

ENERGY PLANNING : MODELLING AND DECISION SUPPORT

Professor Edgard Gnansounou

EDOC - ENERGY PLANNING - CHAPTER I

LEARNING OUTCOMES OF THE COURSE 6:

- Model the sources of intermittent energy in sight of planning for a long term adjustement between demand and supply of electrical energy
- Application in the case study

-CONTENT-

6b.1. The limits of the probability convolution approach

6b.2. Simplified modelling in the case of solar photovoltaic

6b.1. THE LIMITS OF THE PROBABILITY CONVOLUTION APPROACH

- The probability function representing the variability of electricity demand is simplified because it does not consider autocorrelations
- Another strong hypothesis is the independence between random variables that represent the demand and supply of electrical energy
- Alternative: chronological curve or load curve therefore a time series model
- Taking into account the correlation between demand and supply: modelling too complicated to be used for long term planning

6b.2. SIMPLIFIED MODELLING IN THE CASE OF SOLAR PHOTOVOLTAIC

- Solar radiation is generally high during peak hours and low during off-peak hours, the same applies for electrical energy demand
- Thus, modelling intermittence in models such as PLANELEC needs an important simplification: the de-correlation between electricity demand and supply

Ist step: Generating the time series of photovoltaic production

2nd step: Modelling the time series with Bernoulli's law of probability

1st step: Generating the chronicle of photovoltaic production

Generating the chronicle hours of irradiations

https://ec.europa.eu/jrc/en/pvgis

	СРА	
2	City	Dezhou City
3	County (District)	Qingyun County
	Subdivision	Section
4	SSC-CPA Unique Identification Number	001-PCDM-SDPV
5	Latitude of Project area	37.4438°
6	Longitude of Project area	116.3445°

Map showing the city of Dezhou

Professor Edgard Gnansounou

Simulation of the production of energy from a PV central in Benin

2nd step: Modelling the chronicle with Bernoulli's law of probability

$$P_{h} = \begin{cases} P_{\max} & \operatorname{Prob} = p \\ 0 & \operatorname{Pr} ob = (1-p) \end{cases}$$

Professor Edgard Gnansounou

EDOC - ENERGY PLANNING - CHAPTER I

Find Pmax and p such that:

The average Pmoy and the variance of (Ph) s^2 are respected

$$\begin{cases} p.P_{max} = P_{avg} \\ p.(P_{max} - P_{avg})^2 + (1 - p).P_{avg}^2 = s^2 \end{cases}$$
(2)

Let c such that:

c: coefficient of variation

With (1) and (2), Pmax is de

$$p = \frac{1}{1+c^2}$$
$$P_{\max} = P_{avg} (1+c^2)$$

Professor Edgard Gnansounou

Adjusting the specific investment cost (\$/kW)

The specific investment cost has to be adjusted to the value of Pmax calculated previously by dividing the total cost of the power plant by a Power value often lower than Pp.

<u>Illustration :</u> Study case of a PV power plant project in southern Benin (Blaga and Gnansounou, 2020)

Data: Pp = 25 MWc Investment cost: 39.10⁶ \$ Specific cost per Wp: 1.56 \$/Wp

Results:

Pavg = 4.2 MW Pmax = 12.76 MW 1 - p = 66.94% (equivalent outage rate) Specific cost per W: 3 \$/W

References:

Blaga, C., Gnansounou, E. (2020), Modelling the «intermittency additional cost» of PV plant integration in a conventional electrical generating system: case of Benin. Project «Mineur en énergie», January 2020.