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Exercise 1: Hopfield network with probabilistic upate

1.1 We first split the neurons into two groups: those that should be active, (p3i = +1) and those
that should not be active. From hi(t0) = p3im

3(t0)) we see that all neurons in the same group get
the same input potential h.

We then get the following four expressions for the update dynamics:
Those that should be active and are active:
P{Si(t+ 1) = +1|hi(t0), p3i = +1} = g(hi(t)) = g(p3im

3(t0)) = g(+1m3(t0)) = g(m3(t))
Those that should be active and are not active:
P{Si(t+ 1) = −1|hi(t0), p3i = +1} = 1− g(m3(t))
Those that should not be active and are active:
P{Si(t+ 1) = +1|hi(t0), p3i = −1} = g(hi(t)) = g(p3im

3(t0)) = g(−1m3(t0)) = g(−m3(t))
Those that should not be active and are not active:
P{Si(t+ 1) = −1|hi(t0), p3i = −1} = 1− g(−m3(t))

The expected number of neurons in each of the four groups is N3
+ (or N3

−) times the probabilities
from above.

We start from

m(t+ 1) =
1

N

N∑
i

p3iSi(t+ 1)

and split the sum into the four groups. Given p ∈ {−1,+1} and Si(t + 1) ∈ {−1,+1} note that
we are just ”counting”. We can get an estimate of that sum by splitting it and replacing those
”counts” by the expected number of neurons in each of the four groups (large N):

m(t+ 1) =
1

N

[
N3

+g(m3(t) − N3
+(1− g(m3(t))

]
− 1

N

[
N3
−g(−m3(t) − N3

−(1− g(−m3(t))
]

=
N3

+

N

[
2g(m3(t))− 1

]
− N3

−
N

[
2g(−m3(t))− 1

]
= g(m3(t))− g(−m3(t))

Where we have used the assumption P{p3i = 1} = 0.5 and that for a large network N → ∞ we

have N3
+ = N3

− and
N3

+

N = 1
2 .

1.2 g maps the input potential h onto a probability.
g: R→ [0, 1], monotonically increasing, symmetric around g(0) = 0.5
We plug g(h) = 1

2 (tanh(βh) + 1) into g(m3(t))− g(−m3(t)) and simplify it:
m(t+ 1) = ... = tanh(βm3(t)).
See figure 1 to see the effect of β.



(a) Stochastic update dynamics for different levels
of the inverse temperature β

(b) Evolution of the initial overlap in one time step.
For β ≤ 1 the fixed point is at 0 and any initial overlap
will decrease. For β = 1.5 the overlap does not go
beyond ≈ 0.85: using a stochastic update, the network
can only retrieve noisy versions of the pattern.

Figure 1: Update dynamics and overlap. Note the different domain and

range of each graph. The lower the temperature, the more deterministic the

update becomes and the fixed point of m(t) 7→ m(t+ 1) goes to 1 as β → ∞.



Exercise 2: Hopfield, the energy picture

In each time step only one neuron is updated (asynchronous dynamics). Let us assume that neuron
k has changed. The energy is given by:

E := −
N∑
i

N∑
j

wijSiSj (1)

We split that sum such that the contribution of the neuron k to the energy is isolated from the
other neurons:

E(t) = −
∑
j

wkjSk(t)Sj(t)︸ ︷︷ ︸
i=k

−
∑
i

wikSi(t)Sk(t)︸ ︷︷ ︸
j=k

−
∑N
i6=k
∑N
j 6=k wijSi(t)Sj(t)

= −2Sk(t)
∑
j wkjSj(t)−

∑N
i 6=k
∑N
j 6=k wijSi(t)Sj(t)

The last equation comes from the symmetry of the weights and the fact that the first two sums
run over the same range (1 to N).
For E(t+ 1) we get the same expression but with the neuron k having a different state S′k = −Sk
(all other neurons keep their value S′j = Sj for j 6= k.). When we look at the change in energy, all
terms that do not depend on k cancel out. Therefore we have:

∆E = E(t+ 1)− E(t) = −2S′k
∑
j wkjSj − (−2Sk

∑
j wkjSj)

= −2(S′k − Sk)
∑
j wkjSj

Because of the update of neuron k, we have S′k −Sk = 2S′k. Also,
∑
j wkjSj ≡ hk. Thus, so far we

have ∆E = −4S′khk.

Finally, due to the dynamics of the network, S′k = sign(hk), the change in energy is
∆E = −4 hk sign(hk) < 0.

In other words, the energy E is a Liapunov function of the deterministic Hopfield network which
decreases along trajectories. This yields the valuable insight that the network dynamics necessarily
converge towards the minima of the energy function E.



Exercise 3: Binary codes and spikes

3.1 We do a change of variable and specify the Hopfield model:

• The state of a neuron i is σi ∈ {0, 1}. It relates to Si by Si = 2σi − 1⇔ σi = 1
2 (Si + 1).

• The weights are the same. They depend on the patterns, not on the state.

• For the update dynamics we rewrite eq. 2 in terms of σ:

Si(t+ 1) = g(hi(t)) = sign

 N∑
j=1

wijSj(t)

 (2)

2σi(t+ 1)− 1 = sign

 N∑
j=1

wij(2σj(t)− 1)


σi(t+ 1) =

1

2

sign
 N∑
j=1

wij(2σj(t)− 1)

+ 1



3.2 The property
∑N
i=1 pi = 0 means that the patterns are balanced: they have the same number

of active and inactive pixels. When patterns have specific statistical properties, these properties
may translate into statistical properties of the weights. For that reason, we take the expression
from the previous question, insert the definition of the weights and try to simplify it using the
given property:

hi(t) =

N∑
j=1

wij(2σj(t)− 1)

= 2

N∑
j=1

wijσi(t)−
N∑
j=1

wij

N∑
j=1

wij =
1

N

N∑
j=1

M∑
µ

pµi p
µ
j

= 1
N

∑M
µ pµi

∑N
j=1 p

µ
j

= 1
N

∑M
µ pµi 0

= 0

hi(t) = 2

N∑
j=1

wijσj(t)

σi(t+ 1) = 1
2

[
sign

(
2
∑N
j=1 wijσj(t)

)
+ 1
]

=
1

2

sign
 N∑
j=1

wijσj(t)

+ 1





It’s interesting to note that for balanced patterns, the weights also sum up to 0.

3.3 We consider the starting point of the previous question:

hi(t) = 2

N∑
j=1

wijσj(t)−
N∑
j=1

wij

For low-activity patterns we have:

N∑
j=1

wij = c

N∑
j=1

∑
µ

(ξµi − b)(ξ
µ
j − a)

= c
∑
µ(ξµi − b)

∑N
j=1(ξµj − a)

= c
∑
µ(ξµi − b)0

= 0

Where, as in the previous question, we used the condition of balanced patterns, that in this case
would be:

∑µ
j ξ

µ
j = Na.

To simplify our arguments we will choose b = 0. For the total input to neuron i we now have:

hi(t) = 2c

N∑
j=1

wijσj(t)

= 2c

N∑
j=1

∑
µ

ξµi (ξµj − a)σj(t)

= 2c

N∑
j=1

∑
µ

ξµi ξ
µ
j σj(t)− 2c

N∑
j=1

∑
µ

ξµi aσj(t)

Since ξµi ∈ {0, 1}, σi ∈ {0, 1} and a > 0 we observe the first term on the right-hand side is

always positive and the second term is always negative (since 2c
∑N
j=1

∑
µ ξ

µ
i aσi(t) > 0). We have

managed to separate excitatory from inhibitory contributions. So now we can interpret the network
as follows: all neurons are excitatory, and they excite each other as well as a hypothetical group
of inhibitory neurons, that in return inhibit the former. In that way Dale’s law is preserved (i.e.
all connections starting from the same neuron are either excitatory or inhibitory, not both) and an
effective inhibition is achieved. For more details on the above please refer to the book ’Neuronal
Dynamics’, Chapter 17.3.2, available online: http://neuronaldynamics.epfl.ch/online/Ch17.
S3.html.

http://neuronaldynamics.epfl.ch/online/Ch17.S3.html
http://neuronaldynamics.epfl.ch/online/Ch17.S3.html

