and expected future peak load
demand are shown in Table 5. Peak load demand is
expected to grow from 30,942.9MW in 2005 to
63,390.3MW in 2025 with an average growth rate of
3.65%. The Taipower Department of Planning estimates
that line loss rate is projected to fall from 5.6% in 2005 to
5.3% in 2025 thanks to line improvement plans and
completion of the Sixth Power Transmission and Substa-
tion Project by the end of 2006.
tool in modeling cost reductions in energy supply systems and is applied in

our model.
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Table 3

Cost data, availability, capacity factor and thermal efficiency of power generation technologies

Cost item

Technologies Capacity cost Energy cost Others

Investment cost

(NT$/KW)

Annual fixed O&M cost

(NT$/KW)

Variable O&M cost

(NT$/KWh)

Fuel cost (NT$/

KWh)

Availability Capacity

factors

Thermal

efficiency

Coal-fired 34,300 694 0.0759 0.75 0.9021 0.9021 0.34

Oil-fired 10,700 292 0.6927 1.93 0.7390 0.7390 0.38

LNG-fired 16,000 254 0.3774 2.03 0.8947 0.8947 0.43

Nuclear 77,100 1716 0.2006 0.15 0.83 0.83 –

Conventional

hydro

80,000 1200 0.182 0 0.8 0.5 –

Wind 47,000 650 0 0 0.9 0.31 –

Solar PV 150,000 310 0 0 0.9 0.15 –

MSW 127,400 0 0.41 0 0.8 0.8 –

Other biomass 56,200 0 0.24 0 0.8 0.8 –

Geothermal 70,000 4122 0 0 0.75 0.75 –

Note: (1) 1 NT$ is equivalent to 0.03US$.

(2) The costs are the currency value of year 2001.

(3) Fuel cost is based on year 2005; estimation of fuel costs in other years is based on the growth rate.

(4) Due to lack of data regarding the benefit of burning waste (e.g. disposal fees), the fuel cost of MSW and other biomass is assumed to be zero.

Sources: (1) Taiwan Power Company (Taipower) (2005), (2) Energy and Environment Laboratories (EEL), Industrial Technology Research Institute,

2006.

Table 4

Technical parameters of power generation technologies

Parameters

Technologies Initial fuel

price

Initial fuel/

output ratio

Initial capital

cost

Growth rate

of fuel price

Growth rate

of fuel/

output ratio

Learning

rate

Variance for

fuel price

growth

(s2FP)

Variance for

fuel

consumption

rate (s2r )

Variance for

capital cost

reduction

(s2C )

Coal-fired 1928.56 0.3894 34.3 0.0115 �0.00109 0 0.023241 0.003249 0

Oil-fired 8018 0.2410 10.7 0.0145 �0.00263 0 0.041806 0.000363 0

LNG-fired 10,050 0.2023 16 0.0084 �0.01883 0 0.025784 0.000966 0

Nuclear 56.87 2.5018 77.1 0.0072 �0.01374 0 0.010600 0.002303 0

Conventional hydro 0 0 80 0 0 0 0 0 0

Wind 0 0 47 0 0 0.05 0 0 0.000704

Solar PV 0 0 150 0 0 0.15 0 0 0.009409

MSW 0 1.9686 127.4 0 �0.05675 0 0 0.001662 0

Other biomass 0 1.9686 56.2 0 �0.05675 0 0 0.001662 0

Geothermal 0 0 70 0 0 0 0 0 0

Note: (1) Initial represents year 2005.

(2) The unit of initial fuel price: coal (NT$/tons), fuel oil (NT$/kl), LNG (NT$/thousand cubic meters), uranium (NT$/g).

(3) The unit of initial fuel/output ratio: coal (tons/MWh), fuel oil (kl/MWh), LNG (thousand cubic meters/MWh), uranium (g/MWh).

(4) The unit of initial capital cost: millions NT$/MW.

Sources: (1) Bureau of Energy, Ministry of Economic Affairs (2006), (2) Environmental Protection Administration (EPA), Executive Yuan (2006).
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5.3. Retirement schedule of existing power plants

The Taipower expects its nuclear power plants and coal-
fired power plants to run for 40 years, oil-fired and LNG-
fired power plants for 30 years, and hydro power plants for
70 years. Total installed retirement capacity between 2006
and 2025 is expected to reach 11,245MW.
5.4. LNG import limitations

The LNG reception terminal receiving capacity is shown
in Table 6. Yong-an is currently the only LNG reception
terminal in Taiwan with a receiving capacity of 7440
thousand tons per annum. Given the implementation of
scheduled addition and expansion projects, its receiving
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Table 5

Expected long-term load and line loss rate

Year Peak load

demand (MW)

Growth rate

(%)

Line loss rate

(%)

2005 30,942.9 – 5.6

2006 31,615.8 2.17 5.6

2007 32,833.9 4.01 5.6

2008 34,331.2 4.40 5.5

2009 35,954.4 4.73 5.5

2010 37,724.1 4.92 5.5

2011 39,472.7 4.64 5.5

2012 41,229.9 4.45 5.5

2013 42,925.3 4.11 5.5

2014 44,643.1 4.00 5.5

2015 46,315.9 3.75 5.5

2016 48,016.7 3.67 5.5

2017 49,698.2 3.50 5.4

2018 51,406.5 3.44 5.4

2019 53,139.5 3.37 5.4

2020 54,837.0 3.19 5.4

2021 56,530.1 3.09 5.4

2022 58,230.9 3.01 5.4

2023 59,914.4 2.89 5.3

2024 61,632.8 2.87 5.3

2025 63,390.3 2.85 5.3

Source: Taiwan Power Company (Taipower) (2005).

Table 6

Receiving capacity of LNG reception terminal

Year Receiving capacity LNG consumption (Policy

target)
Yong-an

terminal

Taichung

terminal

Total

2005 7440 – 7440 –

2006 9000 – 9000 –

2010 9000 3000 12,000 13,000

2020 9000 9000 18,000 16,000–18,000

2025 – – – 20,000–22,000

Source: Bureau of Energy, Ministry of Economic Affairs (2005).

Unit: thousand tons per annum.
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capacity should reach 12,000 thousand tons per annum in
2010, 18,000 thousand tons in 2020, and 20,000–22,000
thousand tons in 2025.

5.5. Development potential of renewable energy

The capacity of renewable energy is subject to geogra-
phical conditions despite being an indigenous energy
resource. Renewable energy development potential estima-
tion in Taiwan is made based on data from the New Energy
and Clean Energy Research and Development Planning
Report (Bureau of Energy, Ministry of Economic Affairs,
1999) shown in Table 7.

5.6. Other parameters

Reserve margin rate is set at 15%; discount rate is
constant at 5%, and planned period is 20 years, from 2006
to 2025.

6. Results

The model is programmed in GAMS (Brooke et al., 2005),
and results have been obtained with the solver MINOS.
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Table 7

The development potential of renewable energy in Taiwan

Technologies The development potential of renewable energy

Conventional

hydro

Total development potential is estimated to be

4.12GW (excluding the 0.82GW development

potential in national parks)

Wind Total development potential for onshore wind power is

estimated to be 4GW. However, after considering the

issues such as the high cost of land acquisition only

one-fourth, or 1.0GW, of this potential is expected to

be utilized to generate electricity. Together with

2.0GW from offshore sources total development

potential for wind is 3GW

Solar PV Total development potential is estimated to be 12GWp

including those installed at residential installations,

industrial and commercial installations, public

facilities, and other places

MSW Total development potential is estimated to be 0.9GW

based on the amount of urban waste

Other biomass Total development potential is estimated to be 0.8GW

based on the amount of industrial waste and

agricultural waste

Geothermal Total development potential is estimated to be 0.5GW

based on data from the 25 non-volcanic geothermal

areas

Source: Bureau of Energy, Ministry of Economic Affairs (1999).
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6.1. Scenario design

The simulation scenarios in this paper are as follows:
Scenario 0 (C0) is the baseline scenario that examines

annual generating portfolio changes under the least-cost
principle and relevant constraints without considering risk
impact. Scenario 1–scenario 4 (C1–C4) explore behavioral
differences of investment exhibiting varying levels of risk-
aversion by setting the risk-averse parameter l at 0.001,
0.0025, 0.005, and 0.0075. The impact on technology
portfolio and generating cost is also examined. As Taiwan
has limited energy resources, 97.85% of its energy supply is
imported. The prices of import energies are highly related
to international energy markets. Energy security is reduced
when holding inefficient energy portfolios that are exposed
to fossil fuel price fluctuations. Hence, scenario 5 (C5)
primarily exploits the impact of drastic price fluctuation
(high variance) on power generating portfolio. Scenario 5
sets fossil fuel price variance at twice its original value
when the risk-averse parameter (l) is 0.001 to illustrate
fossil price fluctuation impact on generating portfolio.

Nuclear power plant capacity expansion is limited given
the ‘‘Nuclear-Free Home’’ policy, except for the fourth
nuclear power plant currently under construction. Taiwan
electricity planning models largely set the upper bounds of
generating capacity for nuclear energy at 7844MW
(installed capacity of the fourth nuclear power plant
included). However, this paper applies an upper bound of
20% of total installed capacity to nuclear energy to assess
nuclear energy significance in a generating portfolio that
accounts for risk of generating cost. In order to avoid
unrealistically high growth rates for power generation
technologies, the maximum annual capacity addition limit
for thermal power plants (coal-fired, oil-fired, and LNG-
fired) is set at 2000MW and for renewable energy is set at
500MW.

6.2. Simulation results

Fig. 4 illustrates the proportion of installed capacity by
technology during the planning horizon. Minimizing
generating cost is the objective in this scenario. Nuclear
power plants gained precedence over other types of
generating technology due to low cost. However, there is
an upper bound of 20% to nuclear energy share as a
proportion of total installed capacity. Hence base load
demand is mainly handled by coal-fired power plants
suitable for operating for a long time. Coal-fired power
plant installed capacity maintains at the 40% level. Oil-
fired plants have high generating costs, and their installed
capacity fell as no new additions were made to existing
plants during the simulation period. LNG-fired power
plants are more responsive and have lower fixed cost, and
are typically used to meet peak power demand. Installed
capacity proportion of LNG-fired plants initially fell as no
new additions were made to existing plants. Capacity
subsequently rose as new plants were added to meet
increasing peak power demand during the simulation
period.
Wind power, other biomass, and hydropower are

currently the only economically viable renewable energy
technologies. New additions have been made to these three
types of power plants. Nevertheless, given the objective of
minimizing generating cost, more installed capacity will be
added in the future should power demand and fossil fuel
cost continue to rise. Fig. 4 also shows that new wind
power plants will only be added post period 5. Solar PV is
uncompetitive due to high generating cost. No new
additions were made during the simulation period. As for
geothermal power plants, a small amount of installed
capacity is added towards the end of the simulation period.
Yet its share of total installed capacity was negligible due
to only 500MW development potential in Taiwan. In
short, the decision to add new power plants largely depends
on generating cost and unit characteristics, without
accounting for risk. Coal-fired, LNG-fired, and nuclear
power plants take up the lion’s share of installed capacity.
Fig. 5 depicts the relationship between total generating

cost and risk-averse parameter. Portfolio theory asserts
that the more risk- averse an investor, the higher cost to be
paid. Fig. 5 also shows that the more risk- averse the
generating portfolio, the higher the generating cost
involved. The simulation results correspond to those
obtained with portfolio theory.
Figs. 6–9 illustrate the impact of different risk-averse

parameters (C1–C4) on generating portfolio using coal-
fired power plants, LNG-fired power plants, wind power
plants, and solar PV power plants as examples. The results
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show while considering generating cost risk, the proportion
of high-risk fossil fuel technology reduces and is more
likely replaced by less risky renewable alternatives. The
effect is particularly pronounced with risk-aversion level
increase.

In terms of fuel price fluctuation risk, oil is the most
risky energy followed by LNG, coal, and nuclear. Fig. 6
shows that the larger the risk-averse parameter during the
initial simulation period (period 1–8), the lower the share
of coal-fired power plants. No additional capacity was
made to LNG-fired power plants during this period, so new
renewable energy plants replaced coal-fired power plants at
this stage. Replacement ratio rises with risk-aversion level.
However, replacement ratio is limited as geographical
conditions dictate renewable energy development capacity.
Because the fuel price fluctuations associated with LNG-
fired are more than coal-fired, in the latter half of the
simulation period (after period 9) LNG-fired power plants
are replaced by new renewable energy plants. Fig. 7 also
shows that the larger the risk-averse parameter, the lower
the LNG power plant proportion in the generating
portfolio.
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Fig. 8 shows that the share of wind power plants
increases with the risk-aversion level. Consequently, addi-
tional installed wind power capacity made in advance
serves as a fossil fuel technology substitute. The additional
installed capacity occurs in the baseline scenario in
simulation period 5, while this in C4 takes place in period
1. The model sets an upper bound of 3000MW, given that
wind energy development capacity is subject to geographi-
cal conditions in Taiwan. Wind power share is identical
across scenarios once the upper bound (3000MW) is
reached. Fig. 9 illustrates proportion changes of installed
capacity from solar PV technologies. Solar PV as a
generating technology is not economically under least-cost
principle. With risk consideration, solar PV should be
employed when the level of risk-aversion is becoming
higher and all other forms of renewable energy have been
exhausted. Similarly, the higher the risk averse parameter
level, the higher the share of solar PV.
Fig. 10 shows percentage deviation of installed capacity

between C5 and C1. The risk-averse parameter is 0.001 in
C5 and C1, but fossil fuel price variance of C5 is twice C1’s
value. Installed capacity proportion of coal-fired and
LNG-fired power plants is drop when fuel price fluctuates
dramatically. Wind power and hydropower supplies make
up the shortfall. The solar PV proportion rose as a fossil
fuel substitute toward the end of the simulation period as
other renewable energy sources were exhausted.
Oil-fired power plants have higher generation costs and

are thus subject to a much higher level of fuel price
fluctuation risk. Possible new additions to existing
power plants are zero while considering cost-related risk.
Therefore, the proportion of installed capacity of
oil-fired power plants will decrease each year as illustrated
in the baseline scenario. Fuel price volatility of nuclear is
less frequent than fossil fuel and less affected by global
energy price fluctuations. Nuclear energy could be
regarded as a ‘‘quasi-indigenous’’ type of energy due to
the relatively small size of fuel material and transportation
convenience. Simulation results show that installed capa-
city proportion generated by nuclear energy be maintained
at its upper bound despite the risk involved. Nuclear
energy proportion in the generating portfolio does not
decrease with rising risk aversion. Nuclear can also be
averse to fossil fuel price fluctuations such as LNG and
coal. Therefore, reducing the proportion of installed
capacity from coal-fired and LNG-fired plants and adding
renewable energy and nuclear power will lead to fewer
generating cost fluctuations.
In conclusion, taking risk of generation cost into account

in electricity supply planning creates a preference for more
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risk-averse renewable energy in the generating portfolio
and also helps reduce portfolio exposure to fossil fuel price
fluctuations. However, producing the same power genera-
tion level requires more land resources compared to
conventional generating technologies given the relatively
lower energy density of renewable energy sources. Renew-
able energy development potential is also subject to
geographical condition constraints. Simulation results
illustrate that even in highly risk-averse circumstances,
the maximum proportion of installed capacity from
renewable energy sources of total installed capacity is
15% due to limited development potential in Taiwan.
Looking forward, renewable energy must be able to utilize
future technological progresses to improve energy density
(e.g. more capacity for a given wind turbine or better
energy conversion efficiency of solar cell) and reduce the
amount of land resources required for each unit of energy
generated. Improved energy density will translate into a
higher development potential. Only then will renewable
energy sources play a greater role in electricity supply.
Meanwhile, reevaluating Taiwan’s current nuclear energy
policy could be worthwhile. The low generating cost and
minor fuel price volatility of nuclear power will reduce
exposure to price fluctuations in fossil fuel.
7. Conclusion

Conventional electricity planning applies the least-cost
method to select from a range of alternative technologies
without assessing cost-related risks. The current approach
to determining electricity generation portfolios is in the
bias favoring fossil fuel. Taiwan relies heavily on imported
energy. The dependence level on imported energy was
97.85% in 2005 while the dependence level on imported oil
was an even higher 99.94%.
This paper applies portfolio theory in conventional
electricity planning with Taiwan as a case study. The
overall model objective is to minimize the ‘‘risk-weighted
present value of total generation cost’’. Risk of generating
cost is focused on volatile fuel prices and uncertainty of
technological change and capital cost reduction as the most
important cost volatility determinants in the electricity
sector. The current work also examines the impact of risk
levels on the technology portfolio and generating cost.
Simulation results from applying the model to the Taiwan
electricity sector find that the more risk-averse a generating
portfolio, the higher the total generating cost. Moreover,
incorporating the risk concept in the planning model also
leads to a lower proportion of electricity generated from
fossil fuel technology and a higher proportion from
renewable energy source in substitute for fossil fuel. The
higher the risk-aversion level, the more pronounced the
effect.
Simulation results also show that replacing fossil fuel

with renewable energy helps reduce generating cost risk.
However, there is an upper bound of 15% on the
maximum share of renewable energy in the generating
portfolio due to limited renewable development potential
in Taiwan. Renewable energy will only play a more
significant role in electricity generation should its energy
density improve in terms of unit capacity and conversion
efficiency. In the meantime, reevaluating the current
nuclear energy policy for reduced exposure to fossil fuel
price fluctuations could be worthwhile.
The model adopted in this paper is a preliminary

research with some meaning results. Model results could
be made more feasible and practical given more relevant
data for detailed parameters examination. Furthermore,
this study explores the expected cost and risk of electricity
generation without considering greenhouse gas emission
constraint. Therefore, model results exhibit a preference for
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coal-fired energy sources to replace more risky technology
such as LNG-fired power plants. The Kyoto Protocol
commits signatory countries to cut back on greenhouses
gas emissions. Future research could cover global warming
issues and give consideration to greenhouse gas emissions
in this model.
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Appendix

Mathematical models for generating cost and risk of
generating cost are derived as follows:
7For simplicity, we assume that capacity is perfectly divisible.
A.1. Generating cost

A.1.1. Fuel cost

XJ

j¼1

XT

t¼1

Xt

v¼0

XS

s¼1

FPj;trj;vPj;t;v;sys;

where parameter j is generation technology (1,y,J) or type
of fuel used to generate electricity since technology in this
paper is categorized by type of fuel; t is planning period
(1,y,T); v is vintage (0,y,V) with 0 for existing power
plants and 1,y,V for newly installed power plants during
the planning period; s is the block (1,y,S) formed by the
time axis on the load duration curve.

FPj,t: unit price of fuel j at period t;
rj,v: amount of fuel j required for a given level of power
output from power plants installed in vintage v;
Pj,t,v,s: power output of technology j from power plants
installed in vintage v during period t in block s;
ys: duration time of blocks.

where rj,v is the fuel/output ratio, and it means the amount
of fuel required per unit of power output. Assuming that
fuel consumption rate per unit of power output is
influenced by vintage only, the higher the generation
efficiency of new power plants, the less fuel required. Thus
the technological change of fuel consumption rate (rj,v)
takes place at a given exponential growth rate and with a
residual:

rj;v ¼ rj;v�1e
r̂jþ�

r;j
v ;
rj;v�1 ¼ rj;v�2e
r̂jþ�

r;j
v�1 ;

..

.

rj;1 ¼ rj;0e
r̂jþ�

r;j
1 :

Through continuous iteration obtains rj;v ¼

rj;0e
r̂j �vþ
Pv

v¼1
�r;jv ; where rj,0 is the initial fuel/output ratio of

fuel j; er, j is the residual; r̂j is constant growth rate. The

negative value of the growth rate means that fuel/output
ratio decreases as vintage increases (fuel-saving technolo-
gical progress).
By analogy, if FPj,t is the unit price of fuel during

different periods (t), FPj,t also takes place at a given
exponential growth rate with a residual:

FPj;t ¼ FPj;0e
bFPj �tþ

Pt

t¼1
�FP;jt ,

where FPj,0 is the initial price of fuel j; eFP,j is the residual;
cFPj is constant growth rate. The positive value of the
growth rate means that fuel price will increase over time.

A.1.2. Variable O&M cost

XJ

j¼1

XT

t¼1

Xt

v¼0

XS

s¼1

VAROMj;t;vPj;t;v;sys;

where VAROMj,t,v: variable O&M cost of technology j of
power plants installed in vintage v during period t.

A.1.3. Fixed O&M cost

XJ

j¼1

XT

t¼1

FIXOMj;tCAPj;t,

where FIXOMj,t is the fixed O&M cost of technology j of
power plants installed in vintage v during period t; CAPj,t

the cumulative installed capacity of technology j at
period t.

A.1.4. Capital investment cost

XJ

j¼1

XT

t¼1

Cj;tX j;t,

where Cj,t is the capital cost per unit of capacity of
technology j at period t; Xj,t is the new installed capacity7 of
technology j at period t.
Future capital cost estimates are established by the one-

way learning curve. Investment cost reductions per unit
installed capacity is dependent on cumulative installed
capacity. The residual is also included in the learning curve
and expressed as follows:

Cj;t ¼ Cj;0ðntÞ
ae�

C;j
t ¼ Cj;0

Xt

v¼1

X j;v

 !a

e�
C;j
t ,
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where Cj,0 is the initial capital cost for technology j; �C;j is
the residual; nt is the cumulative installed capacity; and a is
the learning parameter.

All error terms (er,j, eFP,j, eC,j) are assumed to have zero
expectation, constant variance, and serially uncorrelated.
By assumptions, we have (Eð�x;jÞ ¼ 0), Eðð�x;jÞ2Þ ¼ s2x,
Eð�x;j

w �
x;j
w�1Þ ¼ 0 for x ¼ r, FP, C; w ¼ v, t.

Based on the above, the present value of total cost
(PVTC) of generation is expressed as follows:

PVTC ¼
XJ

j¼1

XT

t¼1

Xt

v¼0

XS

s¼1

DFðtÞFPj;trj;vPj;t;v;sys

þ
XJ

j¼1

XT

t¼1

Xt

v¼0

XS

s¼1

DFðtÞVAROMj;t;vPj;t;v;sys

þ
XJ

j¼1

XT

t¼1

DFðtÞFIXOMj;tCAPj;t þ
XJ

j¼1

XT

t¼1

DFðtÞCj;tX j;t,

where DF(t) is the discount factor, DF(t) ¼ (1+R)�t.
A.2. The risk of generating cost (the variance of generating

cost)

By adding all residuals into the model, then PVTC can
be rewritten as

PVTC ¼
XJ

j¼1

XT

t¼1

Xt

v¼0

XS

s¼1

DFðtÞFPj;0e
bFPj tþ

Pt

t¼1
�FP;jt

�rj;0e
r̂j vþ
Pv

v¼1
�r;jv Pj;t;v;sys

þ
XJ

j¼1

XT

t¼1

Xt

v¼0

XS

s¼1

DFðtÞVAROMj;t;vPj;t;v;sys

þ
XJ

j¼1

XT

t¼1

DFðtÞFIXOMj;tCAPj;t

þ
XJ

j¼1

XT

t¼1

DFðtÞCj;0

Xt

v¼1

X j;v

 !a

e�
C;j
t X j;t

eu ¼ 1þ uþ
u2

2!
þ

u3

3!
þ � � � ; when u is minimal; eu � 1þ u.

A first-order approximation of PVTC is given by

PVTC �
XJ

j¼1

XT

t¼1

Xt

v¼0

XS

s¼1

DFðtÞFPj;0e
bFPj t 1þ

Xt

t¼1

�FP;jt

 !

�rj;0e
r̂j v 1þ

Xv

v¼1

�r;jv

 !
Pj;t;v;sys

þ
XJ

j¼1

XT

t¼1

Xt

v¼0

XS

s¼1

DFðtÞVAROMj;t;vPj;t;v;sys

þ
XJ

j¼1

XT

t¼1

DFðtÞFIXOMj;tCAPj;t
þ
XJ

j¼1

XT

t¼1

DFðtÞCj;0

Xt

v¼1

X j;v

 !a

ð1þ �C;j
t ÞX j;t.

Suppose R
1;j
t ¼

Pt
t¼1�

FP;j
t , R2;j

v ¼
Pv

v¼1�
r;j
v (where �r;j

0 ¼ 0
(error term for the initial period is zero), hence R

2;j
0 ¼ 0),

R
3;j
t ¼ �

C;j
t .

Then

PVTC �
XJ

j¼1

XT

t¼1

Xt

v¼0
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s¼1

DFðtÞFPj;0rj;0e
bFPj tþr̂j v
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v Þ
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t¼1

Xt
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t¼1
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Xt

v¼1

X j;v

 !a

X j;tð1þ R
3;j
t Þ

ðNote : R
1;j
t R2;j

v � 0Þ.

Because VarðPVTCÞ ¼ E½PVTC� EðPVTCÞ�2 ¼
Eð�PVTC�PVTCÞ Where �PVTC ¼ PVTC� EðPVTCÞ.
From the above assumption (Eð�FP;jÞ ¼ 0, Eð�r;jÞ ¼ 0,

Eð�C;jÞ ¼ 0), we can calculate E(PVTC), using the PVTC
and E(PVTC), then:

�PVTC �
XJ

j¼1

XT

t¼1

Xt

v¼0

XS

s¼1

DFðtÞFPj;0rj;0e
bFPj tþr̂j v

�Pj;t;v;sysðR
1;j
t þ R2;j

v Þ

þ
XJ

j¼1

XT

t¼1

DFðtÞCj;0

Xt

v¼1

X j;v

 !a

X j;tR
3;j
t .

Suppose

B
j;v
t ¼

XS

s¼1

DFðtÞFPj;0rj;0e
bFPj tþr̂j vPj;t;v;sys,

B
3;j
t ¼ DFðtÞCj;0

Xt

v¼1

X j;v

 !a

X j;t,

�PVTC �
XJ
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Xt

v¼0

B
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t ðR

1;j
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B
3;j
t R
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v¼0
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¼
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v¼0
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j¼1
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þ
XJ

j¼1

XT

t¼1

B
3;j
t R

3;j
t .

And suppose B
1;j
t ¼

Pt
v¼0B

j;v
t , B

2;j
t ¼

PT
v¼tB

j;t
v

�PVTC �
XJ

j¼1

XT

t¼1

ðB
1;j
t R

1;j
t þ B

2;j
t R

2;j
t þ B

3;j
t R

3;j
t Þ

¼
XJ

j¼1

XT

t¼1

X3

k¼1

ðB
k;j
t R

k;j
t Þ;

where k refers to the different types of risks considered in
the model: FP is the risk (fluctuation) of fuel price growth,
k ¼ 1; r is the risk of technological progresses of fuel
consumption rate, k ¼ 2; and C is the risk of capital cost
reduction, k ¼ 3.

VarðPVTCÞ ¼ Eð�PVTC�PVTCÞ

¼ E
XJ

j1¼1

XT

t1¼1

X3

k1¼1

ðB
k1;j1
t1 R

k1;j1
t1 Þ

"

�
XJ

j2¼1

XT

t2¼1

X3

k2¼1

ðB
k2;j2
t2 R

k2;j2
t2 Þ

#

¼ E
XJ

j1¼1

XT

t1¼1

X3

k1¼1

XJ

j2¼1

XT

t2¼1

X3

k2¼1

ðB
k1;j1
t1 R

k1;j1
t1 Þ

"

� ðB
k2;j2
t2 R

k2;j2
t2 Þ

i

¼
XJ

j1¼1

XT

t1¼1

X3

k1¼1

XJ

j2¼1
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t2¼1

X3

k2¼1

B
k1;j1
t1 B

k2;j2
t2

� EðR
k1;j1
t1 R

k2;j2
t2 Þ.

Suppose the covariances between the three types of risks
are zero, i.e., they are uncorrelated to each other in terms
of risk. The above formula has a value only when k1 ¼ k2.
Hence, Var(PVTC) can be rewritten as

XJ

j1¼1

XT

t1¼1

XJ

j2¼1

XT

t2¼1

minðt1; t2ÞB
1;j1
t1 B

1;j2
t2 s1;j1;j2t1;t2 ðk ¼ 1Þ

þ
XJ

j1¼1

XT

t1¼1

XJ

j2¼1

XT

t2¼1

minðt1; t2ÞB
2;j1
t1 B

2;j2
t2 s2;j1;j2t1;t2 ðk ¼ 2Þ

þ
XJ

j1¼1

XT

t1¼1

XJ

j2¼1

XT

t2¼1

B
3;j1
t1 B

3;j2
t2 s3;j1;j2t1;t2 ðk ¼ 3Þ,

where min(t1,t2) represents the minimum of t1 and t2. If
j1 ¼ j2 then sj1;j2

t1;t2 is the variance; if j1 6¼j2 then sj1;j2
t1;t2 is the

covariance of j1 and j2.
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Kumbaroğlu, G., Madlener, R., Demirel, M., in press. A real options

evaluation model for the diffusion prospects of new renewable power

generation technologies. Energy Economics, doi:10.1016/j.ene-

co.2006.10.009.

Lesbirel, S.H., 2004. Diversification and energy security risks: the

Japanese case. Japanese Journal of Political Science 5 (1), 1–22.
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Abstract

In a competitive electricity market, it is necessary and important to develop an appropriate risk management scheme for trade with
full utilization of the multi-market environment in order to maximize participants’ benefits and minimize the corresponding risks. Based
on the analyses to trading environments and risks in the electricity market, a layered framework of risk management for electric energy
trading is proposed in this paper. Simulation results confirmed that trading among multiple markets is helpful to reduce the complete
risk, and VaR provides a useful approach to judge whether the formed risk-control scheme is acceptable.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Global deregulation in the electrical power industry has
introduced the concept of a competitive electricity market.
In this new environment, electricity is traded the same way
as other commodities. However, electricity prices are sub-
stantially more volatile than any other commodity price
since electricity cannot be stored and its transmission is
limited by physical and reliability constraints. Confronted
with this severe price volatility, market participants need
to find ways to protect their benefits (quantified in profits
in this paper), i.e., to manage risks involved in the market.

Risk refers to the possibility of suffering harm or loss;
danger or hazard. Risk result from uncertainty. In the elec-
tricity market, a trader’s profit is influenced by many
uncertain factors: unit outage, other trader’s bidding strat-
egy, congestion in transmission, demand change, etc. These
uncertainties bring about risks in electricity pricing and
delivery. From mathematics point of view, a trader’s profit
is a random variable. According to the modern theory of
choice under uncertainty [1], the expected profit is an indi-
0142-0615/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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cation of expected profitability, while the variance or the
standard deviation of the profit can be used as an indica-
tion of the risk involved.

Risk management is the process of achieving a desired
profit, taking the risks into considerations, through a par-
ticular strategy. In the financial field, there are two means
to control risk. One is through risk financing by using
hedging to offset losses that can occur and the other is
through risk reduction using diversification to reduce expo-
sure to risks. Instruments for risk management include for-
ward contracts, futures contracts, options, swaps, etc. [2].
Forward contracts are agreements to buy/sell an agreed
amount of the commodity at a specified price at a desig-
nated time. Futures contracts are standardized forward
contracts that are traded on exchange and no physical
delivery is necessary. Options are contracts that provide
the holder the right but not the obligation to buy/sell the
commodity at a designated time at specified price. A swap
contract is an agreement between two parties to exchange a
series of cash flows generated by underlying assets without
physical transferring of the commodity between the buyer
and seller. Hedging is to use these financial instruments
with the payoff patterns to offset the market risks. Diversi-
fication is to engage in a wide variety of markets so that the
exposure to the risk of any particular market is limited.

mailto:minliu@graduate.hku.hk
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Applying this concept to energy trading in an electricity
market, diversification means to trade electric energy
through different physical trading approaches1. In the
energy market, both physical trading approaches (e.g., spot
market, contract market) and financial trading approaches
(e.g., futures, options and swaps, etc.) are available. A
combination of these trading approaches is defined as a
portfolio and the corresponding risk-control methodology
is called portfolio optimization. A commonly adopted mea-
sure for risk assessment, i.e., assessing risk exposure of
financial portfolios, is the value at risk (VaR) [3].

Various aspects of risk management have been applied
to electricity markets [4]. For example, different forward
contracts that can provide hedging to the risk of spot prices
for market participants are proposed in [5,6]. The useful-
ness of the application of futures contracts in an electricity
market is demonstrated in [7,8]. Valuation of different con-
tracts is considered in [9,10]. Monte Carlo simulation and
decision analysis have been applied to find the optimal con-
tract combination [11–13]. Approaches of portfolio optimi-
zation in Mean-variance portfolio theory have been
adopted in the trading scheduling for a Genco [14]. VaR
has been applied to risk assessment in electricity markets
[15]. Concepts from financial option theory have been uti-
lized in the valuation of generation assets [16].

We are addressing the problem of establishing a frame-
work for risk management in a multi-market environment,
i.e., how to make an optimal trading schedule from the
point of view of risk control and make an assessment on
this trading schedule. We apply the methodologies of the
Mean-variance portfolio theory to risk control and VaR
to risk assessment on the associated trading portfolio. Fol-
lowing explanation is made from the point of view of a gen-
eration company (Genco). We first introduce the
background of a competitive electricity market; then give
an overview about the framework of the risk management;
explain the methodologies of the risk control and risk
assessment, respectively; give a numerical example to dem-
onstrate the proposed approach; and finally draw a brief
conclusion.

2. Electricity markets and pricing systems

In the electricity market, energy-trading markets can be
divided into two categories: physical markets and financial
markets. In the physical market, energy is physically
traded. While financial markets only operate as hedging
instruments and no physical energy transactions are
involved.

Most of the electricity markets provide two types of
physical markets: the spot market and the contract market.
The term ‘‘spot market’’ in the electricity market typically
refers to a market in which trades covers a short period in
1 Physical trading approach refers to the trading approach in which
actual physical energy are traded while financial trading approach only
involves financial settlement, and no physical delivery is necessary.
the very near future. In this paper, we adopt FERC-USA
definition in its standard market design [17] that all the
energy traded in the real-time and day-ahead market as
spot energy. From a Genco’s point of view, selling energy
in the spot market means to submit a bid (price and quan-
tity) to the exchange (Power Pool/ISO) and get either of the
two alternative results: (1) the exchange accepts the Gen-
co’s bid and pays the Genco the market clearing price
(MCP) for its actual energy output; or (2) the exchange
rejects the Genco’s bid, i.e., the Genco sells nothing in
the spot market. The MCP depends on everybody’s bids,
as well as the load demand, and is therefore uncertain.
The risk of the price fluctuation is therefore, the most
important risk in the spot market.

In the contract market, a Genco trades energy by way of
signing contacts, which are referred to as physical forward
contracts, with its counterparters (e.g., energy consumers).
Specific details such as trading quantity (MW), trading
duration (hours), trading price ($/MWh) and delivery
point are bilaterally negotiated between Gencos and con-
sumers or their agents. Bilateral contracts are signed before
the actual trading period. In other words, trading quantity
and price are set in advance. The main risk in the contract
market is the risk of the congestion charge. Congestion
charges depend on the specific pricing system of an electric-
ity market. There are three pricing systems currently
adopted in the electricity market: uniform marginal pric-
ing, zonal pricing and locational marginal pricing (LMP)
[18]. In a market with uniform marginal pricing system,
only one price is used for ex post settlement for each trad-
ing interval. A Genco can make certain of its revenue by
signing bilateral contracts with its customers at fixed prices.
In other words, there is no risk of the congestion charge in
a uniform pricing market. In a zonal pricing market or
LMP market, bilateral contracts face the risk of congestion
charge since the marginal prices will vary from zones or
locations when there is a congestion between the zones
(zonal pricing market) or in the transaction system (LMP
market). The congestion charge is the product of the price
difference between the zones or locations and the trading
amount involved.

In financial markets, several financial instruments are
provided to offset the particular sources of risk in the elec-
tricity market. For example, futures contracts, options and
swaps are used to hedge the risk of the price volatility in the
spot market. While financial transmission rights2 are
adopted to protect market participants from the risk of
congestion charge in the contract market.
between a market participant – in fact, any individual or organization –
and the system operator. FTRs do not entitle their holders to an exclusive
right to use the transmission system but to be paid the transmission price
on a given path (multiplied by the number of rights the owner has), or, in a
nodal market, the price difference between two nodes.



3 Due to the limitation of the paper size, this paper only gives the
associated conclusions about risk-control schemes in different pricing
markets. Please refer [20] for more explanation and demonstration.

4 OTC is a kind of derivatives market in which non-standard products
(e.g., contracts) are traded. Trades on the OTC market are negotiated
directly with dealers.
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3. Overview of the framework

In order to provide a clear hierarchy of the risk man-
agement process, this paper proposes to establish a risk
management framework in which four steps are involved:
(1) determination of the trading objective of a Genco; (2)
identification to the associated trading constraints such as
trading environments, market rules and trading horizons,
etc.; (3) translating the objectives and constrains into risk-
control strategies, and making a trading schedule/trading
portfolio under a specific strategy; and (4) risk assessment
on the formed trading portfolio. The risk management
process is completed if the assessment result is acceptable
to the Genco. Otherwise, modifications to the risk-control
strategy and the corresponding trading portfolio are
needed.

A Genco’s objective, in a competitive electricity market,
is characterized by the benefit-and-risk trade-off between
the expected benefits that the Genco wants (benefit require-
ments) and how much risk it is willing to assume (risk tol-
erance). Different benefit requirements (e.g., variable or
constant) and risk tolerance (e.g., conservative or variable)
result in different objectives. Rather than enumerating all
the benefit-risk combinations, which is an impossible task,
we divide Gencos’ objectives roughly into three types: nor-
mal conservative, more conservative and less conservative.
A Genco with a normal conservative objective would like
to accept variable benefits (of course as high as possible)
provided that the corresponding risk may be reduced with
risk-control instruments. A more conservative Genco con-
cerns about the risk more so than the benefit and therefore,
requires expected benefit as close to constant as possible.
While a less conservative Genco focuses its attention on
transactions with potentially high benefits rather than try
to search for the optimal benefit-risk profile for the entire
portfolio.

Trading constraints includes trading environments, mar-
ket rules, and trading horizons, etc. Trading environments
refer to the types of physical and financial trading
approaches provided by the specific electricity market
(e.g., spot market, forward contract market, futures mar-
ket, FTRs market, etc.). Market rules vary from one mar-
ket to another. From risk management point of view, two
aspects of the market rules are concerned. The first concern
is the pricing method adopted in the spot market, i.e., uni-
form pricing or zonal pricing or locational marginal pricing
or others. The second concern is the specific rules on trad-
ing proportion of each trading market. That is, the maxi-
mum and minimum trading proportions of each trading
market. For example, some markets require at least 80%
of a Genco’s energy should be traded through forward con-
tract market and the remainders be traded in the spot mar-
ket. Trading horizon can be divided into three levels: (1)
short-term trading schedule (e.g., weekly or monthly sche-
dule); (2) mid-term trading schedule (e.g., quarterly or
annually schedule); and (3) long-term trading schedule
(e.g., a schedule for several years).
Risk control has two levels. The first level is diversifica-
tion through portfolio optimization. That is, trying to find
a portfolio with a reasonable trade-off between the
expected benefit and risk. The second level of risk control
is hedging specific risks with specific financial instruments.
Different Gencos with different objectives and different
constraints would adopt different risk-control strategies.
Detailed discussions are made in the following.

Risk assessment is made to give a picture of the risk of a
trading portfolio and let a decision-maker decide whether
the trading schedule is acceptable more intuitively. VaR
is adopted to value the trading portfolio in the following.

4. Risk control

4.1. General case: risk-control strategy for a normal

conservative Genco

Assume that all existing physical and financial trading
approaches are available in an electricity market. The
risk-control strategy of a normal conservative Genco
includes two aspects: (1) diversification among multiple
physical trading markets; and (2) hedging with specific
financial instruments. That is, physical energy is allocated
between spot markets and contract markets, while specific
risks of the spot market (i.e., spot-price risk) and contract
market (i.e., congestion-charge risk) are hedged, respec-
tively with specific financial instruments. Detailed risk-con-
trol scheme is subject to the specific pricing method
adopted in the spot market3.

In a uniform pricing market, a Genco would sign con-
tracts with customers who offer the highest price without
considering congestion cost. As for the spot market, the
price risk can be hedged with financial instruments such
as futures, options, and swaps. Among these instruments,
futures are suitable for mid-term trading schedule since
they are generally traded monthly and up to 18 months.
Options can be traded in the exchange or over the counter
(OTC)4 market and therefore, can be used in short-term,
mid-term and long-term trading schedule. But it tends to
be more expensive than futures and swaps due to the pre-
mium payment. Swaps are OTC derivatives and therefore,
suitable for short-term, mid-term and long-term trading
schedules provided that counterparties are available.

In a zonal pricing/LMP market, a Genco would sign
bilateral contracts with customers located in different pric-
ing areas, as well as trade energy in the spot market, aiming
at reducing the total risk of the trading portfolio. Spot-
price risk can be hedged with futures, options or swaps,
while congestion-charge risk can be hedged with FTRs.
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Making a trading schedule/portfolio refers to the deter-
mination of energy allocation ratios of the markets includ-
ing both physical trading markets (i.e., spot market and
forward contract market) and financial trading markets
(i.e., futures market and FTRs market, etc.). There are
three steps to achieve an optimal trading schedule. Firstly,
calculate the optimal hedge-ratio5 for each physical trans-
action; then calculate the optimal energy allocation ratio
to each physical trading approach; finally, calculate the
optimal allocation ratios to each financial trading
approach.

4.1.1. Step 1: Hedging with financial instruments

For each physical trading approach, assuming that all
energy is traded in this approach, calculate the optimal
hedge-ratio denoted by x�i (i is the index of the physical
trading approach and the associated financial hedging mar-
ket). Mathematically, the optimal hedge amount can be
achieved by minimizing the variance of the profit on the
hedged physical trading approach with respect to the trad-
ing amount in the financial hedging market. For example,
for the transaction in the spot market, if futures contracts
are used to hedge the spot-price risk, the optimal hedge-
ratio can be obtained by minimizing the total risk6 with
respect to the amount traded in the futures market. That
is, suppose that a Genco sells a MWh energy in futures
market at futures price f ($/MWh) before the beginning
of the trading period. Upon the date of delivery (i.e., the
beginning of trading period) the Genco settles the futures
contracts by buying back a MWh energy in the futures
market at futures price f* ($/MWh). Let pO be the profit
on the spot market. If the transaction costs of futures con-
tracts are ignored, the Genco’s profit from both spot mar-
ket and futures market is pN, where pN = pO + a(f-f*). The
optimal quantity of energy sold in the futures market can
be achieved by minimizing the total risk (Var(pN)) with
respect to a, i.e.,

min
a

VarðpNÞ ¼ VarðpOÞ þ a2Varðf �Þ � 2a � CovðpO; f �Þ

where Var(pO), Var(pN), Var(f*) are variances of pO, pN, f*,
respectively; Cov(pO,f*) is the covariance between pO and
f*. Solving this optimization problem results in the optimal
selling quantity a*, where a� ¼ CovðpO;f �Þ

Varðf �Þ . And the optimal
hedge-ratio is x* = a*/E, where E is the quantity of energy
sold in the spot market.

4.1.2. Step 2: Energy allocation among physical trading

approaches

The risk preference of a risk-averse Genco can be
described with a utility function which combines the benefit
5 Hedge-ratio refers to the ratio of the energy quantity traded in the
financial hedging instrument to the quantity traded in the underlying
physical trading approach.

6 Here, the total risk is the risk of trading in a physical trading market
(i.e., spot market) with the corresponding hedge effect (i.e., hedging with
futures contracts) into consideration.
(expected profit) and risk (variance of profit) into a simple
relation, e.g., U(p) = E (p)-B Æ Var(p) [14], where U(p) is
the utility value; B is the risk penalty factor which indicates
the extent that a Genco ‘‘penalizes’’ the expected profit
considering the risk of obtaining the corresponding profit7.
According to the utility theory [1], a trading portfolio with
the highest utility value is preferred. The trading objective
of a normal conservative Genco, i.e., maximizing benefit
and minimizing the associated risk, is then achieved by
maximizing the utility function.

For each hedged trade (with the optimal hedge-ratio x�i Þ
determined from Step 1, calculate its expected profit and
risk (i.e., E(pi), Var(pi)). For any two trades that have been
hedged, calculate their covariance (i.e., rij where i, j are the
indexes of trading approaches). The optimal energy alloca-
tion among different hedged trades can be achieved by max-
imizing the Genco’s utility value with respect to the
proportions allocated to the trades. Assuming there are n

physical trading approaches available in the electricity mar-
ket, this optimization problem can be described as follows:

max
wi

Uðw1; . . . ;wi; . . . ;wnÞ ¼
Xn

i¼1

wiEðpiÞ � B
Xn

i¼1

Xn

j¼1

wiwjrij

s:t:
Xn

i¼1

wi ¼ 1

wmin
i 6 wi 6 wmax

i ð1Þ
where wi is the proportion allocated to the ith trade; wmin

i

and wmax
i are the upper limit and lower limit of the trading

proportion for the ith physical trading approach, respec-
tively, which are specified by a specific electricity market.
Solutions to this optimization problem are the optimal
allocation ratios to the physical trading approaches de-
noted by w�i ði ¼ 1� nÞ.

4.1.3. Step 3: Optimal hedging proportions

The proportion of total energy traded in a financial
instrument market aiming at hedging the risk of the ith
physical trading approach is called the optimal hedging
proportion for the ith physical trading approach. This ratio
is calculated as w�i x�i .

To summarize, the optimal proportion of total energy
allocated to the physical trading market is w�i ði ¼ 1� nÞ;
the optimal proportion of total energy allocated to the
financial trading market is w�i x�i ði ¼ 1� nÞ.

4.2. Discussion: Risk-control strategies for more

conservative Gencos and less conservative Gencos

A more conservative Genco would like to trade phys-
ical energy both in spot and contract markets. Spot-price
risk is hedged with swaps since it can be negotiated
7 The value of B can be calculated with formula B = A/2C [14], where C

is the production cost of a Genco, A is an index of the decision-maker’s
risk-aversion. The moderate value of A is 3, A > 3 means more risk averse
and A < 3 indicates less risk averse [21].
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bilaterally and no transaction cost is involved. For the
contract trade, the Genco would sign contracts with cus-
tomers who offer the highest price in the uniform pricing
market since no congestion cost is charged to the bilat-
eral transaction. While in a zonal pricing/LMP market,
the Genco would sign contract with local customers.
The reason is that contracts signed with non-local cus-
tomers face potential congestion charges and whether
the corresponding financial transmission rights can be
obtained and completely hedge the congestion risk is
quite uncertain.

A less conservative Genco, in a uniform pricing market,
would like to trade physical energy only in the spot market
and hedge the spot-price risk with options. Because pur-
chasing a put option with a physical sale of electric energy
to the spot market let the Genco avoid the risk of lower
prices and benefit from increase in spot price although a
premium is needed. But in the zonal pricing/LMP market,
the Genco would like to trade energy in the spot market
and with customers who offer the highest contract price
in the form of forward contracts. It prefers to hedge the
spot-price risk and congestion-charge risk with options
and FTRs, respectively.

5. Risk assessment

5.1. Risk-assessment technique

Value at risk (VaR) is a risk management concept devel-
oped and promoted in the banking industry to provide a
common measurement for the risk exposure of financial
portfolios. It is defined, in the financial literature, as a mon-
etary value that the portfolio will lose less than that
amount over a specified period of time with a specified
probability. For example, a one-day 95% VaR of
$500,000 indicates that the portfolio is expected to lose
95 days out of 100 days an amount less than $500,000.

There are numerous methods to calculate VaR, which
use different assumptions and techniques. Since VaR calcu-
lations are very sensitive to assumptions and data, quanti-
tative results will differ when the same techniques are
applied using different assumptions or different data sets.
Ref. [3] distinguishes four separate routes to measuring
VaR: delta-normal method, historical simulation, stress-
testing method and Monte Carlo approach.

5.2. VaR application in trading scheduling

In this paper, the VaR of a trading portfolio is defined
as the expected minimum profit (a monetary value) of the
portfolio over a target horizon within a given confidence
interval. The target horizon is the trading horizon. The
confidence level depends on the extent of the Genco’s
risk-aversion. Normally, a Genco with moderate risk-aver-
sion adopts 95% confidence level; a more risk-averse Genco
may require 99% confidence level and a less risk-averse
Genco could use 92.5% confidence level.
In the most general form, VaR can be derived from the
probability distribution of the future portfolio value f(p)
(where p denotes the profit on the trading portfolio). At
a given confidence level c, we wish to find the lowest possi-
ble realization p̂ such that the probability of exceeding this
value is c:

c ¼
Z 1

p̂
f ðpÞdp

Or such that the probability of a value lower than
p̂; p ¼ Probðp 6 p̂Þ, is 1�c:

1� c ¼
Z p̂

�1
f ðpÞdp ¼ Probðp 6 p̂Þ ¼ p

The number p̂ is called the sample quantile of the distribu-
tion. In the simulation approaches to measuring VaR such
as the historical simulation, stress testing and Monte Carlo
simulation, this sample quantile can be found out from the
simulation results of samples. For example, suppose 100
samples are used to simulate the expected profit on a trad-
ing portfolio. Simulation results are ranged from the high-
est profit to the lowest profit. If the confidence level is 95%,
then p̂ is equal to the 95th simulation result in the simula-
tion result list.

In this paper, VaR is used to measure the risk extent of
the scheduled trading portfolio aiming at providing a
rough figure that helps the decision-maker judge whether
the scheduled portfolio is acceptable. Therefore, we may
use a relatively rough but simplified method to calculate
the value of VaR, i.e., the delta-normal method. Suppose
the prices of electricity and fuel are normally distributed.
The profit on the trading portfolio, which is a linear com-
bination of normal random variables, is then also normally
distributed. Under this condition, the VaR figure can be
derived directly from the portfolio’s standard deviation,
using a multiplicative factor that depends on the confidence
level.

First, the general normal distribution f(p) is translated
into a standard normal distribution /(u), where u has mean
of zero and standard deviation of unity. That is, p̂ is asso-
ciated with a standard normal deviate a (a > 0) by setting

�a ¼ p̂� l
r

where, l ¼ Eðp�Þ ¼
Pn

i¼1w�i EðpiÞ; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðp�Þ

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

Pn
j¼1w�i w�j rij

q
. w�i is the optimal allocation ratio of

the ith physical trading approach, which is the calculation
result in the process of risk control. It is equivalent to set

1� c ¼
Z p̂

�1
f ðpÞdp ¼

Z �a

�1
/ðuÞdu ¼ p

Thus, the problem of finding a value at risk is equivalent to
finding the deviate a such that the area to the left of it is
equal to 1 � c. It is made possible by turning to tables of
the cumulative stand normal distribution function, which
is the area to the left of a standard normal variable with
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value equal to c. To find the VaR of a standard normal var-
iable, select the desired confidence level in the table, say
95%. This corresponds to a value of a = 1.65. Then the
VaR of the portfolio (i.e., the cutoff profit p̂Þ can be calcu-
lated as follows:

Var ¼ p̂ ¼ l� ar ð2Þ
8 Please refer [14] for details.
6. Example

The PJM electricity market is a LMP market with sev-
eral pricing zones such as PSEG, PECO, PENELEC, etc.
[22]. Suppose a Genco is located in PENELEC and is nor-
mal conservative. The Genco is making a monthly trading
plan of August, i.e., determining the trading amount/trad-
ing ratio of each market (e.g., spot market, contract mar-
ket, etc.). Before applying the methodologies proposed in
this paper, the profit characteristics (i.e., expected value,
variance and covariance) of each trading approach is clar-
ified firstly in the following.

6.1. Profit characteristics

Suppose that there are M trading intervals during plan-
ning period (one trading interval can be one hour, one day,
one week, one month or even one year depending on the
planning horizontal). Trading time for each trading inter-
val is t (hour). The following notation will be used:

i, j the index of the trading area or pricing node
k the index of the trading interval
kB

i;k the kth trading interval’s electricity contract price
signed with customers of area i

kS
i;k the kth trading interval’s electricity spot price of

area i

kF
k the kth trading interval’s fuel spot price

pi profit on the ith trade, i = 0 denotes local contract;
i = 1 � n denotes non-local contract; i = n + 1
denotes spot transaction

ek the kth trading interval’s trading energy
E(Æ) expectation
Var(Æ) variance
ri,j covariance between profits on transaction i and j

b heat rate (or consumption coefficient) of a unit

Assume that the Genco’s production exhibits constant
returns to scale. Production cost is a function of energy
output and fuel price, i.e., c(Æ) = bekF. For the local con-
tract and spot transaction, the associated cost only involves
the production cost; for the non-local contract, the associ-
ated costs include congestion charge as well as production
cost. Generally, congestion charges should be paid by the
associated bilateral transaction. But who (Gencos or
energy purchasers) should pay how many percentage of
the involved congestion charges depends on the specific
market rules. In this paper, a factor b (0 6 b 6 1), is used
to denote the payment proportion of the Genco. According
to the methodologies of probability, the expectation, vari-
ance and covariance of profits on each transaction can be
derived as follows8:

Eðp0Þ¼
XM

k¼1

kB
0;k�bEðkF

k Þ
h i

� ek ð3Þ

Varðp0Þ¼
XM

k¼1

ðbekÞ2 �VarðkF
k Þ ð4Þ

EðpiÞ¼
XM

k¼1

kB
i;kþbEðkS

0;kÞ�bEðkS
i;kÞ�bEðkF

k Þ
h i

� ek

ði¼ 1–nÞ ð5Þ

VarðpiÞ¼
XM

k¼1

e2
k

b2VarðkS
0;kÞþb2VarðkS

i;kÞþb2VarðkF
k Þ

�2b2CovðkS
0;k;k

S
i;kÞ�2bbCovðkS

0;k;k
F
k Þ

þ2bbCovðkS
i;k;k

F
k Þ

2
664

3
775

ði¼ 1–nÞ ð6Þ

Eðpnþ1Þ¼
XM

k¼1

EðkS
0;kÞ�bEðkF

k Þ
h i

� ek ð7Þ

Varðpnþ1Þ¼
XM

k¼1

e2
k VarðkS

0;kÞþb2VarðkF
k Þ�2bCovðkS

0;k;k
F
k Þ

h i

ð8Þ
r0i¼�

X
bbe2

kCovðkF
k ;k

S
0;kÞþ

X
bbe2

kCovðkF
k ;k

S
i;kÞ

þ
X

b2e2
kVarðkF

k Þði¼ 1–nÞ ð9Þ

r0;nþ1¼�
X

be2
kCovðkF

k ;k
S
0;kÞþ

X
b2e2

kVarðkF
k Þ ð10Þ

ri;nþ1¼
X

e2
k

bVarðkS
0;kÞ�bCovðkS

i;k;k
S
0;kÞ�bCovðkF

k ;k
S
0;kÞ�

bbCovðkF
k ;k

S
0;kÞþbbCovðkF

k ;k
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i;kÞþb2VarðkF

k Þ
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ði¼ 1–nÞ ð11Þ

ri;j¼
X

e2
k

b2VarðkS
0;kÞ�b2CovðkS

i;k;k
S
0;kÞ�2bbCovðkF

k ;k
S
0;kÞ

�b2CovðkS
j;k;k

S
0;kÞþb2CovðkS

i;k;k
S
j;kÞ

þbbCovðkF
k ;k

S
i;kÞ�bbCovðkF

k ;k
S
j;kÞþb2VarðkF

k Þ

2
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ði;j¼ 1–nÞ ð12Þ

The statistics of prices involved in above equations, i.e.,
EðkS

i;kÞ; VarðkS
i;kÞ, EðkF

k Þ, VarðkF
k Þ, CovðkS

i;k; k
S
j;kÞ and

CovðkS
i;k; kF

k Þ, can be estimated based on historical data
according to the statistical method.

6.2. Simulation results

Following numerical simulation is performed based on
the historical data of daily electricity prices in the PJM
electricity market [22]. The statistical characteristics (i.e.,
expectation, variance, and covariance) of prices in each
trading interval (i.e., one day 24 h) of 10 pricing zones
are calculated. The average value (i.e., the statistical char-
acteristics of monthly price) is shown in Table 1. The
Genco owns a coal-fired generation unit with 600 MW
capacity and 8.9 MBtu/MWh heat rates [23]. The coal price



Table 1
Statistical characteristics of prices in the PJM market (August)

Zone Expectation of price
($/MWh)

Standard deviation of
price (in percentage)

Zone Expectation of price
($/MWh)

Standard deviation of price
(in percentage)

PSEG 47.738 84.554% METED 46.715 84.643%
PECO 46.351 88.662% PEPCO 47.097 79.188%
PPL 44.301 87.376% AECO 49.058 86.245%
BGE 47.157 84.294% DPL 48.148 91.941%
JCPL 46.044 87.095% PENELEC 40.653 69.177%
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is given as kF
k ¼ 2:0$/MBtu (k = 1–31). The unit is located

in PENELEC.
If the Genco only trades its energy in the spot market,

with formulae Eqs. (7) and (8), the expected profit and cor-
responding variance are calculated and shown in the sec-
ond column of Table 2. If the Genco is normal
conservative, i.e., c = 95%, the VaR value is calculated as
$6,481,300 (see Table 2). The simulation results indicate
that, in the spot market, the expected profit is
$10,202,000; within 95% confidence level, the minimum
profit is $6,481,300 during the trading month. If the Genco
think the VaR value is quite lower and would like to reduce
the risk of spot transaction, it can control the risk by trad-
ing energy both in spot market and contract market.
Table 2
Simulation results

Characteristic Spot
trading

Trading portfolio
(1)

Trading portfolio
(2)

E(p*) ($) 1.0202 · 107 1.0055 · 107 1.0063 · 107

Var(p*) ($2) 5.084 · 1012 3.8263 · 1011 4.0435 · 1011

VaR($)
(c = 95%)

6.4813 · 106 9.0339 · 106 9.0135 · 106

Table 3
Contract prices

Location of
consumers

Contract price
($/MWh)

Location of
consumers

Contract price
($/MWh)

PSEG 47.2 METED 46.2
PECO 45.9 PEPCO 46.6
PPL 43.8 AECO 48.6
BGE 46.7 DPL 47.6
JCPL 45.5 PENELEC 40.0

Table 4
Allocation ratio of each transaction (1)

Transaction Spot Bilateral contract

PSEG PECO PPL BGE JC

Ratio 0.337 0 0.196 0 0.326 0

Table 5
Allocation ratio of each transaction (2)

Transaction Spot Bilateral contract

PSEG PECO PPL BGE JC

Ratio 0.341 0 0 0 0.294 0
Suppose the Genco can sign bilateral contracts with con-
sumers located in different pricing zones with contract
prices shown in Table 3. Assume that the Genco pays all
the congestion charges involved in the bilateral transaction,
i.e., b = 1. The upper and lower limit of the trading propor-
tion of each trading market are 100% and 0%, respectively,
i.e., wmax

i ¼ 1;wmin
i ¼ 0. The index of the Genco’s risk-aver-

sion is set to 3 (i.e., A = 3) since the Genco is normal con-
servative. Then the optimal allocation ratios w�i can be
obtained by solving problem (1) and shown in Table 4;
VaR value is calculated with formula (2) and shown in
the third column of Table 2. Under this trading portfolio
(i.e., PECO 19.6%, BGE 32.6%, PENELEC 14.1% and spot
market 33.7%), the one-month 95% VaR is $9,033,900.
That is, under the same confidential level, the minimum
profit of the trading portfolio is increased 39.4% compared
to that of the spot trading. Of course, the values of alloca-
tion ratio and VaR depend on the price of each bilateral
contract. For example, if the consumers located in DPL
would like to offer a higher price, say 47.8$/MWh, the allo-
cation ratio to the contract signed with DPL consumers
increases and other allocation ratios change accordingly
(see Table 5). The expected profit and the associated risk
also change as it is shown in the forth column of Table 2.
Trading portfolio 1 and 2 both demonstrate the effect of
diversification, i.e., trading among multiple trading
approaches can reduce the risk of the complete portfolio.

If the minimum profit with 95% confidential level of the
trading portfolio 1 or 2 is still not accepted by the Genco,
modification to the risk-control strategy is needed. For
example, hedging can be adopted to hedge the specific risks
of spot transaction and non-local contract. Firstly,
spot-price risk could be hedged with available financial
PL METED PEPCO AECO DPL PENELEC

0 0 0 0 0.141

PL METED PEPCO AECO DPL PENELEC

0 0 0 0.201 0.163
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instrument such as futures, options and swaps, etc. Physi-
cal energy is then allocated among the hedged spot transac-
tion, local contract and non-local contract. The risk of the
modified trading portfolio is expected to be reduced. The
risk management process is completed if the corresponding
VaR value is acceptable. Otherwise, hedging the risk of
non-local contract (i.e., congestion-charge risk) with FTRs
can be considered.
7. Conclusions

This paper developed an overall framework of risk man-
agement for Gencos’ trading in a competitive electricity
market. That is, firstly, a Genco’s objective and trading
constraints are identified. Then the identified objective
and constraints are translated into a reasonable and feasi-
ble risk-control strategy under which a specific trading
schedule could be made. Finally, the formed trading port-
folio is assessed with standard risk measurement technique
– VaR. If the risk-assessment result is not acceptable, read-
justing the risk-control strategy and the associated trading
schedule until the Genco accepts it.

Risk-control strategy varies from different trading objec-
tive and constraint. With trading constraints assumed gen-
eral, this paper discussed the risk-control strategies for
Gencos with different objectives. Simply stated, a normal
conservative Genco would like to control risk with all avail-
able trading approaches. That is, trading physical energy
between the spot market and contract market; hedging
spot-price risk with futures or swaps according to the spe-
cific trading horizon, and hedging the congestion-charge
risk with financial transmission rights. A more conservative
Genco prefers to control risk through diversification, i.e.,
trading energy between spot and contract markets. While
a less conservative Genco tends to trade physical energy
in spot markets only and hedge spot-price risk with options.

The risk-management process of a Genco with normal
conservative objective was demonstrated based on the his-
torical data of electricity prices in the PJM market. Simu-
lation results confirmed that diversification, i.e., trading
among multiple physical approaches, is helpful to reduce
the complete trading risk, and VaR provides a useful
approach to judge whether the formed trading portfolio
is acceptable.

To summarise, the proposed framework of risk manage-
ment provides a clear hierarchy of the risk management
process, which should help a Genco to identify its objective
and achieve an optimal trading portfolio in markets involv-
ing risks. It is also applicable to other market participants
such as energy purchasers, with little modification.
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Abstract

Electricity spot prices in the emerging power markets are volatile, a consequence of the unique physical

attributes of electricity production and distribution. Uncontrolled exposure to market price risks can lead to

devastating consequences for market participants in the restructured electricity industry. Lessons learned from the

financial markets suggest that financial derivatives, when well understood and properly utilized, are beneficial to

the sharing and controlling of undesired risks through properly structured hedging strategies. We review different

types of electricity financial instruments and the general methodology for utilizing and pricing such instruments. In

particular, we highlight the roles of these electricity derivatives in mitigating market risks and structuring hedging

strategies for generators, load serving entities, and power marketers in various risk management applications.

Finally, we conclude by pointing out the existing challenges in current electricity markets for increasing the

breadth, liquidity and use of electricity derivatives for achieving economic efficiency.

q 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Electricity spot prices are volatile due to the unique physical attributes of electricity such as non-

storability, uncertain and inelastic demand and a steep supply function. Uncontrolled exposure to market

price risks could lead to devastating consequences. During the summer of 1998, wholesale power prices

in the Midwest of US surged to a stunning $7000 per MWh from the ormal price range of $30–$60 per

MWh, causing the defaults of two power marketers in the east coast. In February 2004, persistent high

prices in Texas during a 3-day ice storm led to the bankruptcy of a retail energy provider that was

exposed to spot market prices. And of course, the California electricity crisis of 2000/2001 and its

devastating economic consequences are largely attributed to the fact that the major utilities were not

properly hedged through long-term supply contracts. Such expensive lessons have raised the awareness
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of market participants to the importance and necessity of risk management practices in competitive

electricity market.

Hedging of risk by a corporation should in principle be motivated by the goal of maximizing firm’s

value. Hedging achieves value enhancement by reducing the likelihood of financial distress and its

ensuing costs, or by reducing the variance of taxable incomes and its associated present value of future

tax liabilities. Regulatory rules also play an important role in hedging practices. In California, for

instance, the regulators granted the incumbent investor-owned utilities (IOUs) a fixed time frame to

recover their stranded generation costs through the Competition Transition Charge. Fearing adverse

market conditions causing insufficient recovery of the stranded costs, one major utility company hired

investment bankers to structure and implement an extensive hedging strategy for its stranded-cost

recovery. On the other hand, the reluctance of the regulators in California to immunize the IOUs against

ex-post prudence review of long-term supply contracts discouraged the adoption of such contracts,

resulting in over-reliance of the IOUs on the spot market for electricity procurement. This excessive

exposure led to the near collapse of the California utility industry in 2001, with devastating economic

losses due to prolonged outages and substantial rate increases.

As the competitive but volatile electricity markets mature, generation companies, power marketers

and load serving entities (LSEs) seek certainty in their costs and revenues through hedging practices and

contracting and active trading. Such activities involve quantifying, monitoring and controlling trading

risks in the wholesale and retail power markets, which in turn require appropriate risk management tools

and methodology.

On the supply side, managing risk associated with long-term investment in generation and

transmission requires methods and tools for planning under uncertainty and for asset valuation. Much of

the demands for generation asset valuation methods were spurred by the mandatory divestiture of

generation assets already owned by major utility companies in various jurisdictions. For example, in

California, most of the fossil-fuel plants held by the three IOUs, which account for about 60% of the total

installed capacity in California by 2000, have been or will be divested to other parties. The need for asset

valuation also rises from analysis of investment in new generation capacity and from efforts by

regulators in the US and abroad to develop incentives for investment in generation capacity to meet

supply adequacy and system reliability objectives.

A fundamental vision underlying the worldwide movement toward a competitive electricity industry

has been that most of the efficiency gains from restructuring come from long-run investments in

generating capacity. Under the state-ownership or required rate-of-return regulatory regime, utility

companies were allowed to earn a regulated rate of return above their cost of capital. Once regulators

approved the construction costs of a power generating plant, the costs would be passed onto consumers

through regulated electricity prices over the life of the investment, independent of the fluctuation in

market value of the investment over time due to changing energy prices, improving technology, and

evolving supply and demand conditions. Most of the investment risks in generating capacity were

allocated to consumers rather than producers. Firms, therefore, had little incentives to avoid excessive

cost of investment and they focused on improving and maintaining quality of service rather than on

developing and adopting new generation technology.

Electricity market reforms around the world have shifted much of the investment risk from consumers

to producers. Under the ideal theoretical paradigm, shareholders bear all the investment risk and

consumers bear the price risk, with competitive entry pushing generation capacity toward desired long-

term equilibrium. In such an ideal market environment, suppliers and consumers are free to choose their
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desired level of risk exposure, achieved through voluntary risk management practices. Unfortunately,

this idealized vision of a competitive electricity market is not working as expected, primarily due to such

market imperfections as lack of demand response, abuse of locational market power, and political

resistance to high prices reflecting scarcity rents and shortages.

With few exceptions such as Australia (where electricity spot prices are allowed to rise to $10,000 per

MWh), most restructured electricity markets in the US and around the world have backed away from the

idealized economic market models and instituted price caps and various capacity payment mechanisms.

Such regulatory interventions allocate risks between consumers and producers by limiting price

volatility for consumers and assuring investment cost recovery for generators. From a risk management

perspective, these intervention schemes are mandatory backstop hedging that limits the exposures of

consumers and producers. The proper design of such schemes requires the same pricing and asset

valuation tools as voluntary risk management practices in a competitive market. For instance, a price cap

of $1000/MWh can be viewed as a mandatory call option imposed on all produced electricity with a

strike price of $1000/MWh, with the option premium being the proper capacity payment for generators

abiding by the cap.

The organization of the rest of the paper is as follows. Section 2 describes the institutional features of

several types of commonly traded electricity instruments. Section 3 highlights the essential elements in

electricity derivative pricing and introduces the pricing methodologies. Section 4 illustrates the roles of

these electricity instruments in risk management applications. Section 5 concludes.
2. Different types of electricity financial and physical instruments

This section reviews various electricity financial/physical instruments traded on the exchanges and

over the counters. Most of the electricity futures and options on futures are traded on the New York

Mercantile Exchange (NYMEX) [1]. However, the trading volume of electricity futures is less than

electricity forwards traded in the over-the-counter (OTC) markets. A large variety of electricity

derivatives are traded among market participants in the OTC markets, including forward contracts,

swaps, plain vanilla options, and exotic (i.e. non-standard) options like spark spread options, swing

options and swaptions [2–6]. Other important trading vehicles for hedging the price risk of long-term

revenue streams and service obligations are termed as structured transactions, including tolling

agreements [7,8] and load-serving full requirement contracts. The institutional details of these

instruments are given below.

2.1. Electricity forwards, futures and swaps

The plainest forms of electricity derivatives are forwards, futures and swaps. Being traded either on

the exchanges or over the counters, these power contracts play the primary roles in offering future price

discovery and price certainty to generators and LSEs.

2.1.1. Electricity forwards

Electricity forward contracts represent the obligation to buy or sell a fixed amount of electricity at a

pre-specified contract price, known as the forward price, at certain time in the future (called maturity or

expiration time). In other words, electricity forwards are custom-tailored supply contracts between
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a buyer and a seller, where the buyer is obligated to take power and the seller is obligated to supply. The

payoff of a forward contract promising to deliver one unit of electricity at price F at a future time T is

Payoff of a Forward Contract Z ðST KFÞ (1)

where ST is the electricity spot price at time T. Although the payoff function (1) appears to be the same as

for any financial forwards, electricity forwards differ from other financial and commodity forward

contracts in that the underlying electricity is a different commodity at different times. The settlement

price ST is usually calculated based on the average price of electricity over the delivery period at the

maturity time T.

Consider a forward contract for the on-peak electricity on day T. ‘On-peak electricity’ refers to the

electricity delivered over the daily peak-period, traditionally defined by the industry as 06:00–22:00.

The daily ‘off-peak’ period is the remaining hours of the day. In this case, ST is obtained by averaging the

16 hourly prices from 06:00 to 22:00 on day T.

Based on the delivery period during a day, electricity forwards can be categorized as forwards on

on-peak electricity, off-peak electricity, or ‘around-the-clock’ (24 h per day) electricity. As almost all

electricity derivatives have such categorization based on the delivery time of a day, we will not repeat

this point.

Generators such as independent power producers (IPPs) are the natural sellers (or, short-side) of

electricity forwards while LSEs such as utility companies often appear as the buyers (or, long-side). The

maturity of an electricity forward contract ranges from hours to years although contracts with maturity

beyond two years are not liquidly traded. Some electricity forwards are purely financial contracts, which

are settled through financial payments based on certain market price index at maturity, while the rest are

physical contracts as they are settled through physical delivery of underlying electricity. Examples of

financially settled electricity forwards include the Contract for Differences in the United Kingdom and

Australian power markets.

Electricity forwards with short maturity like 1 h or 1 day are often physical contracts, traded in the

physical electricity markets such as the Pennsylvania–New Jersey–Maryland (PJM) power pool market

and the energy balancing market operated by the California Independent System Operator (CAISO) in

US. Those with maturity of weeks or months can be either physical contracts or financial contracts and

they are mostly traded through brokers or directly among market participants (namely, traded in the OTC

markets).

Electricity forward contracts are the primary instruments used in electricity price risk management.

LSEs (e.g. local distribution companies) typically combine several months of forward/futures contracts

to form a close match to the long-term load shape of their customers. Other power marketers usually use

forwards to hedge their positions in electricity options and other complex electricity derivatives.
2.1.2. Electricity futures

First traded on the NYMEX in March 1996, electricity futures contracts have the same

payoff structure as electricity forwards. However, electricity futures contracts, like other financial

futures contracts, are highly standardized in contract specifications, trading locations, transaction

requirements, and settlement procedures. The most notable difference between the specifications of

electricity futures and those of forwards is the quantity of power to be delivered. The delivery quantity

specified in electricity futures contracts is often significantly smaller than that in forward contracts.
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For example, a Mid-Columbia electricity futures traded on the NYMEX specifies a delivery quantity of

432 MWh of firm electricity, delivered to the Mid-Columbia hub at a rate of 1 MW per hour, 16 on-peak

hours per day during delivery month, while a corresponding forward contract has a delivery rate of

25 MW per hour for the same delivery periods in a month.

Electricity futures are exclusively traded on the organized exchanges, while electricity forwards are

usually traded over-the-counter in the form of bilateral transactions. This fact makes the futures prices

more reflective of higher market consensus and transparency than the forward prices. The majority of

electricity futures contracts are settled by financial payments rather than physical delivery, which lower

the transaction costs. In addition, credit risks and monitoring costs in trading futures are much lower than

those in trading forwards, since exchanges implement strict margin requirements to ensure financial

performance of all trading parties. The OTC transactions are vulnerable to financial non-performance

due to counterparty defaults. The fact that the gains and losses of electricity futures are paid out daily, as

opposed to being cumulated and paid out in a lump sum at maturity time, as in trading forwards, also

reduces the credit risks in futures trading.

In summary, as compared to electricity forwards, the advantages of electricity futures lie in market

consensus, price transparency, trading liquidity, and reduced transaction and monitoring costs while the

limitations stem from the various basis risks associated with the rigidity in futures specification and the

limited transaction quantities specified in the contracts.

2.1.3. Electricity swap

Electricity swaps are financial contracts that enable their holders to pay a fixed price for underlying

electricity, regardless of the floating electricity price, or vice versa, over the contracted time period. They

are typically established for a fixed quantity of power referenced to a variable spot price at either a

generator’s or a consumer’s location. Electricity swaps are widely used in providing short- to medium-

term price certainty up to a couple of years. They can be viewed as a strip of electricity forwards with

multiple settlement dates and identical forward price for each settlement.

Electricity locational basis swaps are also commonly used to lock in a fixed price at a geographic

location that is different from the delivery point of a futures contract. That is, a holder of an electricity

locational basis swap agrees to either pay or receive the difference between a specified futures contract

price and another locational spot price of interest for a fixed constant cash flow at the time of the

transaction. These swaps are effective financial instruments for hedging the basis risk on the price

difference between power prices at two different physical locations.

2.2. Electricity options

The power industry had been utilizing the idea of options through embedded terms and conditions in

various supply and purchase contracts for decades, without explicitly recognizing and valuing the

options until the beginning of the electricity industry restructuring in UK, US and the Nordic countries in

the 1990s. The emergence of the electricity wholesale markets and the dissemination of option pricing

and risk management techniques have created electricity options not only based on the underlying price

attribute (as in the case with plain vanilla electricity call and put options), but also other attributes like

volume, delivery location and timing, quality, and fuel type.

Basically, a counterpart of each financial option can be created in the domain of electricity options by

replacing the underlying of a financial option with electricity (see [9] for introduction to various kinds of
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financial options). Here, we describe a sample of electricity options that are commonly utilized in risk

management applications in generation and distribution sectors. These options usually have short- to

medium maturity times such as months or a couple of years. Options with maturity times longer than

3 years are usually embedded in long-term supply or purchase contracts, which are termed as structured

transactions.
2.2.1. Plain call and put options

Electricity call and put options offer their purchasers the right, but not the obligation, to buy or sell a

fixed amount of underlying electricity at a pre-specified strike price by the option expiration time. They

have similar payoff structures as those of regular call and put options on financial securities and other

commodities. The payoff of an electricity call option is

Payoff of an electricity call option Z maxðST KK; 0Þ (2)

where ST is the electricity spot price at time T and K is the strike price.

The underlying of electricity call and put options can be exchange-traded electricity futures or

physical electricity delivered at major power transmission inter-ties, like the ones located at California–

Oregon Border and Palo Verde in the Western US power grid. The majority of the transactions for

electricity call and put options occur in the OTC markets. Electricity call and put options are the

most effective tools available to merchant power plants and power marketers for hedging price risk

because electricity generation capacities can be essentially viewed as call options on electricity,

particularly when generation costs are fixed.
2.2.2. Spark spread options

An important class of non-standard electricity options is the spark spread option (or, spark spread).

Spark spreads are cross-commodity options paying out the difference between the price of electricity

sold by generators and the price of the fuels used to generate it. The amount of fuel that a generation asset

requires to produce one unit of electricity depends on the asset’s fuel efficiency or heat rate (Btu/kWh).

The holder of a European- spark spread call option written on fuel G at a fixed heat rate KH has the right,

but not the obligation, to pay at the option’s maturity KH times the fuel price at maturity time T and

receive the price of one unit of electricity. Thus, the payoff at maturity time T is

Payoff of a spark spread call Z maxðST KKH !GT ; 0Þ (3)

where ST and GT are the electricity and fuel prices at time T, respectively.

Abstracting away the operational characteristics of a fossil fueled power generator (e.g. startup cost

and ramping constraints), the per kW benefit of owning the right to use the generator is equivalent to

having 1 kW spark spread call option with a strike heat rate matching the generator’s operating heat rate.

Based on this observation, it is clear that spark spread call options play important roles in hedging the

price risk of the output electricity of fossil fueled power plants and further serve as key instruments in

valuing those generation assets [10,11].
2.2.3. Callable and putable forwards

Two interesting types of electricity derivatives termed as callable forward and putable forward are

introduced in Refs. [12,13] to mimic the interruptible supply contracts and the dispatchable independent
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power producer contracts. In a callable forward contract, the purchaser of the contract longs one forward

contract and shorts one call option with a purchaser-selected strike price. The seller of the forward

contract holds opposite positions and can exercise the call option if the electricity price exceeds the

strike price, effectively canceling the forward contract at the time of delivery. The purchaser gets an

‘interruptibility’ discount on the forward price, which is equal to the option premium at the time of

contracting continuously compounded to the delivery time.

In a putable forward, the purchaser longs one forward contract and one put option with a seller-

selected strike price. The seller holds the corresponding short positions. The purchaser exercises the put

option if the electricity price drops below the strike price at the maturity time, effectively canceling the

forward contract. At the time of contracting, the purchaser needs to pay a ‘capacity availability’

premium over the forward energy price, which equals the put option price at that time, continuously

compounded to the maturity time.

One variation of the callable forwards is proposed by adding an earlier notification date for exercising

the call option in a callable forward before the contract matures [14,15]. This emulates an interruptible

service contract with early notification [16].

2.2.4. Swing options

Electricity swing options are adopted from their well-known counterparts in the natural gas industry

[5]. Also known as flexible nomination options, swing options have the following defining features.

First, these options may be exercised daily or up to a limited number of days during the period in which

exercise is allowed. Second, when exercising a swing option, the daily quantity may vary (or, swing)

between a minimum daily volume and a maximum volume. However, the total quantity taken during a

time period such as a week or a month needs to be within certain minimum and maximum volume levels.

Third, the strike price of a swing option may be either fixed throughout its life or set at the beginning of

each time period based on some pre-specified formula. Last, if the minimum-take quantity of any

contract period is missed by the buyer, then a lump sum penalty or a payment making up the seller’s

revenue shortfall needs to be paid (i.e. take-or-pay).

2.3. Structured transactions

Structured bilateral transactions are powerful tools for power market participants to share and control

a variety of risks including price and quantity risks over a potentially long time horizon.

2.3.1. Tolling contracts

Tolling is one of the most innovative structured transactions embraced by the power industry. A

tolling agreement is similar to a common electricity supply contract signed between a buyer (e.g. a

power marketer) and an owner of a power plant (e.g. an IPP) but with notable differences. For an upfront

premium paid to the plant owner, it gives the buyer the right to either operate and control the scheduling

the power plant with the ISO or simply take the output electricity during pre-specified time periods

subject to certain constraints. In addition to inherent operational constraints of the underlying power

plant, there are often other contractual limitations in the contract on how the buyer may operate the

power plant or take the output electricity. For instance, a tolling contract almost always has a clause on

the maximum allowable number of power plant restarts. These constraints make the pricing of tolling

contracts a very challenging task. The analogy between holding a tolling contract and owning
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the underlying merchant power plant, however, leads to a numerical approach for valuing and hedging

tolling contracts [7]. Alternatively, one may use a statistical approach for benchmarking the price

reasonableness of tolling contracts based on historical electricity price and fuel costs [8].

2.3.2. Load-serving full-requirement contracts

Most large electricity consumers prefer a power supply contract with flexible consumption terms.

Specifically, they desire to pay a fixed rate per unit of energy for the actual consumption quantity,

regardless of the quantity being high or low. Such a contract is termed as a load-serving full-requirement

contract.

Suppose an electricity supplier (or, LSE) signs a full-requirement contract with a customer and then

utilizes futures contracts to lock in a fixed quantity of electricity supply at a fixed cost for hedging the

expected energy consumption of the customer [17,18]. The LSE is then at the risk of either under- or

over-hedging, as the consumption quantity of the customer will almost surely deviate from the amount

hedged by the futures contracts. When the electricity spot price is high (low), the total demand for

electricity is likely to be high (low) as well. A case in point is the periods of unusual cooling/heating

needs. Hence, if the market price of electricity is higher than the fixed contract rate for serving

electricity, chances are that the customer’s energy consumption level is significantly higher than the

hedged quantity. As a result, the LSE is under-hedged relative to its load obligation and must purchase

electricity in the open market to serve its customer at a loss because the wholesale spot price most likely

exceeds the contracted price paid by consumers. Conversely, when the electricity spot price is low, the

LSE faces the risk of being over-hedged and having to sell the surplus in the spot market or settle it

financially at a price below its long-term contract price.

The above illustrates the under- and over-hedging exposures faced by an LSE due to the volumetric

uncertainty in customers’ load and the positive price-load correlation. To hedge the volumetric risk, the

LSE would need to buy an electricity option on the consumption quantity of its customers.

Unfortunately, such an option is usually unavailable in the marketplace. Although perfect hedging may

not be possible, weather derivatives [19,20] that exploit the correlation between load and temperature

can be used. Section 4.4 describes another approach based on an optimal hedging portfolio of standard

derivatives that exploits the positive correlation between power prices and consumption quantity [21].

2.4. Financial derivatives on electricity transmission capacity

Open access to, efficient utilization of, and adequate investment in transmission networks are critical

for the electricity wholesale markets and retail competitions to be workable and efficient. Intuitively,

rights are required for using transmission networks and rules are needed for rationing transmission usage

when networks become congested. There are two major proposals for using financial instruments as

transmission rights in US: (a) the point-to-point financial transmission rights (FTRs) [22–24]; and (b) the

flowgate rights (FGRs) [25,26], as outlined in the Standard Market Design (SMD) put forth by the

Federal Energy Regulatory Commission (FERC). FTRs and FGRs are electricity derivatives, with their

values derived from the network transmission capacity.

2.4.1. FTR and FTR options

In an electricity market such as the PJM that employs locational market price (LMP), a point-to-

point FTR is specified over any two locations in the power transmission grid. An FTR entitles its
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holder to receive compensation (or pay) for transmission congestion charges that arise when the

grid is congested. The congestion charge/payment (or, payoff) associated with one unit of FTR is

equal to the difference between the two locational prices of one unit of electricity resulting from

the re-dispatch of generators out of merit order to relieve transmission congestion. The primary

markets for the FTR trading are auctions held by the independent system operators (ISOs) of power

markets.

An FTR option offers the right to the FTR settlement without the obligation to pay when that

settlement is negative. Hence, the settlement of an FTR option equals to the positive part of the

corresponding two-sided point-to-point FTR.
2.4.2. FGRs

Flowgates are defined over all transmission elements such as lines, transformers, or linear

combinations of them. Each transmission element has two elemental flowgates, one in each direction.

An elemental flowgate has a rated capacity in megawatts in its pre-specified direction corresponding to

the capacity of an underlying transmission element. Thus, flowgate rights are link-based transmission

rights for hedging transmission risks. The values of flowgate rights can be established through auctions

conducted by the ISOs. The spot price upon which the settlement of flowgate rights is based is given by

the real time shadow price on the corresponding constrained element, determined by the security

constrained economic dispatch algorithm employed by an ISO. Since these shadow prices are

nonnegative, FGRs are inherently defined as options.
3. Pricing electricity derivatives

Since the value of electricity derivatives are based on the underlying electricity prices, modeling

electricity price is the most critical component in pricing electricity derivatives. Due to the unique

physical and operational characteristics of electricity production and transmission processes, electricity

price exhibits different behaviors than other financial prices which can be often described by Geometric

Brownian Motion. There has been a growing literature addressing mainly two competing approaches to

the problem of modeling electricity price processes:
(a)
 ‘Fundamental approach’ that relies on simulation of system and market operation to arrive at market

prices; and
(b)
 ‘Technical approach’ that attempts to model directly the stochastic behavior of market prices from

historical data and statistical analysis.
While the first approach provides more realistic system and transmission network modeling

under specific scenarios, it is computationally prohibitive due to the large number of scenarios that

must be considered. Such analysis may be necessary for pricing financial transmission rights (in

particular, flowgate rights) but not for the other electricity derivatives. Therefore, we shall focus

our attentions on the second approach and review the corresponding methodologies for pricing

electricity derivatives.

Approaches to characterize market prices include discrete-time time series models such as GARCH

and its variants [27–32], Markov regime-switching models [33], continuous-time diffusion models such
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as mean-reversion [11,34,35], jump-diffusion [2,3,36], and other diffusion models [37,38]. There are

also models proposed for direct modeling of electricity forward curves [39,40].

While a straightforward application of the maximum likelihood estimation (MLE) method yields the

parameter estimates of a discrete-time time series model, it does not yield analytic expressions for

derivative prices. In fact, Monte Carlo simulation and lattice-based approaches are the only feasible

derivative pricing methods under time-series price models. For continuous-time diffusion models, model

parameters can be estimated by applying moment-based methods, such as the generalized method of

moments, which may not be as efficient as the MLE method. Nonetheless, more option pricing methods

(e.g. the analytic solution approach and the partial differential equation (PDE) approach) become

applicable under the diffusion price models.

Deng [3] was the first to employ a multifactor affine jump diffusion (AJD) processes to model

electricity spot prices under several specifications, including regime switching and stochastic volatility.

Under the assumption that electricity prices follow AJD processes, an extended Fourier transform

technique developed in Ref. [41] can be applied to derive analytic expressions (up to Fourier inversion)

for a variety of derivative prices. Specifically, prices of forwards, calls/puts and spark spreads were

derived in Ref. [3] under three different electricity price models, and prices of callable forwards with an

early notification were obtained in Ref. [14].

When there is a large set of market data available, the most appropriate approach to pricing

electricity options is to infer the risk-neutral distribution of the underlying electricity price from the

market data and then obtain the prices of the electricity derivatives based on the premise of no-

arbitrage. If there is not enough forward-looking market information for implementing a no-

arbitrage pricing model, then equilibrium models can be applied to obtain derivative prices, as in

Refs. [31,34,40,42,43] for forward prices and [44] for spark spreads. In certain cases, statistical

benchmark analysis based on historical data can provide a sense of the reasonableness on the

electricity options prices [8].

The binomial/multinomial lattice and Monte Carlo simulation methods are powerful numerical tools

for pricing electricity options with complex structures and/or under a complicated model for the

electricity price process. For instance, given the complex structure of a swing option or a tolling contract,

it is impossible to obtain prices of such contracts either in closed-forms or through PDEs. Thus, swing

options are priced by lattice models [45,46], or by approximation methods for obtaining price lower

bounds [47]. The pricing of tolling contracts requires a combination of Monte Carlo simulation with

dynamic programming [7].
4. Risk management applications

4.1. Hedging a generator’s output

Albeit having simple payoff structures, forwards, swaps, and call options are effective tools for a

generator with fixed per unit cost to lock in profits by selling forwards, fixed-price swaps, and call

options on electricity. When the forward/swap rate or the strike price of the call options is higher than the

fixed cost, the generator’s profits are guaranteed.

However, if the generating costs are market-based (e.g. a natural gas fired merchant power

plant that burns natural gas at market price), the selling forwards, swaps and calls will expose
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the generator to potential fuel cost increases. In such a case, a properly constructed portfolio of

spark spread calls would be the right tool for hedging a generator’s revenue stream over a given

time period.

The operational efficiency of a natural gas fired power plant is characterized by its operating heat rate.

Therefore, the financial benefit of owning a portfolio of spark spread calls with strike heat rates identical

to the operating heat rate of the plant is the same as owning the power plant during the time period of the

options’ maturity times. This observation leads to the valuation and hedging method for generation

capacity proposed in Refs. [10,11]. When taking into account the operational characteristics, lattice-

based method [48] and simulation method [35] are necessary to determine pricing and hedging strategies

of generation capacity.

In the case, where the electricity forward market at the generator’s location is not liquidly traded,

electricity forwards from adjacent trading hubs or even forwards on the input fuel, which are liquidly

traded, can be utilized to cross-hedge the electricity output price [49,50].

4.2. Ensuring generation adequacy

Oren [51,52] and Chao and Wilson [53] propose a new role for options with long maturity to address

the resource adequacy problem. They propose a scheme for ensuring generation adequacy via call

options as obligations imposed on the LSEs. Call options provide an attractive alternative to artificial

capacity products such as installed capacity (ICAP) employed in New York, New England, and PJM,

whose demand is based only on administrative requirements and which have no intrinsic value. By

requiring LSEs to purchase a proper portfolio of options, a regulator can achieve spot price volatility

reduction by implementing price insurance while using the premium to stabilize generators’ income and

enhance investment incentives.

4.3. Callable forwards and interruptible service contracts

The restructured electricity markets have shown little demand response to price spikes. The

enormous price volatility affirms the need for demand responsiveness to make these markets workable.

As load curtailment can provide an efficient substitute for generation capacity in meeting balancing

energy and reserves needs, flexible loads are viable and valuable resources in taming price volatility.

Consider the traditional utility interruptible service contracts utilized in demand-side management

(DSM) to mitigate supply shortages. These interruptible contracts are readily implementable

through standard electricity derivatives [12–14]. For instance, a synthetic interruptible service

contract offered by an LSE is a callable forward under which the LSE sells a forward to and buys

a call option from its customer. Furthermore, with a liquid electricity derivative market, the

discounts offered to the interrupted services would be set through market trading instead of bilateral

negotiations thus making the pricing of the interruptible services more transparent and efficient.

4.4. Hedging congestion risk of bilateral transactions

From the perspective of new power network transmission users, FTRs can be viewed as an

instrument for hedging their exposure to congestion cost risk. A 1-MW bilateral transaction between

two points in a transmission network is charged (or credited) the nodal price difference between
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the point of withdrawal and the point of injection. At the same time (assuming that transmission rights

are fully funded), a 1 MW FTR between two points is an entitlement (or obligation) for the difference

between the nodal prices at the withdrawal node and the injection node. Thus regardless of how the

system is dispatched, a 1 MW FTR between two nodes is a perfect hedge against the uncertain

congestion charge between the same two nodes.

The hedging properties of FTRs make them ideal instruments for converting historical entitlements

to firm transmission capacity into tradable entitlements that hold the owners of such entitlements

harmless, while enabling them to cash out when someone else can make more efficient use of the

transmission capacity covered by these entitlements. In other words, FTRs make it relatively easy to

preserve the status quo while opening up the transmission system to new and more efficient use. A

word of caution is that the hedging function of FTRs may not be perfect due to changing network

operating conditions and potential inherent trading inefficiency [54]. Some ISOs derate FTR

settlements in order to cover congestion revenue shortfalls due to transmission contingencies not

accounted for in the FTR auction. In such cases, depending on the derating approach, FTRs may not

provide perfect hedges either.

4.5. Hedging volumetric risks

LSEs providing electricity service at regulated prices in restructured electricity markets are wary of

both price and quantity risks [17,18]. As the electricity markets are inherently incomplete, the quantity

risk cannot be perfectly hedged. Commonly proposed hedging alternatives include the implementation

of a minimal variance hedge through purchasing electricity forwards [18] and the utilization of weather

derivatives.

Recent work reported in Ref. [21] addresses the problem of hedging volumetric risks by risk-averse

LSEs, whose hedging objective is to maximize a concave utility function. Exploiting the correlation

between consumption quantities and spot prices, the authors developed an optimal, zero-cost hedging

function described by a payoff function of spot price. They also demonstrate how such a hedging strategy

can be implemented through a portfolio of standard forwards and a spectrum of call and put options with

various strike prices.
5. Conclusion

In electricity market restructuring, electricity derivatives play an important role in establishing price

signals, providing price discovery, facilitating effective risk management, inducing capacity investments

in generation and transmission, and enabling capital formation. Custom design of electricity financial

instruments and structured transactions can provide energy price certainty, hedge volumetric risk,

synthesize generation and transmission capacity, and implement interruptible service contracts.

Admittedly, many exotic forms of electricity options can meet specific needs for hedging and

speculation. However, we emphasize the importance of standardization. Future research should focus on

identifying standardized electricity derivatives and utilization of financial engineering tools to

synthesize and replicate alternative contracts using standardized instruments. Such standardization

will reduce transaction costs and produce liquidity, which in turn will improve the efficiency of risk

management practices.
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