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Answers to question set 2

Exercise 1: Nernst equation

1.1 We plug the given values into the Nernst equation and compute Erev. Pay attention to signs!

For Ca2+ we get:

ECa2+rev = − 1.38·10−23J/K·310K
+2·1.60·10−19C · ln( 10−4molm−3

1.5molm−3 ) = +0.1284 JC = 128.4mV

ion Cint Cext Erev

K+ 140 5 -89.0 mV

Na+ 10 145 71.4 mV

Ca2+ 10−4 1.5 128.4 mV

1.2 The current is given by I = g(u − Erev) where g is the conductance and Erev the reversal potential for
the ion under consideration, and u is the membrane potential. For constant conductance, the current-voltage
relationship is a straight line. Note: in the plot below, the Ca current has been multiplied by 100 in order to
increase readability and to emphasize the non-negative slope.
By convention, an inward current has negative sign, and corresponds to the movement of positively charged
particles from the outside to the inside of the cell. For a resting potential of −65 mV, sodium and calcium ions
generate inward currents, while potassium ions generate an outward current. If the conductances are varied,
the slope of the lines will change accordingly, but the reversal potentials are unaffected.

Figure 1: Clamped voltage and measured current for different channels



Exercise 2: Model of an ion channel

2.1 r is the fraction of open channels (or, equivalently, the probability that a single channel is open). 1 − s
is the fraction of inactivated channels. The fact that r stands for activation and s for inactivation is due
to the differences in the time constants (the channel must activate before it inactivates). gion is the maximal
conductance for the ion under consideration (gion = conductance of a single channel × total number of channels),
and uion its reversal potential.

2.2 The two gating variables r and s approach their target value r0 and s0 (see last week exercises for a
discussion of the linear diff.eq.). We read the following values from the given figures: r grows with τr = 1ms
from 0 to 1 (or maybe a little less if you take u’ from the figure rather than from the text which specifies ε << 1).
s decays from 1 to 0.2 with τs = 15ms. When computing Iion(t) don’t forget to take the gating variables to the
power n1 or n2 as given in the exercise.

• For t < 0, the channel is closed because r = 0.

• At t = 1 ms, the channel is partially open because r0 ' 1 and τr = 1 ms (so that r ' 1− e−1 ' 0.6).

• At t = 3 ms, the channel is almost completely open because r ' 1 but s ' 1 due to its long time constant
(15 ms).

• At t = 20 ms, the channel is partially closed because s0 ' 0.2 and τs = 15 ms.

• At t = 100 ms, the channel is almost completely closed because s ' 0.2.
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Figure 2: Evolution of the gating variables r and s and of the associated ionic

current Iion for parameter values u1 = −50 mV, u2 = −30 mV, u′ = −32.5

mV, gion = 0.03 nS, and Eion = 0 mV.

Exercise 3: Dynamics of conductances

3.1 For t < 0, n is at its resting value n∞(0) = 0. If the membrane potential instantaneously jumps to a value
u0, n(t) approaches its new resting value exponentially with time constant τn(u0):

n(t) = n∞(u0)(1− e−t/τn(u0))



3.2 We observe that for u0= 10mV and 20 mV, the two resulting curves are just scaled versions of each other
(same time constant τn(u)=5ms). For u0= 40mV we see not only a larger final value but a much faster growth
because τn(u) is 1ms.
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3.3 Note the qualitative difference: only for n1 we see the typical exponential decay to the target value, whereas
when taking the small values (n is smaller than 1 and very small for t << τn) to some power, the curves are
”starting flat”. We can quantify this observation by linearizing n(t) around t=0 and find the following first
degree Taylor polynomial P1(t):

n(t) = n∞(u0)(1− e−t/τn(u0)) ≈ P1(t) = n(0) + n′(0)(t− 0) = 0 + n∞(u0) 1
τ e
−0/τn(u0)(t− 0) = n∞(u0) t

τn(u0)

whereas for [n(t)]k, k ≥ 2 we find P1(t) = ... = 0 as you can see again from the Taylor expansion:

[n(t)]k = [n∞(u0)(1− e−t/τn(u0))]k

≈ [n∞(u0)(1− e−0/τn(u0))]k + k[n∞(u0)(1− e−0/τn(u0))]k−1 × (n∞(u0) 1
τ e
−0/τn(u0))× (t− 0)

= 0 + k[0]k−1 × n∞(u0) t
τn(u0)

= 0
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3.4 With EK = −80 mV, we obtain
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3.5 The exponent p is measured by fitting the power-law behaviour of IK(t) for small t. The activation curve
n∞ is obtained by plotting the maximal value of IK for each voltage step against the value of the voltage, and
the time constant τn can be deduced from the slope of p

√
IK for small times, or by fitting an exponential to

p
√
IK .

Exercise 4: Gating dynamics – two equivalent mathematical descriptions

The two descriptions of the gating dynamics are equivalent. The formulation introduced in this exercise is
typically used in chemistry. See chapter 2.2.2 in http://neuronaldynamics.epfl.ch/online/Ch2.S2.html for more
information.

4.1 By rearranging the terms on the right hand side of Eq. (2) to a form that corresponds to Eq. (3) we see

that to make these dynamics equal we have to choose: m0(u) = αm(u)
αm(u)+βm(u) and τ0(u) = 1

αm(u)+βm(u)

4.2 Assuming α = β−1 (we neglect indices and the voltage dependence for simplicity), we arrive at

m0 = (1 +
1

α2
)−1.

We further notice that by using tanh(x) = 1−e−2x

1+e−2x we can simplify 0.5(1 + tanh[x]) = (1 + e−2x)−1. Then we
can solve for α as

(1 +
1

α2
)−1 = m0 = (1 + e−2γ(u−θ))−1

α2 = e2γ(u−θ)

α = eγ(u−θ).

4.3 We know that τ = (α+ β)−1. Using the assumptions and the form for α we just calculated we get:

τ = (α+ β)−1 =
(
eγ(u−θ) + e−γ(u−θ)

)−1
= 0.5 sech(γ(u− θ)).

http://neuronaldynamics.epfl.ch/online/Ch2.S2.html

