
Artificial Neural Networks (Gerstner). Solutions for week 6

Regularization and Tricks of the Trade

Exercise 1. Cross-validation

Assume K variants of a model, with model k having test error Ek = E0 + εk, where εk has mean
E [εk] = 0, auto-variance E

[
ε2k
]

= v and co-variance E [εkεn] = c.

a. What is the expected value of the test error, i.e. the expected test error of the model obtained
by averaging over all variants?

b. What is the variance of the average test error? Does the number K of variants play a role?

c. Consider implementing K-fold cross validation. If every Ek is the error of one of the folds, how
do variance v and correlation ρ = c

v change with respect to K? How does the variance of the
average test error behave as K varies, assuming that we have large number of sample points?
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c. The number of training samples for each model k increases as K increases, thus v decreases.
However, the correlation ρ = c

v increases as the folds have more number of data points in
common. Substituting ρ = c

v in the formula that we calculated in part (b), we observe the trade
off between v and ρ as K varies:
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For the case when we have a large number of training samples, the minimum variance is achieved
when K takes an intermediate value.



Exercise 2. Dropout (from exam 2019)

We have a deep network of 2n hidden layers (n > 2) of neurons with sharp threshold functions g(a) = 1
for a > 0 and zero otherwise. After training with dropout, somewhere in hidden layer n, we have a
hidden neuron i which receives input from 4 hidden neurons in layer n− 1. All weights onto neuron i
are equal to one and the threshold of neuron i is 2.7.

Each of the four hidden neurons j in layer n−1 receives input from the same 2 neurons in layer n−2.
The weight vectors and thresholds of the four neurons in layer n− 1 are:

j=1 (1,0) and threshold 0
j=2 (1,0) and threshold 0.5
j=3 (1,1) and threshold 1
j=4 (1,-1)and threshold 1

a. Qualitatively sketch the two-dimensional space representing the activity of the 2 neurons in
layer n− 2 and indicate the region (by shading it with crosses x x x) in which neuron i responds
positively.

b. Dropout: Remove neurons j = 1 and j = 4 in layer n− 1, rescale the weights appropriately, and
sketch the input space where neuron i responds positively (by shading it with crosses x x x ).

c. Dropout: Remove neurons j = 2 and j = 3 in layer n− 1, rescale the weights appropriately, and
sketch the input space where neuron i responds positively (by shading it with crosses x x x ).

d. Your friend Adam claims: ’Dropout might be a useful trick, but nobody understands how it
works’. Your friend Berthilde claims ’Dropout is good for generalization and easy to understand’.
Comment on your results (think also of the other 4 combinations of dropping out two neurons)
and relate your results to the claims of your friends.

Solution:
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a. Since we have a sharp threshold activation function g, every neuron j at layer n− 1 contributes
exactly +1 if activated. Neuron i at layer n requires at least 3 active neurons j at layer n − 1
to get activated (recall that neuron i is connected to all neurons j with weigth +1 and it has
threshold 2.7). Therefore the crosses in Fig. (a) lies at the intersection of at least 3 neurons.

b. Readjusting the weights due to dropout, the weights between neuron i and neurons j = 2, 3 will
be +2 each. Therefore both neurons should be active to exceed the threshold 2.7.



c. Same as (b), just consider neurons j = 1, 4 instead.

d. Using dropout, we effectively choose a random subnetwork to update at every training step. An
ensemble of the

(
4
2

)
= 6 subnetworks –as in (b) and (c)– instead of a single network –as in (a)–

with strict decision boundaries should mitigate overfitting and generalize better. The dropout
method basically approximates this hypothetical ensembling.

Exercise 3. Different activation functions

The choice of the non-linearity function g(x) can have a significant impact on learning speed and final
performance. Which non-linearity is best, is still an active research question; the favorite non-linearity
in the last century was probably the hyperbolic tangent tanh(x); since 2010, the rectified linear unit
relu(x) = max(0, x) is highly popular and there is a fair chance that the new favorite will be the scaled
exponential linear unit selu(x) = λx if x > 0 and selu(x) = α(exp(x)− 1) otherwise, with λ ≈ 1.0507
and α ≈ 1.75814. Currently, it seems that the key concepts to discuss the different non-linearities are,
first, linearity problem, second the vanishing gradient problem and, third, the bias shift problem.
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a. Linearity problem

(i) Show that a multi-layer neural network with linear activation function g(x) = x is equivalent
to a single layer linear network. Hint: the product of two matrices is again a matrix.

(ii) Assume that in each layer the inputs follow a Normal distribution with mean zero and
small variance, i.e. σ2 � 1. For which of the activation functions σ(x) = 1/(1 + exp(−x)),
tanh(x), relu(x) and selu(x) is a deep network basically equivalent to a linear network for
this input distribution? Hint: Consider the case σ2 → 0 using a Taylor expansion around
0.

b. Vanishing gradient problem

(i) Assume now the inputs are such that they also fall into the non-linear regimes. For sim-
plicity we assume that in each layer the activations are a1 = −10, a2 = −5, a3 = −1, a4 =
1, a5 = 5, a6 = 10. Without a calculator, determine the fraction of values close to zero
of g(ai) and g′(ai) for all i and g = σ, tanh, relu, selu. For example, for tanh none of the
values tanh(−10), tanh(−5), . . . , tanh(10) is close to zero but 4/6 = 2/3 of the values of
tanh′ = 1− tanh2 are close to zero.

(ii) The update of a weight wij is proportional to g′(ai) · g(aj). Determine the fraction of
g′(ai)·g(aj) that are close to zero considering all combinations of ai and aj and all activations
g = σ, tanh, relu, selu.

(iii) The δ’s in backpropagation are in each layer multiplied with g′. Consider backpropagation
through 3 layers, i.e. terms like g′(ai)g

′(aj)g
′(ak). Determine the fraction of such terms

that are close to zero for g = σ, tanh, relu, selu.



c. Bias shift problem

Consider a simple classification task. The data exist in RN . Data points from C0 (with target
t = 0) are uniformly distributed in each dimension such that xi ∈ [1, 2] for i = 1 . . . N . Data
points from C1 (with target t = 1) are uniformly distributed in each dimension such that
xi ∈ [3, 4] for i = 1 . . . N . We want to learn to classify points using a logistic sigmoid unit
trained with the cross–entropy loss; from last week, this results in the weight update rule

∆wi = η · (t− y) · xi

where y = σ
(∑N

i wixi

)
.

Points are presented one at a time (i.e. stochastic gradient descent).

(i) Assume we start with all weights wi = 0 and present the point xa from C0, update the
weights, then present xb. Give the drive a =

∑N
i wix

b
i of the output unit in response to xb,

in terms of η, xa and xb. Note: we do not yet need to specify which class xb belongs to.

(ii) In general, we can encounter oscillations in stochastic gradient descent if a single training
example strongly affects the network output – for instance, if it results in the same network
output for any possible input.

We assume that if a < −5, y ≈ 0, and if a > 5, y ≈ 1. Under what conditions will the
network output y be the same for all possible inputs xb after the first training step? Can
we choose a small enough η to prevent this, independent of N? What if we had chosen xa

from C1 instead?

(iii) A common input normalization technique to to remove the mean from the dataset, such that
E[xi] = 0 across all dimensions xi. Assume that each data point has an equal probability of
coming from either C0 and C1. What are the new data ranges for C0 and C1 after removing
the mean? Repeating step (ii), do we get the same result?

(iv) Consider a deep network where each hidden layer uses one of the following activation
functions: tanh, σ, relu, or selu. Given what we’ve seen above, can you suggest one of the
activation functions? Note that one layer’s output is another layer’s input.

d. Summarize your results by ranking the different activation functions for each of the problems
discussed in this exercise.

linearity problem vanishing gradient problem bias shift problem
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σ
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Solution:

a. (i) For a network with 1 hidden layer and g(x) = x we have
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where wik =
∑

j w
(2)
ij w

(1)
jk is the product of the two matrices.

The same argument applies to networks with more then 1 hidden layer.

(ii) The relu and selu activation functions have a kink at 0; they are therefore not linear for
normally distributed input with mean 0. Using d

dx tanh(x) = 1− tanh2(x) and tanh(0) = 0,
the Taylor series of tanh around 0 is tanh(x) = 0 + 1 · x+ 0 · x2 +O(x3) = x+O(x3), i.e.
the tanh is basically linear for normally distributed inputs with σ2 � 1. With d

dxσ(x) =
σ(x)(1−σ(x)) and σ(0) = 1

2 , the Taylor series of σ around 0 is σ(x) = 1
2+ 1

4x+0·x2+O(x3) =
1
2 + 1

4x+O(x3), i.e. σ is an affine function around 0, but even with the offset 1
2 the relevant

part that depends on x has the same form as in Equation 14 and thus also the σ activation
function leads to basically a linear network for the given input distribution.

b. (i) g fraction g close to 0 fraction g′ close to 0

tanh 0 2/3
σ 1/2 2/3
relu 1/2 1/2
selu 0 1/3

(ii) We determine the fraction of terms close to zero by computing first those that are not close
to zero, which is given by the product of the fraction of terms not close to zero of the
previous table.

g fraction g · g′ close to 0

tanh 1− 1/3 = 2/3
σ 1− 1/2 · 1/3 = 5/6
relu 1− 1/2 · 1/2 = 3/4
selu 1− 2/3 = 1/3

(iii) We proceed as in the previous exercise.

g fraction g′ · g′ · g′ close to 0

tanh 1− 1/33 = 26/27 ≈ 0.96
σ 1− 1/33 = 26/27 ≈ 0.96
relu 1− 1/23 = 7/8 = 0.875
selu 1− (2/3)3 = 19/27 ≈ 0.70

c. (i) With all weights equal to 0, the initial output y will be 0.5 for all possible inputs. Therefore,

∆wi = η · (t− y) · xai
= η · (0− 0.5) · xai
= −0.5η · xai

and

a =
N+1∑
i

wix
b
i

=

N+1∑
i

(−0.5η · xai ) · xbi

= −0.5η

N+1∑
i

xai x
b
i

where we have absorbed the bias by taking xaN+1x
b
N+1 = (−1)(−1) = 1.



(ii) From the equation above, we note that xai x
b
i is always positive, so a will be negative for

any value of xbi . We are interested in the case where a > −5, so the output unit does not
saturate. The absolute value |a| is minimized for xa = [1, 1, 1, . . . 1] and xb = [1, 1, 1, . . . 1]
(in which case xb belongs to class 1). For these data points,

a = −0.5 · η ·
N+1∑
i

(1)(1)

= −0.5(N + 1)η

In this case, in order to remain unsaturated, we need a dimensionality N such that

−0.5(N + 1)η > −5

(N + 1)η < 10

N <
10

η
− 1

which is not possible if N can go arbitrarily high. Since this bound only becomes tighter
for any other choice of xb, we conclude that it is not possible to choose a small enough
learning rate to prevent the network from having a fixed output after the first training
sample (assuming N is not fixed). If xa was chosen from C1, it would simply flip the sign
on a and cause it to assign all points to the opposite class.

(iii) With equal probability for the two classes, the mean in each dimension is µi = 1
2(12(1 +

2)) + 1
2(12(3 + 4)) = 2.5, such that xi ∈ [−1.5,−0.5] for C0 and xi ∈ [0.5, 1.5] for C1. In this

case, we note that the sign of a after the first training sample will depend on the sign of
xb, which is no longer strictly positive. Therefore, the network output will never be fixed
across all possible data samples after the first input, regardless of N .

(iv) The logistic sigmoid output is strictly positive. As seen above, strictly positive inputs can
contribute to instability in the output unit. Since tanh is symmetric around 0, it tends to
produce faster, more stable learning. relu does not take negative values, thus it may cause
instability whereas selu allows negative values suggesting more stable learning.

d. We order roughly from best to worst.

linear for x ∼ N (0, σ � 1) vanishing gradient problem bias shift problem

selu 1 1 1

relu 1 2 2

tanh 2 3 1

σ 2 4 2

Exercise 4. Normalization of activations across multiple layers

In class we have seen, that by an appropriate normalization of the input patterns (for each input
component: zero mean, unit standard deviation) combined with a Gaussian distribution of input

weights (〈w(1)
ij 〉 = 0 and 〈[w(1)

ij ]2〉 = 1/N) we can ensure that the activation variable of neurons in

the first layer has mean 〈a(1)i 〉 = 0 and variance 〈[a(1)i ]2〉 = 1. In the following we assume that the

distribution of activations in layer 1 is standard Gaussian, i.e. a
(1)
i ∼ N(0, 1).

The aim of the exercise is to go by induction from layer n to layer n+ 1. We start in layer 1.

Assume that neuron j in layer 1 has a rectified linear activation function, i.e., x
(1)
j = [a

(1)
j ]+.

a. What is the mean 〈x(1)j 〉?



b. Assume that the weights in layer 2 are initialized with zero mean and variance 〈[w(2)
kj ]2〉 = [c2]/N1

where N1 is the number of hidden neurons in the first layer.

What is the mean activation 〈ã(2)k 〉 in layer 2? Here ã
(2)
k =

∑N1
j=1w

(2)
kj x

(1)
j . The total activation

of neuron k in layer 2 is a
(2)
k = ã

(2)
k − θk.

What value should you choose for the threshold θk in layer 2, so that 〈a(2)k 〉 = 0 in layer 2?

c. Assume that you found a threshold so that 〈a(2)k 〉 = 0. Calculate the variance 〈[a(2)k ]2〉 as a
function of the constant c.

d. Choose c such that the variance is one.

e. Can you now go from layer 2 to layer 3?

Solution:

a.
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∫ ∞
0

x√
2πσ

e−
x2

2σ2 dx (15)

=
−σ√

2π
e−

x2

2σ2

∣∣∣∞
0

(16)

= 0− (− −σ√
2π

) =
σ√
2π

(17)

b.

〈ã(2)k 〉 = 〈
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w
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kj x
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j 〉 (18)

=
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j=1

〈w(2)
kj 〉〈x

(1)
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Since w
(2)
kj and x

(1)
j are independent random variables, we can split the expectation into multi-

pliers. The weights in the second layer are initialized with zero mean, therefore 〈ã(2)k 〉 = 0. Then

we can choose θk = 0. Here, note that if 〈ã(2)k 〉 wasn’t zero due to different initialization or input

distributions, we could still have zero mean 〈a(2)k 〉 by choosing θk = 〈ã(2)k 〉.

c.
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The second summand here is 0 since each weight is i.i.d. and has zero mean. Now we need to

calculate 〈[x(1)j ]2〉. Here, it’s important to note that the integrand below is an even function.
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Therefore we have:

〈[a(2)k ]2〉 =

N1∑
j=1

〈(
w
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)2〉〈(
x
(1)
j

)2〉
(25)

= N1
c2

N1
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2
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=
c2σ2

2
(27)

d. c =
√

2/σ

e. Assuming a
(2)
k is Gaussian, we can repeat the same steps (a)-(d).


