Ecole Polytechnique Fédérale de Lausanne Real-Time Embedded Systems

THE Ultimate Starter’s Setup Guide

The first step is to download the provided project directory template from Moodle:
http://moodle.epfl.ch/mod/folder/view.php?id=911830. Use 7zip (or any other
compression software) to decompress the archive. We highly encourage you to read the
provided README carefully before continuing. Then, rename the folder to
nios_introduction.

Creating the Quartus project
1. Go to File->New Project Wizard...
a. Choose <project dir>/hw/quartus as the working directory.
b. Use nios_introduction as the project name.
c. Click Finish.
2. We are using the DE1-SoC board. So we are going to execute a script to configure the
FPGA family and the pin assignment.
a. Goto Tools->Tcl Scripts...
b. Select pin_assignment_DE1_SoC.tcl.
c. Click Run and wait (Quartus might freeze for a while).
3. Then, we need to add the top-level entity of the project so Quartus can have a
starting point to compile the design.
a. Go to Project->Add/Remove Files in Project...
b. Click on the button labelled ...
c. Select <project dir>/hw/hdl/DE1_SoC top_level.vhd and click Open.
d. Click Add. Note that the added path is relative from the Quartus project
directory, i.e. ../hdl/DE1_SoC top_level.vhd.
Click Ok.
In the Project navigator, switch to the Files view.
g. Rightclick on../hdl/DE1_SoC_top_level.vhd and click on Set as Top-Level
Entity.

a0}

Creating a Qsys system
We will create a full system including a processor and memory capable of executing
software that we are going to write in C.
1. Launch Qsys by going to Tools->Qsys.
2. In Qsys, go to File->Save as and save the Qsys system as soc_system.qgsys under
<project dir>/hw/quartus.
3. Use the IP Catalog to add the following components:
a. A “Nios Il Processor” to act as our main processor.
i. Click Finish on the configuration view that just opened.
b. An “On-Chip Memory (RAM or ROM)” to act as our main memory.
i. Choose its Total memory size to be 256k and hit the tab key on your
keyboard to autocomplete.
ii. Click Finish on the configuration view.
c. A“JTAG UART” to see the results of the standard output on your computer
screen.
i. Click Finish on the configuration view that just opened.
d. A “PIO (Parallel I/O)” to toggle LEDs on the board.

René Beuchat Rev. 1



Ecole Polytechnique Fédérale de Lausanne

Real-Time Embedded Systems

Use a Width of 10 bits because the DE1-SoC has 10 leds.
Select Output as the direction.
Click Finish on the configuration view.

e. Now it’s time to connect the system components together. Here are a few
tips to do that correctly:

manually connecting the reset everywhere.

interface of all the other components.

chip memory.

components.

Interrupt Receiver interface of the CPU.
f. We need to export the external_connection of pio_0 by double-clicking in the
Export column and pushing | on your keyboard. Recall: exporting a signal

means making it available outside the Qsys system to route it on the board.

view.

vector memory and Exception vector memory.

1.

Connect the data bus (data_master) of the CPU to all the other

Connect the Interrupt Sender interface of the JTAG UART to the

the on-chip memory to which the CPU jumps upon reset.

CPU jumps upon receiving hardware exceptions or traps.

3.

range of each component and avoid conflicts.
i. Similarly, go to System->Assign Interrupt Numbers.

j.

Go to File->Save.

You can now close the configuration view.
Go to System->Assign Base Addresses to properly configure the address

Go to System->Create Global Reset Network to stop thinking about
Connect the clk interface of the c/k_0 component to the Clock input

Connect the instruction bus (instruction_master) of the CPU to the on-

Double-click on the nios2_gen2_0 component to open up its configuration
Under the Vectors tab, select the on-chip memory to be its Reset
The Reset vector offset is the offset from the base address of

Similarly, the Exception vector offset is the offset to which the

4. Your system should now look like the following — don’t worry if you have different
Base addresses than in this example:

I= system Contents 32

Address Map &

System: soc_system Path: clk_0

Connections ‘

Name

Interconnect Requirements 22

Description

Export

Clock

Base

End

IRQ

D_‘l

=S|

P E—
—_—

—
—

& dk o
clk_in
clk_in_reset
clk
clk_reset

B nios2_gen2 0
clk
reset
data_master
instruction_master
irq
debug_reset_request
debug_mem_slave

custom_instruction_...

B onchip_memory2 0
clkl
sl
resetl

B jtag_uart_0
clk
reset
avalon_jtag_slave

external_connection

Clock Source

Clock Input

Reset Input

Clock Output

Reset Output

Nios Il Processor

Clock Input

Reset Input

Avalon Memory Mapped Master
Avalon Memory Mapped Master
Interrupt Receiver

Reset Output

Avalon Memory Mapped Slave
Custom Instruction Master
0On-Chip Memory (RAM or ROM)
Clock Input

Avalon Memory Mapped Slave
Reset Input

TAG UART

Clock Input

Reset Input

Avalon Memory Mapped Slave
Interrupt Sender

PIO (Parallel I/0)

Clock Input

Reset Input

Avalon Memory Mapped Slave
Conduit

clk
reset

pio_0_external_connection

René Beuchat

exported

clk_0

clk_0
[clk]
[clk]
[clk]
[clk]
[clk]
[clk]

clk_0
[clk1]
[clk1]

clk_0
[clk]
[clk]
[clk]

clk_0
[clk]
[clk]

0x0008_0800

0x0004_0000

0x0008_1010

0x0008_1000

IRQ O

0x0008_0fff

0x0007_ffff

0x0008_1017

0x0008_100f

Rev. 1

IRQ 31



Ecole Polytechnique Fédérale de Lausanne Real-Time Embedded Systems

5. You can now close Qsys by clicking on Finish. Do not generate the system when
asked.
6. Use the same procedure you used to add the top-level VHDL file to the project to,
this time, add the <project dir>/hw/quartus/soc_system.qsys file to the project.
7. You should now update your top-level to include your Qsys system.
a. In atext editor, open <project dir>/hw/quartus/soc_system/soc_system_inst.vhd
to get the VHDL component declaration and instantiation template of the
Qsys system.
Add the component declaration to your top-level architecture.
Add the component instantiation and map the port as follows:
i. The clock should be routed to CLOCK_50, the clock input pin of the
FPGA/SoC device.
ii. Use the button KEY_N(0) as the reset signal of your design.
iii. Route the PIO to LEDR, the pin connected to the LEDs on the board.
d. Then, in the entity, comment all the ports you are not using, i.e. everything
except the 3 mentioned above. Be careful with your semi-colons!
8. Go to Processing->Start Compilation and grab a coffee/tea or even a pineapple
juice, we are open-minded.
9. Once the compilation is finished, plug in your FPGA board and go to Tools->Programmer.
a. Click Auto-detect and select 5CSEMAS.
b. Right-click on the beautiful picture of Altera chip labelled 5CSEMA5 and
select Change File...
c. Select <project dir>/hw/quartus/output_files/nios_introduction.sof.
d. Enable the “Program/Configure” checkbox for device 5CSEMAS5F31.
e. Press Start.

It’s software party time!
1. It's now time to launch our beloved software IDE, the Nios Il SBT.
a. Launch the Nios Il Command Shell from the Start menu of your Windows
machine.
b. Use the following command “eclipse-nios2 &” to launch the IDE.
2. Goto File->New->Nios Il Application and BSP from Template.
3. Select <project dir>/hw/quartus/sco_system.sopcinfo as SOPC Information File
name.
4. Name your software project nios_introduction.
5. We invite your to uncheck the Use default location checkbox and choose
<project dir>/sw/nios/application. We encourage this practice to properly separate
software from hardware design files.
6. Choose Hello World as the Project template.
Click Finish.
8. You can now write/compile/run your software and have a lot of fun with those LEDs.
Recall: you will want to include the io.h and system.h file to get some useful macros.

N

For more information, you can check the DE1-SoC tutorial we provide in the SoC-FPGA

Design Guide we provide on Moodle:
http://moodle.epfl.ch/pluginfile.php/1606624/mod_resource/content/6/SoC-FPGA%20Design%20Guide%201.05.pdf.

René Beuchat Rev. 1



