
Artificial Neural Networks (Gerstner). Exercises for week 6

Regularization and Tricks of the Trade

Exercise 1. Cross-validation

Assume K variants of a model, with model k having test error Ek = E0 + εk, where εk has mean
E [εk] = 0, auto-variance E

[
ε2k
]

= v and co-variance E [εkεn] = c.

a. What is the expected value of the test error, i.e. the expected test error of the model obtained
by averaging over all variants?

b. What is the variance of the average test error? Does the number K of variants play a role?

c. Consider implementing K-fold cross validation. If every Ek is the error of one of the folds, how
do variance v and correlation ρ = c

v change with respect to K? How does the variance of the
average test error behave as K varies, assuming that we have large number of sample points?

Exercise 2. Dropout (from exam 2019)

We have a deep network of 2n hidden layers (n > 2) of neurons with sharp threshold functions g(a) = 1
for a > 0 and zero otherwise. After training with dropout, somewhere in hidden layer n, we have a
hidden neuron i which receives input from 4 hidden neurons in layer n− 1. All weights onto neuron i
are equal to one and the threshold of neuron i is 2.7.

Each of the four hidden neurons j in layer n−1 receives input from the same 2 neurons in layer n−2.
The weight vectors and thresholds of the four neurons in layer n− 1 are:

j=1 (1,0) and threshold 0
j=2 (1,0) and threshold 0.5
j=3 (1,1) and threshold 1
j=4 (1,-1)and threshold 1

a. Qualitatively sketch the two-dimensional space representing the activity of the 2 neurons in
layer n− 2 and indicate the region (by shading it with crosses x x x) in which neuron i responds
positively.

b. Dropout: Remove neurons j = 1 and j = 4 in layer n− 1, rescale the weights appropriately, and
sketch the input space where neuron i responds positively (by shading it with crosses x x x ).

c. Dropout: Remove neurons j = 2 and j = 3 in layer n− 1, rescale the weights appropriately, and
sketch the input space where neuron i responds positively (by shading it with crosses x x x ).

d. Your friend Adam claims: ’Dropout might be a useful trick, but nobody understands how it
works’. Your friend Berthilde claims ’Dropout is good for generalization and easy to understand’.
Comment on your results (think also of the other 4 combinations of dropping out two neurons)
and relate your results to the claims of your friends.

Exercise 3. Different activation functions

The choice of the non-linearity function g(x) can have a significant impact on learning speed and final
performance. Which non-linearity is best, is still an active research question; the favorite non-linearity
in the last century was probably the hyperbolic tangent tanh(x); since 2010, the rectified linear unit
relu(x) = max(0, x) is highly popular and there is a fair chance that the new favorite will be the scaled
exponential linear unit selu(x) = λx if x > 0 and selu(x) = α(exp(x)− 1) otherwise, with λ ≈ 1.0507
and α ≈ 1.75814. Currently, it seems that the key concepts to discuss the different non-linearities are,
first, linearity problem, second the vanishing gradient problem and, third, the bias shift problem.
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a. Linearity problem

(i) Show that a multi-layer neural network with linear activation function g(x) = x is equivalent
to a single layer linear network. Hint: the product of two matrices is again a matrix.

(ii) Assume that in each layer the inputs follow a Normal distribution with mean zero and
small variance, i.e. σ2 � 1. For which of the activation functions σ(x) = 1/(1 + exp(−x)),
tanh(x), relu(x) and selu(x) is a deep network basically equivalent to a linear network for
this input distribution? Hint: Consider the case σ2 → 0 using a Taylor expansion around
0.

b. Vanishing gradient problem

(i) Assume now the inputs are such that they also fall into the non-linear regimes. For sim-
plicity we assume that in each layer the activations are a1 = −10, a2 = −5, a3 = −1, a4 =
1, a5 = 5, a6 = 10. Without a calculator, determine the fraction of values close to zero
of g(ai) and g′(ai) for all i and g = σ, tanh, relu, selu. For example, for tanh none of the
values tanh(−10), tanh(−5), . . . , tanh(10) is close to zero but 4/6 = 2/3 of the values of
tanh′ = 1− tanh2 are close to zero.

(ii) The update of a weight wij is proportional to g′(ai) · g(aj). Determine the fraction of
g′(ai)·g(aj) that are close to zero considering all combinations of ai and aj and all activations
g = σ, tanh, relu, selu.

(iii) The δ’s in backpropagation are in each layer multiplied with g′. Consider backpropagation
through 3 layers, i.e. terms like g′(ai)g

′(aj)g
′(ak). Determine the fraction of such terms

that are close to zero for g = σ, tanh, relu, selu.

c. Bias shift problem

Consider a simple classification task. The data exist in RN . Data points from C0 (with target
t = 0) are uniformly distributed in each dimension such that xi ∈ [1, 2] for i = 1 . . . N . Data
points from C1 (with target t = 1) are uniformly distributed in each dimension such that
xi ∈ [3, 4] for i = 1 . . . N . We want to learn to classify points using a logistic sigmoid unit
trained with the cross–entropy loss; from last week, this results in the weight update rule

∆wi = η · (t− y) · xi

where y = σ
(∑N

i wixi

)
.

Points are presented one at a time (i.e. stochastic gradient descent).

(i) Assume we start with all weights wi = 0 and present the point xa from C0, update the
weights, then present xb. Give the drive a =

∑N
i wix

b
i of the output unit in response to xb,

in terms of η, xa and xb. Note: we do not yet need to specify which class xb belongs to.



(ii) In general, we can encounter oscillations in stochastic gradient descent if a single training
example strongly affects the network output – for instance, if it results in the same network
output for any possible input.

We assume that if a < −5, y ≈ 0, and if a > 5, y ≈ 1. Under what conditions will the
network output y be the same for all possible inputs xb after the first training step? Can
we choose a small enough η to prevent this, independent of N? What if we had chosen xa

from C1 instead?

(iii) A common input normalization technique to to remove the mean from the dataset, such that
E[xi] = 0 across all dimensions xi. Assume that each data point has an equal probability of
coming from either C0 and C1. What are the new data ranges for C0 and C1 after removing
the mean? Repeating step (ii), do we get the same result?

(iv) Consider a deep network where each hidden layer uses one of the following activation
functions: tanh, σ, relu, or selu. Given what we’ve seen above, can you suggest one of the
activation functions? Note that one layer’s output is another layer’s input.

d. Summarize your results by ranking the different activation functions for each of the problems
discussed in this exercise.
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Exercise 4. Normalization of activations across multiple layers

In class we have seen, that by an appropriate normalization of the input patterns (for each input
component: zero mean, unit standard deviation) combined with a Gaussian distribution of input

weights (〈w(1)
ij 〉 = 0 and 〈[w(1)

ij ]2〉 = 1/N) we can ensure that the activation variable of neurons in

the first layer has mean 〈a(1)i 〉 = 0 and variance 〈[a(1)i ]2〉 = 1. In the following we assume that the

distribution of activations in layer 1 is standard Gaussian, i.e. a
(1)
i ∼ N(0, 1).

The aim of the exercise is to go by induction from layer n to layer n+ 1. We start in layer 1.

Assume that neuron j in layer 1 has a rectified linear activation function, i.e., x
(1)
j = [a

(1)
j ]+.

a. What is the mean 〈x(1)j 〉?

b. Assume that the weights in layer 2 are initialized with zero mean and variance 〈[w(2)
kj ]2〉 = [c2]/N1

where N1 is the number of hidden neurons in the first layer.

What is the mean activation 〈ã(2)k 〉 in layer 2? Here ã
(2)
k =

∑N1
j=1w

(2)
kj x

(1)
j . The total activation

of neuron k in layer 2 is a
(2)
k = ã

(2)
k − θk.

What value should you choose for the threshold θk in layer 2, so that 〈a(2)k 〉 = 0 in layer 2?

c. Assume that you found a threshold so that 〈a(2)k 〉 = 0. Calculate the variance 〈[a(2)k ]2〉 as a
function of the constant c.

d. Choose c such that the variance is one.

e. Can you now go from layer 2 to layer 3?


