Shape from X

e One image:
e Shading
e Texture

e Two Images or more:
e Stereo
e Contours
e Motion
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Recover surface orientation or surface shape from
iImage texture:

o Assume texture ‘looks the same’ at different points
on the surface.

e This means that the deformation of the texture is
due to the surface curvature. !
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Structural Shape Recovery
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Reminder: Perspective Projection
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Perspective Distortion

Center of Frontal

Projection | -0g Plane
Scaling £J Plane
of the /
Frontal Piane
in the Image I

Foreshortening
of the .
Longitudinal Plane
in the Image

Longitudinal Ptane

The perspective projection distortion of the texture
e depends on both depth and surface orientation,
e |s anisotropic.
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Foreshortening

Depth vs Orientation: |
e Infinitesimal vector [AXx,Ay,Az] at location [x,y,z]!—I—I

image of this vector is
S ac— S Az, Ay -2 Az

Z Z Z

e Two special cases:
* Az=0 : The object is scaled
* AX=Ay=0 : The object is foreshortened
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Orthographic Projection

Y &
/ / Object
B o e A Sl L B
Orthographic
Center of Age / o

SRR Projection
Projection

Special case of perspective projection:

e Large f

e Objects close to the optical axis
—>Parallel lines mapped into parallel lines.
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Orthographic Projection

/ Object
Scating = €
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Tilt And Slant

image
Plane

Projection
Direction

~ Normai

Surface




Orthographic Projection

Proj
Jirection
-~
Ellipse L Clrele
% - N m I <F, |I
/ P < = I /
( ok
4 \
g Elliptic Cylina
Plane
f Orthagraphi
Prejeclion Ray

e Tilt: Derived from the
image direction in which
the surface element
undergoes maximum
compression.

e Slant: Derived from the
extent of this compression.
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Cheetah
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=Pr-L A.M. Low, Phd Thesis, 2006




Perpendicular Lines

P = XN
e

Orthographic projections of squares that
are rotated with respect to each other in a
plane inclined at w=60° to the image plane.

|, /1) % (p,/1,)| ___cos(W)
HP1/11H2+HP2/12H2 1+ cos* (W)
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Parapespective Projection

/ Object
* Arallel

e

gl it g z
\\ |
Center of A‘ .

Projection

Generalization of the orthographic projection:

e Object dimensions small wrt distance to the
center of projection.

- Parallel projection followed by scaling

=Pr-L



Parapespective Projection

(Xo+ AXpe Yo T AYs, Zo+AZ0)

Parallel Projection in
—[X, ¥« Zo) Direction »(

Scaling » 'v/
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Aage

Plane
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® FOI’ planar tEXG'S: Unknown surface normal.

2 / True Area.
i [x0Y020lA /

Projected Area. —» A' —_— 3 ne
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Parapespective Projection
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7% i1iiiini e Image regions being brighter or
s :2313%%c darker than their surroundings.
‘;.»'3 ;5,".'-.'-,:. e Assumed to have the same area
o +2%+°% e« inspace.

i > Given enough texels, it
' becomes possible to estimate
the normal.
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Texture Gradient




Statistical Shape Recovery

Mesure texture density as opposed to
" texel area, that is, the number of textural
... primitives per unit surface.

Unknown surface normal. j VN
b= [by,....b,

] Image coordinates.

wn Function of density.
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Deep Learning

Output: Surface Normals

Fusion

e Makes normal prediction possible even when the texture is not
homogeneous.
e But only for the class of scenes it has been trained for.

=Pr-L Wang et al., CVPR 2015 A



Normals from a Single Image

=Pr-L Wang et al., CVPR 2015 A



Enforcing Task Consistency

Normals

"""""

Forcing the deep net to be consistent Segmentation
across tasks increases robustness.

=PFL Zamir et al., CVPR’18 A



Strengths and Limitations

Strengths:
Emulates an important human ability.

Limitations:
Requires regular texture.
Involves very strong assumptions.
Deep learning can be used to weaken them.
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