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SHAPE FROM X

• One image:

• Texture

• Shading


• Two images or more:

• Stereo

• Contours

• Motion
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Geometric Stereo

Depth from two or more images:

• Geometry of image pairs

• Establishing correspondences
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Triangulation 

Geometric Stereo: Depth from two images
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Epipolar Line

Line on which the corresponding point must lie.

Epipolar Line
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Epipolar Lines

Three points shown 
as red crosses.

Corresponding epipolar 
lines.



6

Epipolar Lines

They can have any orientation. 
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Epipole

Point at which all epipolar lines intersect:

➡ Located at the intersection of line joining 

optical centers and image plane.

1C 2C

1E 2E
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Reminder: Calibration Grid

xi = PXi

• Take a picture of a calibration grid with each camera. 

•  Infer the two projection matrices.

•  Compute the epipolar lines. 
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Without a Calibration Grid

€ 

There is 3× 3 matrix F such that for all corresponding points x↔ x'
x'T Fx = 0.

Therefore, the epipolar line corresponding to x is l = Fx.

Given a set of n point matches,we write

u1
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: : : : : : : : :
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→DLT or non − linear minimization.

Hartley, Chap 9.
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Epipolar Geometry

In general:

Horizontal baselineParallel image planes
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Reprojection into parallel virtual image planes: 

• Linear operation in projective coordinates

• Real-time implementation possible

'
''
'

''

11'
'
'

3231

232221

131211

W
Vv
W

Uu

v
u

rr
rrr
rrr

W
V
U

=

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

),( vu

)','( vu

Rectification



12

Rectification

From intersecting epipolar lines …

… to parallel ones.
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Disparity

The horizontal shift along an epipolar line, 
inversely proportional to distance. 

d
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Disparity vs Depth

€ 

ul =
f (X − b /2)

Z
,  vl =

fY
Z

ur =
f (X + b /2)

Z
,  vl =

fY
Z

d = f b
Z

! Disparity is inversely 
proportional to depth.
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Window Based Approach to 
Establishing Correspondences

• Compute a cost for each Cn location.

• Pick the lowest cost one.
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Finding a Pattern in an Image

Straightforward approach:

Move pattern everywhere and 
compare with image.


But how?

Pattern
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ssd(u,v) = I(u + x,v + y) − P(x,y)[ ]2
(x,y )∈N
∑
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Sum of Square Differences

Minimum ssd value

• Subtract pattern and image pixel by pixel and 
add squares:


• If identical ssd=0, otherwise  ssd >0

!Look for minimum of ssd with respect to u 
and v.
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€ 

ssd(u,v) = I(u + x,v + y) − P(x,y)[ ]2
(x,y )∈N
∑

= I(u + x,v + y)2
(x,y )∈N
∑ + P(x,y)2

(x,y )∈N
∑ − 2 I(u + x,v + y)P(x,y)

(x,y )∈N
∑

 Correlation

ssd(u,v) is smallest when correlation is largest

! Correlation measures similarity

Sum of squares of 
the window

(slow varying)

Sum of squares of 
the pattern

(constant)

Correlation

€ 

ssd(u,v) = I(u + x,v + y) − P(x,y)[ ]2
(x,y )∈N
∑

= I(u + x,v + y)2
(x,y )∈N
∑ + P(x,y)2

(x,y )∈N
∑ − 2 I(u + x,v + y)P(x,y)

(x,y )∈N
∑
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Synthetic Example

I

❋

P

=

I correlated with P
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Real World Example

• The correlation value depends on the local 
gray levels of the pattern and image window.


• Need to normalize.

Image Correlation

Pattern
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Normalized Cross Correlation

• Between -1 and 1

• Invariant to linear transforms 

• Independent of the average gray levels of the 

pattern and the image window

€ 

ncc(u,v) =

I(u + x,v + y) − I [ ] P(x,y) − P [ ]
(x,y )∈N
∑

I(u + x,v + y) − I [ ]2 P(x,y) − P [ ]
(x,y )∈N
∑

(x,y )∈N
∑

2
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Image

Pattern

Normalized Correlation

Point of maximum correlation

Normalized Example
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Searching along Epipolar Lines

d

ncc

or

d

ncc
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Outdoor Scene

scanline

SSD
NCCR
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scanline

Ambiguities

—> Repetitive patterns, textureless areas, 
and occlusions can cause problems.
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Occlusions

Left right consistency test:

Some pixels have no corresponding pixel in the other image:
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Disparity Map

Black pixels: No disparity.
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 Ground Level Stereo
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Combining Disparity Maps

• Merging several disparity maps. 

• Smoothing the resulting map. 

Fua, MVA’91
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Variational Approach
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Solving the Variational Problem

Discretize the integral and solve a linear problem: 
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Shape From Video

Treat consecutive images as stereo pairs. 


1.    Compute disparity maps.

2.    Merge 3-D point clouds.

3.    Represent as small patches.

Fua. IJCV’97
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Real-Time Implementation

• Many duplicated computations. 

• Can be implemented so that it is fast. 

• Speed is independent from window size.
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Then ….

1993: 
256x256, 
60 disps, 


7 fps. 

Faugeras et al., INRIA’93
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… and more Recently

2011: 
1312x688, 
176 disps, 

160 fps. 

Subaru's EyeSight System
http://www.gizmag.com/subaru-new-eyesight-stereoscopic-vision-system/14879/

Saneyoshi, CMVA’11
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... and even More Recently

Replace Normalized Cross Correlation by 
Siamese nets designed to return a similarity 
score for potentially matching patches.

Zbontar and Lecun, 2015
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Comparative Results

Improved performance on 
test data but


• How well will it generalize 
to unseen images?


• Is it worth the much 
heavier computational load? 


Time will tell.  
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Tesla’s non LiDar Approach

https://www.therobotreport.com/researchers-back-teslas-non-lidar-approach-to-self-driving-cars/

RobotReport’19
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Window Size

Small windows:

• Good precision

• Sensitive to noise


Large windows:

• Diminished precision

• Increased robustness to noise


! Same kind of trade-off as for edge-detection. 
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Window Size

15x15 7x7
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Scale-Space Revisited

Gaussian 
pyramid

Difference of 
Gaussians

• Using a small window on a 
reduced image is equivalent to 
using a large one on the 
original image.


• Using difference of Gaussian 
images is an effective way of 
achieving normalization.


!It becomes natural to use 
results obtained using low 
resolution images to guide the 
search at higher resolution.
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Fronto-Parallel Assumption

• The disparity is assumed to be the same over the entire 
correlation window, which is equivalent to assuming constant 
depth. 


! Ok when the surface faces the camera but breaks down 
otherwise.

Valid assumption
Invalid assumption
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Multi-View Stereo

Multi-view reconstruction setup

Furukawa&Ponce ECCV’06

Texture-Mapped 3D Model Shaded 3D Model 

 —> Adjust correlation window 
shapes to handle orientation.
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MULTI-VIEW STEREO

Aganj et al. ICCV’09
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Small Drones

SenseFly:

www.sensefly.com

Gatewing: 

www.gatewing.com
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Matterhorn

Drone: www.sensefly.com Mapping: www.pix4d.com
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Face Reconstruction

Beeler et al. SIGGRAPH’10
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Face Reconstruction

Beeler et al. SIGGRAPH’10
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Dynamic Shape

Valgaerts et al. SIGGRAPH Asia’12
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Scene Flow

Correspondences across 
cameras and across time 

Stereo Only Stereo + Flow
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Refining using Shape From Shading

Shape-from-shading can be used to refine the 
shape and provide high-frequency details.
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Using Many Cameras

Using 124 calibrated cameras with hardware synchronization

Smith et al. , SIGGRAPH Asia’20
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Uncertainty
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Precision vs Baseline

• Beyond a certain depth stereo stops being useful. 

• Precision is proportional to baseline length. 

d = f
b

Z

) Z = f
b

d

) �Z

�d
= �f

b

d2
= �Z2

fb
<latexit sha1_base64="yVfwQB3P9qgafcPqGMd2jVwxjyI="></latexit><latexit sha1_base64="yVfwQB3P9qgafcPqGMd2jVwxjyI="></latexit><latexit sha1_base64="yVfwQB3P9qgafcPqGMd2jVwxjyI="></latexit><latexit sha1_base64="yVfwQB3P9qgafcPqGMd2jVwxjyI=">AAAGd3icbZRbT9swFIBTBh3LLpTtkYdZq0BoElXCy/YyiY5b2bh0pYXSukOO47QRcRISF6ii/KG978fsp+xtLi1ST88sWTo533diy8eyEwd+qizrT2Hh2eJS8fnyC/Plq9dvVkqrby/SaJhw0eJRECVth6Ui8EPRUr4KRDtOBJNOIC6dm90xv7wTSepHYVONYtGTrB/6ns+Z0qnr0m/qiL4fZuI2ZEnCRh9z0yUb5IueHqFewnjm5FknJ5SatOH3B0pr0T3pYMnNybw1YdQVgWKkkz9F2pxUb+n6mR/83M51eusp1dHfmUecnJhUhO7MHq9LZatiPQ6CA3salI3pqF+vLv6ibsSHUoSKByxNu7YVq17GEuXzQOQmHaYiZvyG9UVXhyGTIu1lj+ebk3WdcYkXJXqGijxmZysyJtN0JPVG1yVTg3SejZP/Y92h8j73Mj+Mh0qEfLKQNwyIisi4WcT1E8FVMNIB44mv90r4gOmzUbqlJg3FPY+kZPpsqFPNu1Yvo+NFHC+r5vkc3wV8F/E24G3EHwB/QPwK8CvER4CPED8C/AjxW8BvEd8DfA/xE8BPEK8DXkf8DvA7xKUEgkSCGgjFgEMnqXmxMSM5WQPxfcD3Ee8A3tEcCnLmKnAW4Lsg96GAlpA1KNSQcACFAyQcQ+EYCW0ooAspT6CAOirPoHCGhFMonCLhHArnSGhCoYmEQygcIqEBhXG39etmz79lOLjYrthWxf6xXd75On3nlo0144OxadjGJ2PHqBl1o2XwwlqhWvhW+L70t/i+uFHcnKgLhWnNOwOMov0P7RdLcw==</latexit>
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Short vs Long Baseline

Short baseline:

• Good matches

• Few occlusions

• Poor precision 

Long baseline:

• Harder to match

• More occlusions

• Better precision 
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Mars Rover

There are four cameras!
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Video-Based Motion Capture

Fitting an articulated body model to stereo 
data.

Plankers & Fua, PAMI’03
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Trinocular Stereo
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Multi-Camera Configurations

4 cameras give additional redundancy.

3 cameras in a T arrangement allow 
the system to see vertical lines.

3 cameras give both robustness and 
precision.
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Kinect: Structured Light

▪ The Kinect camera projects a IR pattern and 
measures depth from its distortion.


▪ Same principle but the second camera is 
replaced by the projector. 
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Faces from Low-Resolution Videos

•No calibration data


•Relatively little texture


•Difficult lighting
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Simple Face Model
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PCA Face Model

Blanz & Vetter, SIGGRAPH’99

:S

:iS

Average shape

Shape coefficients           
Shape vector  

αi :
S = S̄ +

99

∑
i=1

αiSj
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3D Face Modeling
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Correspondences
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Transfer Function

€ 

F3(A,Ci−1,Ci,Ci+1) = Δpi−1,i
j

j∈Qi−1

∑
2

+ Δpi,i+1
k

k∈Qi

∑
2
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Model Based Bundle Adjustment

Adjusting the PCA coefficients to minimize the objective function 
yields an accurate face reconstruction from low-resolution images.  
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Model from Old Movie

Adjusting the PCA coefficients to minimize the objective function 
yields an accurate face reconstruction from low-resolution images.  
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Limitations of Window Based Methods

Ground truth Correlation result
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Energy Minimization

Disparity 
continuous in 
most places,

except at 

depth 


discontinuities

1. Matching pixels should have similar intensities. 

2. Most nearby pixels should have similar disparities


! Minimize 
X

[I2(x+D(x, y), y)�I1(x, y)]
2+�

X
[D(x+1, y)�D(x, y)]2+µ

X
[D(x, y+1)�D(x, y)]2



72

Reminder: Graph-Based Segmentation

• A high probability of being a mitochondria can be 
represented by a strong edge connecting a 
supervoxel to the source and a weak one to the sink. 


• And conversely for a low probability. 
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Reminder: Graph-Based Segmentation

•Another classifier can be trained to assign a high-weight to edges 
connecting supervoxels belonging to the same class and a low one to 
others.


•Graph-cut can then be used to partition the pixels into separate  
regions. 
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Graph Cut for Stereo

1. Stereo is a labeling problem. —> Use graph cut. 


2. Connect each pixel to each possible disparity value.

pixels

disparities

…21 k
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Assigning Edge Weights

Assign a weight that is inversely proportional to |I2(x+1,y)-I1(x,y)|

1

2

Assign a weight that is inversely proportional to |I2(x+2,y)-I1(x,y)|
……

Constant weight
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Minimizing the Objective Function

X
[I2(x+D(x, y), y)�I1(x, y)]

2+�
X

[D(x+1, y)�D(x, y)]2+µ
X

[D(x, y+1)�D(x, y)]2

Minimize:

Graph cut algorithm:


• Guarantees an absolute minimum only when there are only two 
possible disparities.


• Effective heuristics (a-expansion, a-b swap) otherwise.
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α-Expansion

• Nodes having a label different than α 
can either keep it or switch to α.


• Edges between neighbors  are updated 
according to the new labeling.


• Other edges remain unchanged.

k

…
…

…21 3

pixels
depths

Boykov et al, ICCV ‘99
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Example: 3 Expansion

k

…

…

…21 3

pixels
depths

3

3

Connect all nodes to 
both 3 and 3

Find minimal cut

3

3
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…

…

…

…

… k1 2 3 … k1 2 3

Example: 3 Expansion



80

Graph Cut Algorithm

1.   Start with an arbitrary labeling

2.   For every label α in {1,…,L}


   Find the α-Expansion that minimizes the function

   Update the graph by adding and erasing edges


3.   Quit when no expansion improves the cost

4.   Induce pixel labels
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NCC vs Graph-Cut

Normalized correlation Graph Cut
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 NCC vs Graph Cut

Normalized correlation Graph Cuts

left image true disparities



 NCC vs Graph Cut
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Strengths and Limitations

Strengths:

• Practical method for depth recovery.

• Runs in real-time on ordinary hardware.


Limitations:

• Requires multiple views.

• Only applicable to reasonably textured objects.


