

ISIC - LSPN

Recent advances in iron-catalyzed cross-coupling reactions

CH-707: Frontiers in Chemical Synthesis -Towards Sustainable Chemistry

11.05.2020

Alexandre Leclair

Books:

M. Nakamura et al., in Org. React., American Cancer Society, 2014, pp. 1–210.

E. Bauer, Ed., Iron Catalysis II, Springer International Publishing, Cham, 2015.

Reviews:

I. Bauer and H.-J. Knölker, Chem. Rev. 2015, 115, 3170–3387

T. L. Mako and J. A. Byers, Inorg. Chem. Front., 2016, 3, 766

M. L. Neidig *et al., J. Am. Chem. Soc.* **2018**, *140*, 11872–11883 / *Acc. Chem. Res.* **2019**, *52*, 140–150

Ingmar Bauer and Hans-Joachim Knölker*

Recent advances in iron-catalysed cross coupling reactions and their mechanistic underpinning

- I. Introduction
- II. Preliminary works on iron-catalyzed cross-coupling
- III. Recent progress for classical cross-coupling reactions

 \rightarrow Focus on mechanism investigations

IV. Conclusion and outlooks

I. Introduction

- II. Preliminary works on iron-catalyzed cross-coupling
- III. Recent progress for classical cross-coupling reactions

 \rightarrow Focus on mechanism investigations

IV. Conclusion and outlooks

²⁵	²⁶	²⁷	28
Mn	Fe	CO	Ni
43	⁴⁴	⁴⁵	⁴⁶
TC	Ru	Rh	Pd

Stable isotopes: ⁵⁴Fe, ⁵⁶Fe, ⁵⁷Fe, ⁵⁸Fe

Oxidation states: -II, -I, **0**, +I, **+II**, **+III**, +IV, +V, +VI

 $FeCl_2$, $FeCl_3$, $Fe(acac)_3$

Readily available: 4th more abundant element in the Earth's crust

Cheap: 0.081 €/kg

Relatively non-toxic:

Acceptable level in drugs \rightarrow 1300 ppm Vs \leq 10 ppm for most transition metals

In biology: Transport of oxygen in vertebrates

In biology: Transport of oxygen in vertebrates

Applications in industrial productions:

• Production of ammonia (Haber-Bosch process):

 \rightarrow Main source of ammonia for nitrogen fertilizer

• Production of alkanes (Fischer-Tropsch process):

n CO + (2n+1) H₂
$$\xrightarrow{\text{Fe, Co or Ru cat.}}$$
 C_nH_{2n+2} + n H₂O
150-300 °C

• Production of hydrogen gas (Water-gas shift reaction):

Applications in industrial productions:

- Production of ammonia (Haber-Bosch process):
 - \rightarrow Main source of ammonia for nitrogen fertilizer
- Production of alkanes (Fischer-Tropsch process):

 $N_2 + 3 H_2$

n CO + (2n+1) H₂
$$\xrightarrow{\text{Fe, Co or Ru cat.}}$$
 C_nH_{2n+2} + n H₂O

• Production of hydrogen gas (Water-gas shift reaction):

Fe cat.

450-550

2 NH₃

A. Fürstner et al., ACS Cent. Sci. 2016, 2, 778–789

S. Gangula et al., Org. Process Res. Dev. 2015, 19, 470-475

J. Gao et al., J. Am. Chem. Soc. 2014, 136, 4031-4039

J. Gao et al., J. Am. Chem. Soc. 2014, 136, 4031-4039

J. Gao et al., J. Am. Chem. Soc. 2014, 136, 4031-4039

Initial report by Kharash, 1941

• Exploring the effect of metallic halides (Fe, Co, Ni, ...) on the reaction of ArMgBr and RX

Development of Fe-catalyzed Kumada-Corriu cross coupling (Kochi, 1971)

• Applicable to alkenyl bromide and Grignard reagents

 $CH_{3}MgBr + \underbrace{FeCl_{3} (0.6 \text{ mol}\%)}_{(excess)} \xrightarrow{FeCl_{3} (0.6 \text{ mol}\%)}_{THF, 25 °C} \underbrace{CH_{3}}_{89\%}$

• Alkyl bromides converted in corresponding alkenes

EtMgBr + EtBr $\xrightarrow{\text{FeCl}_3(0.08 \text{ mol}\%)}$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{H}}$ + EtH + Et-Et THF, 25 °C H H (<0.1%)

Further developed only 27 years later by Cahiez

M. S. Kharash, E. K. Fields, J. Am. Chem. Soc. 1941, 63, 2316-2320
M. Tamura, J. K. Kochi, J. Am. Chem. Soc. 1971, 93, 1487-1489
G. Cahiez, H. Avedissian, Synthesis 1998, 8, 1199-1205

Preliminary work

Proposed mechanism:

 \rightarrow Intense ESR spectrum comparable with the one of HFe^I(dppe)₂

Applied to a broad range of electrophiles R-X:

→ X= Cl, Br, I, F, OTs, OTf, OPiv, OCO_2R , $OCONMe_2$, $OPO(OR)_2$, SO_2Cl , SO_2R , ...

Z.-J. Shi et al., *J. Am. Chem. Soc.* **2009**, *131*, 14656-14657 Fürstner et al., *J. Org. Chem.* **2004**, *69*, 3943-3949 Fürstner et al., *Angew. Chem. Int. Ed.* **2016**, *55*, 6051–6056

Applied to a broad range of electrophiles R-X:

→ X= Cl, Br, I, F, OTs, OTf, OPiv, OCO_2R , $OCONMe_2$, $OPO(OR)_2$, SO_2Cl , SO_2R , ...

Very reactive but selective:

Applied to a broad range of electrophiles R-X:

→ X= Cl, Br, I, F, OTs, OTf, OPiv, OCO_2R , $OCONMe_2$, $OPO(OR)_2$, SO_2Cl , SO_2R , ...

Centered on the mechanism:

- → Several proposed: Fe⁻/Fe⁰, Fe⁰/Fe^{II}, Fe^I/Fe^{III}, Fe^{II}/Fe^{IV}, Fe^{II}/Fe^{IV}
- → Highly dependent on the conditions (Nucleophiles, ligands, solvents, additives)

- ightarrow Both one- and two-electron process possible
- \rightarrow Difficult elucidation of the mechanism:
 - Paramagnetic nature of many iron species
 - Air/thermal sensitivity of most reactive iron intermediates

- Numerous techniques applied: Electron paramagnetic resonance (EPR)
 - Magnetic circular dichroism (MCD)
 - ⁵⁷Fe Freeze-trapped Mössbauer spectroscopy
 - X-ray diffraction, ...

Organoferrate intermediates with R¹MgBr without β -hydrogen (Me, Ph, ...)

- Fe¹ species detected by Kochi \rightarrow [Fe₈Me₁₂]⁻ [MgCl(THF)₅]⁺isolated by Neidig *et al.*
- → Low activity alone, require additional MeMgBr

A. Fürstner *et al., J. Am. Chem. Soc.* **2008**, *130*, 8773-8787 M. L. Neidig *et al., J. Am. Chem. Soc.* **2016**, *138*, 7492–7495/ S. Sandt, A. J. von Wangelin, *Angew. Chem. Int. Ed.* **2020**, *59*, 5434 – 5437

Organoferrate intermediates with R¹MgBr without β -hydrogen (Me, Ph, ...)

- Fe¹ species detected by Kochi \rightarrow [Fe₈Me₁₂]⁻ [MgCl(THF)₅]⁺isolated by Neidig *et al.*
- → Low activity alone, require additional MeMgBr

• Several organoferrates isolated upon reaction of FeCl₃ with RMetal

Moderately active

A. Fürstner *et al., J. Am. Chem. Soc.* **2008**, *130*, 8773-8787 M. L. Neidig *et al., J. Am. Chem. Soc.* **2016**, *138*, 7492–7495/ S. Sandt, A. J. von Wangelin, *Angew. Chem. Int. Ed.* **2020**, *59*, 5434 – 5437

Organoferrate intermediates with R¹MgBr without β -hydrogen (Me, Ph, ...)

- Switch in presence of NMP or TMEDA:
 - Trialkyl ferrates isolated by Neidig → catalytically active

Organoferrate intermediates with R¹MgBr without β -hydrogen (Me, Ph, ...)

- Switch in presence of NMP or TMEDA:
 - Trialkyl ferrates isolated by Neidig → catalytically active

→ Exact mechanism not fully understood... (≠ for trialkyl ferrate than iron cluster)

R. B. Bedford et al., Angew. Chem. Int. Ed. 2014, 53, 1804–1808

M. L. Neidig *et al., Angew. Chem. Int. Ed.* **2018**, *57*, 6496–6500 / *Angew.Chem. Int. Ed.* **2019**, *58*,2769–2773 S. Sandt, A. J. von Wangelin, *Angew. Chem. Int. Ed.* **2020**, *59*, 5434 – 5437

Fe^{-II}/Fe⁰ mechanism proposed with R¹MgX (R¹ with β -H)

 \rightarrow Fe^{-II}(MgX)₂ speculated (first by Bogdanovic)

ightarrow Several pre-catalysts synthesized and tried

Fe^{-II}/Fe⁰ mechanism proposed with R¹MgX (R¹ with β -H)

 \rightarrow Fe^{-II}(MgX)₂ speculated (first by Bogdanovic)

Fe^{-II}/Fe⁰ mechanism proposed with R¹MgX (R¹ with β -H)

Fe^{II}/Fe^{III} catalytic cycle proposed in many cases

Fe^{II}/Fe^{III} catalytic cycle proposed in many cases

 \rightarrow Whatever the mechanism, several experiments in favor of alkyl radicals:

Enantioselective Kumada-Corriu cross-coupling

Only one report to date (Nakamura et al. 2015)

• Enantioconvergent coupling of aryl Grignard reagents with α -chloroesters

Mechanistic investigations:

ightarrow First-order relationship between [Fe cat.] and ratio not cyclized-cyclized

Computational studies:

ightarrow 2 slightly different mechanisms proposed

- \rightarrow C-Cl activation high in energy for Fe^{II} species \rightarrow Fe^I more favorable
- → Dropwise addition of Grignard reagent important to avoid Fe^{II}PhPh (biphenyl formation)
- → Inner-sphere out-of-cage mechanism

O. Gutierrez *et al., J. Am. Chem. Soc.* **2017**, *139*, 16126–16133 M. Nakamura, K. Morokuma *et al., J. Am. Chem. Soc.* **2017**, *139*, 16117–16125

First reported with vinyl zinc reagents

Activator = NHPI, HOAt

M. Nakamura *et al., Org. Lett.* **2009**, *11*, 4496-4499 R. B. Bedford et al., *Chem. Commun.* **2009**, 600–602 / *Angew. Chem. Int. Ed.* **2013**, *52*, 1285–1288

56%

P. S. Baran et al., J. Am. Chem. Soc. 2016, 138, 11132-11135

Progress in Suzuki-Miyaura cross-coupling

Few reports \rightarrow Difficulty with the transmetallation/reduction step

First report of Fe-catalyzed Suzuki-Miyaura cross-coupling (Hor et al., 2008)

Solution: Use activated borate as nucleophile (Bedford et al., 2009)

D. J. Young *et al.*, *Tetrahedron Lett.* **2008**, *49*, 5620-5621 R. B. Bedford *et al.*, *Chem. Commun.* **2009**, 6430–6432 / *Organometallics* **2014**, *33*, 5767-5780

Progress in Suzuki-Miyaura cross-coupling

M. Nakamura *et al., J. Am. Chem. Soc.* **2010**, *132*, 10674-10676 / J. Org. Chem. **2012**, *77*, 1168-1173 / Chem. Lett. **2015**, *44*, 486-488 / Org. Biomol. Chem. **2020**, *18*, 3022-3026 R. B. Bedford *et al.*, Chem. Eur. J. **2014**, *20*, 7935-7938 33

Only few reports with aryl electrophile

- First reports \rightarrow Due to palladium contaminations (articles retracted later)
- Observed as side-product with 2-halobenzyl halides (< 41%)
- Directing group required (Bedford et al., 2018)

Proof of contaminations: R. B. Bedford, M. Nakamura *et al., Tetrahedron Lett.* **2009**, *50*, 6110-6111 R. B. Bedford *et al.,* Synthesis **2015**, *47*, 1761-1765 / *Nat. Catal.* **2018**, *1*, 429–437

Byers's work with ligand tuning

- Alkoxide to help the transmetallation \rightarrow Iron aggregates: inactive
- Anionic ligand and amide base \rightarrow improved transmetallation / monomeric iron species

• Improvement of the scope (heteroaromatic-BPin, 3° alkyl) and efficiency with:

Byers et al., Org. Lett. 2018, 20, 5233-5237 / Angew. Chem. Int. Ed. 2020, 59, 5392-5397

Enantioselective cross-coupling

First report of enantioselective Fe-catalyzed Suzuki-Miyaura cross-coupling (Nakamura *et al.* 2019)

• Enantioconvergent coupling of lithium arylborates with *α*-bromoesters

Still under developed ...

• First report by Bolm and coworkers

• Designed in water

$$\begin{array}{c} \searrow \\ & & \\$$

 \rightarrow Few other reports but only very high temperature

Only few reports

• Initial report by Vogel

• Extended to benzylic substrates via UV-irradiated iron catalyst

• Applied in 2017 to alkyl electrophiles

P. Vogel *et al., Adv. Synth. Catal.* **2008**, *350*, 2859–2864 G. W. Waldhart, N. P. Mankad, *J. Organomet. Chem.* **2015**, *793*, 171-174 S. P. Thomas *et al., ACS Catal.* **2017**, *7*, 2353–2356

Conclusion and Outlooks

- Iron-catalyzed Kumada-Corriu cross-coupling well developed
 - Very **fast** reaction, even at low temperature
 - Highly chemoselective
 - Cheap catalyst, often without ligand
 - Less-sensitive to β-hydride elimination

However, mechanisms still not fully understood ...

- Almost no enantioselective version
- Use of less-nucleophilic partner still underdeveloped

Conclusion and Outlooks

- Iron-catalyzed Kumada-Corriu cross-coupling well developed
 - Very **fast** reaction, even at low temperature
 - Highly chemoselective
 - Cheap catalyst, often without ligand
 - Less-sensitive to β-hydride elimination

However, mechanisms still not fully understood ...

- Almost no enantioselective version
- Use of less-nucleophilic partner still underdeveloped

Thank you for your attention

Can you suggest a mechanism for this transformation ?

Can you suggest a mechanism for this transformation ?

Fürstner et al., Angew. Chem. Int. Ed. 2013, 52, 13071 – 13075

Propose a mechanism for the reduction of Fe $^{\rm II}$ to Fe $^{\rm II}$ and Fe $^{\rm III}$ to Fe $^{\rm III}$

Propose a mechanism for the reduction of Fe^{II} to Fe^{-II} and Fe^{III} to Fe^{-II}

